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Fingering of dense nonaqueous phase liquids in porous media
2. Analysis and classification

Rudolf J. Held and Tissa H. Illangasekare

Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder

Abstract. Fingering of dense nonaqueous phase liquids (DNAPLs) as seen in three-
dimensional experiments with saturated, homogeneous porous media was analyzed. A
consistent geometrical quantification of finger configurations was obtained using concepts
of fractal and multifractal scaling. Fractal patterns that determine the probabilistic
distribution of the DNAPL were found to be representative for every experimental
combination of sand and DNAPL. These patterns could be attributed to either capillary or
viscous fingering regimes. With multifractal formalisms we were able to give a description
of the underlying process kinetics. The generalized dimension D, relates results to
diffusion-limited aggregation (DLA) or invasion percolation type models. The spectrum of
singularities f(a) is invariable for cross sections of an experiment and in turn can be used
for a classification of the displacement system. The width of the f(«) curve in the range of

positive moments quantifies displacement instability. Phase transitions are indicated for

the more stable displacement systems.

1. Introduction

We presented dense nonaqueous phase liquid (DNAPL)
experiments with three-dimensional, saturated porous media
in the companion paper [Held and Illangasekare, this issue].
Fingering of DNAPLs is expected to be dissimilar to the fluid
displacement studies in petroleum engineering or soil physics.
In the latter cases the displacing fluid (water) is preferentially
wetting with respect to the medium. Macroscopically conceiv-
able effects, for example, capillary imbibition, can be seen.
DNAPL infiltration in a water-saturated medium, by compar-
ison, is the displacement by a nonwetting fluid and should be
mainly regarded as a pore-scale process.

Immiscible two-phase flow in porous media was first exam-
ined for the recovery of petroleum by water injection into the
reservoir formation. Instabilities of the macroscopic interface
between water and higher viscous oil brought about extensive
work on the phenomenon of viscous fingering (reviewed by
Wooding and Morel-Seytoux [1976] and Homsy [1987]). For
propagation of DNAPLs the inverse process of the organic
phase displacing water needs to be investigated.

Soil scientists have focused on wetting front instabilities of
water displacing air in the unsaturated zone of an aquifer
(reviewed by Gee et al. [1991]). For DNAPL infiltration in the
unsaturated zone a multiphase system exists with DNAPL,
water, and air. Different effects due to relative wettabilities
would have to be considered. Displacement by DNAPL above
the water table is unconditionally stable from the theoretical
viewpoint, and in this case the vaporization of most DNAPLs
constitutes a less threatening contamination scenario.

Several factors that generally influence the stability of im-
miscible displacement and can be related to the problem of
DNAPL migration have been stated in the literature [see Peters
and Flock, 1981]: (1) fluid viscosity or mobility, (2) gravity, (3)
capillary forces, (4) porous media pore structure, permeability,
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and wettability, (5) displacement velocity, and (6) system ge-
ometry and dimensions. The displacement history (hysteresis),
the large-scale flow field, and heterogeneity of porous media
properties at various scales are of additional importance in
natural systems. Dimensionless parameters such as the Darcy-
Rayleigh number, the capillary number; and the viscosity con-
trast, have been recognized as relevant for displacement insta-
bility. The first number relates gravitational to viscous forces,
the second relates viscous to interfacial forces, and the last
group relates viscosities of the fluids to each other.

Lenormand [1985] proposed a phase diagram for a distinc-
tion of different fingering regimes. Three types of interface
morphologies were found in experiments, depending on the
viscosity ratio M and the capillary number C. These dimen-
sionless parameters were defined as

M= pofp, (1)

C = vuyf/(Ao cos 9) (2)
where the subscript 2 designates the displacing fluid and the
subscript 1 the displaced fluid. The variable 6 is the fluid-solid
contact angle, ¢ is the interfacial tension, and A4 is the cross-
sectional area of the sample; hence v/4 represents ah average
interstitial velocity. Figure 1 shows the phase diagram, with
regions corresponding to a stable displacement regime, a vis-
cous fingering regime, and a capillary fingering regime. Grav-
itational and inertial forces were neglected in the two-
dimensional study of Lenormand [1985]. A third axis, relating
to the influence of gravity, could be thought of as a supplement
to this presentation.

To give an idea where our DNAPL experiments would be
located in a diagram of the M/C plane, we plotted them onto
Figure 1. The viscosity ratio is determined by the two fluids
used in an experiment. The capillary number is an estimate,
since our three-dimensional setup did not allow the direct
determination of displacement velocities. A capillary number
was taken as calculated at the spill point, with the cross-
sectional area of the spill device known and the average flux
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Figure 1. Phase diagram of displacement regimes [after
Lenormand, 1985). Our experiments [cf. Held and Illangasek-
are, this issue, Table 1] are plotted at the corresponding posi-
tions. .

recorded during the spill. We deduced that the capillary num-
ber did increase during the progress of most experiments,
when fingers were created and the flow occurred within a
smaller area. Thus the location of our experiments as plotted
on the M/C plane may vary with C. Except for VII and VIIJ,
all experiments fall in the transitional zone between distinct
fingering regimes as defined by Lenormand [1985].

Besides the qualitative description of experimental observa-
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tions [Held and Illangasekare, this issue], a suitable quantifica-
tion of results is required for the discussion of DNAPL finger-
ing. A quantitative analysis can provide a data set useful for the
comparison of experiments or for the validation of theoretical
and numerical models. An outcome of our experiments was a
great complexity of observed finger patterns. The measure-
ment of finger diameters, finger areas, and finger spdcing did
not seem adequate for the description of the variety of patterns
we encountered. A typical example is shown in Figure 2.

A number of concurrent studies on the use of fractal meth-
ods in nonlinear dynamics of fluid displacement in porous
media have been reported [e.g., Chandler et al., 1982; Wilkinson
and Willemsen, 1983; Paterson, 1984]. Models developed for
stochastic aggregation and growth have helped in understand-
ing and in interpreting the formation of fractal structures, that
is, growth kinetics are found to be inherently connected to the
resulting fractal geometry.

Fractal analysis was employed to describe displacement pat-
terns in Hele-Shaw cells [e.g., Nittrnann et al., 1985; Daccord et
al., 1986] and also in two-dimensional porous media [e.g.,
Malpy et al., 1985, 1987; Oxaal et al., 1987). Clément et al. [1985]
have examined fractal dimensions obtained in three-dimen-
sional experiments for liquid metal displacing air.

A multifractal analysis was employed by Nittmann et al.
[1987] and Malgy et al. [1987] on viscous fingering structures
observed in Hele-Shaw cells and in a monolayer of glass beads,
respectively. Recent literature suggests that the multifractal
formalism is applicable to three-dimensional systems. The
term “multifractal” comes from Frisch and Parisi [1985] and

Figure 2. Cross section obtained from experiment VIII (1,1,1-trichloroethane (TCA) and mesh 70 sand) at
a sampling depth of 5 cm below the spill point. The image represents an area of 26 X 26 cm and was processed
for better visual contrast between dense nonaqueous phase liquid (DNAPL) (white-gray) and background (set

to black).
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among several interpretations simply denotes a probabilistic
concept or tool [after Mandelbrot, 1989]. A synopsis of analysis
and research on fingering phenomena is provided by Feder
[1988] or Yortsos [1990].

2, Methods and Theory

Image analysis software was used for further data processing
of sections of the DNAPL plumes on digitized records. The
recorded working images show a resolution of about 360 X 360
image elements. Each image element has a gray value assigned
from 0 to 255, corresponding to a range from black to white. A
low-pass filter with a 3 X 3 convolution kernel was applied to
the recorded images; low-pass filters are commonly employed
to contrast real objects from noise in the recorded images.

One way of presenting the information contained in an im-
age is by plotting its intensity histogram, the distribution or
frequency of gray levels. For example, the intensity histogram
for Figure 2 is given in Figure 3.

The images were analyzed initially by measuring geometric
parameters of individual objects. The image analysis system
has therefore to discern object boundaries and distinguish ob-
ject areas from background. An automated separation of ob-
jects can be problematic, and even separation of objects by
visual inspection is impossible at times (reported by Glass et al.
[1990] from a study of three-dimensional experiments on fin-
gering). The measurements from statistical object analysis
were only meaningful for some of our experiments.

Fractal dimensions offer a systematic approach to quantify-
ing irregular patterns, if they contain a repeated internal struc-
ture over a range of scales [Meakin, 1991]. Classical mathe-
matical fractals, such as constructions of the Koch curve or the
Sierpinski gasket, are hierarchically generated structures. They
are nonrandom, and when scale invariance holds for all scales,
the overall distribution is said to be exactly self-similar. Like
most fractals in nature, our structures are considered random
fractals and only statistically self-similar with a change in scale.
This means that the probability distribution describing the
geometry, rather than the geometry itself, is self-similar.

The Hausdorff-Besicovitch dimension D is strictly based on
a mathematical formalism. One can think of covering a set of
points S with shells that are not necessarily of the same size,
but have a diameter less than & [Feder, 1988]. It is very difficult
to evaluate D for applications involving arbitrary or real data
sets. Alternatively, the box-counting dimension D, is easier
determined. D, and D are equal for a large class of sets; in
general, D, = D, since the number of possible covers is
reduced by the restriction to only one shell size.

For box counting, a set § is overlaid with a box grid of cell
width g, and the number of boxes N( ) that is needed to cover
the object is determined. The box-counting dimension D, is
found through the scaling relation of a power law [Mandelbrot,
1982]:

N(g) ~e™™ 3)

Let N(e) be the smallest number of boxes containing an ele-
ment of the set S; then

log N(&)

D,(S) = —lim log &

g0

4

provided the limit exists. The infimum of N(g) is approxi-
mated by varying the origin of the grid until the smallest num-
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ber is found. From (4) the box-counting dimension D, can be
determined as the negative slope of log N(€) versus log &,
measured over a range of box widths. Box counting was done
for grid sizes of e = 2"(n = 1, -+-, 6), where we could prove
a straight-line fit in our initial investigations. In estimating the
fractal dimension, a higher weight was assigned to the number
of boxes N (&) obtained from finer grids. We disregarded boxes
of size 1 X 1(rn = 0) on account of the applied low-pass filter.

For a multifractal analysis we treat our data as a measure,
therefore we incorporate the gray level information of our
images. In terms of box counting, a probability or weight is
given for the contents of each box (here the DNAPL saturation
obtained by integrating gray levels). The notion of the coarse
Holder exponent « is adapted with

log p(box)
T Tloge )
that is, the logarithm of the integrated measure of the box w
normalized by the size of the box. Here, o represents the
singularity strength of p, i.e., how p grows with €. A frequency
distribution of @ can be obtained by evaluating the number
N_(«a) of boxes of size ¢ in analogy with (3) and (4). When
& — 0, such a function of « converges under certain conditions
to the limiting function f(«). The values of f(«) may be
loosely interpreted as fractal dimensions [Feder, 1988], concep-
tually, Hausdorff-Besicovitch dimensions for subsets of the
measure having the same coarse Holder exponent o.

There are several methods to examine the multifractal be-
havior of experimental data. The analytical scaling relations we
used are based on the method of moments [after Halsey et al.,
1986] and were implemented with a box-counting algorithm.
The method of moments is applicable to a restricted class of
multifractal measures, yet was considered appropriate in our
investigation (see below).

In theory, a partition function is defined as

N(g)

Xo(e) = Z ! (6)

where ¢ is any real number. Divided by the total number of
boxes, x, (&) yields the normalized gth moment of the sample.
Scaling for x,(e) takes the form x (&) ~ £™@ or

log x,(¢)

(q) = lim = * (7)

=0

Hence the function 7(g) describes the distribution of moments
in the measure. As ¢ —  the largest p,, equivalent to the
densest parts of the measure, dominate the sum in (6). Con-
versely, as ¢ — —o the smallest u, or the least concentrated
parts are accentuated [Jensen, 1987].

When both 7(g) and f(«) are differentiable functions, they
can be linked to one another by Legendre transformation. The
set of variables 7 and g is transformed to the variables f and o,
and vice versa, by

)
alg) = 3 7(q) (8)

fla(q)) = qalq) — 7(q) &)

Here, f(«) curves are often obtained analytically from r(q)
with Legendre transformation. A direct determination of f(a)
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Intensity histogram for Figure 2.

Figure 3.

was proposed by Chhabra and Jensen [1989] that is well suited
to analyze limited experimental data. Their method produces
especially accurate results in the sampling region around g =
0. The algorithm of Chhabra and Jensen [1989] builds on the
same computational steps as the method of moments with box
counting and was given preference in this work.

Another notion was introduced by Hentschel and Procaccia
[1983] with the generalized dimension D, where D, is simply
derived from 7(q) by 7(q¢) = (¢ — 1)D,. This provides an
alternative description of multifractal measures. Referring to
(4) and (7), it can be seen that D at g = 0 equals D,, the
box-counting dimension. The singularity in the definition of D,
at g = 1 was evaluated after Feder [1988].

The practical computation of 7(q), D, and f(«) required
including all gray levels of the recorded image. Our decision to
work with the image as a whole is addressed in the next sec-
tions. The smallest intensity value of an image was shifted to
the origin for a normalization of the measure. This results in no
loss of generality. Multifractal analysis was pursued by coarse
graining the measure with boxes of sizee = 2"(n =1, ---, 6)
and the determination of the corresponding box measure .
The partition function was computed from (6) for all values of
¢ and for ¢ varied from —10 to +10.

3. Results

A gray level range from 24 to 61 can be taken as character-
istic for most of the images. The peak in the histogram distri-
bution of Figure 3 corresponds to background readings,
whereas the right part of the histogram reflects the DNAPL
distribution. A clear distinction of background and DNAPL
ranges is not seen in the histogram. By optical interpretation of
the image the gray level that separates background and chem-
ical information falls on a value of 35.

Statistical analysis in the sense of measuring finger areas,
diameter, and spacing was applicable to certain experiments.
For experiments in coarse sand the mean areas were measured
as 0.24 + 0.4 cm? (experiment I with trichloroethylene (TCE))
and 0.28 % 0.4 cm? (experiment II with 1,1,1-trichloroethane
(TCA)). The large error margins indicate just the high vari-
ability of the measurements. In experiment IV with medium
sand and TCE the average finger areas were 0.44 + 0.7 cm?;
they can also be given as 8.6 = 1.9 cm? and 8.5 + 1.9 cm? for
experiment V-a and experiment V-b (medium sand and TCA).

HELD AND ILLANGASEKARE: DNAPL FINGERING IN POROUS MEDIA, 2

25 T T T

2.0

1.5

LB AL s s S B B s

1.0

0.5

|1\l[ll\llllil]lylrlllll‘]

00 4 4 1
0 20 40 60 80 100
intensity value

Figure 4. Box-counting dimensions calculated for Figure 2
with varied intensity threshold values.

In all other cases a statistical object analysis did not represent
measurements on isolated fingers.

3.1. Fractal Analysis

In this section we present results as they are attained from
data sets; the selection of a gray level threshold implies a
binary discrimination of the data. With a threshold Ievel of 35
for Figure 2, i.e., eliminating the background information in
the picture, we performed box counting on the perimeter and
on the entire set. A power law in scaling of the perimeter was
lacking, especially at high resolutions. An indication of frac-
tality of the entire set was given over about 2 orders of mag-
nitude in length scale, from millimeters to tens of centimeters.

For the comprehensive investigation of an image the thresh-
old was shifted over the range of existing gray levels, and
box-counting dimensions for the entire set were determined.
The error margins of this determination increased with higher
thresholds as the size of the set was reduced. A deviation from
strict power law behavior was then observed at large scales.
Figure 4 shows the resulting D, for the above example. At the
lowest threshold of 24 the picture is completely filled (D, =
2.0). The fractal dimension initially degrades, when the
threshold value is augmented, until D, shows an intermediate
maximum at a gray level of 35. This response in the curve is
attributed to the fractal nature of the DNAPL distribution. It
is suggested that the highest fractal dimension would be at the
gray level where the DNAPL first appears in an image. How-
ever, background readings overlap in that gray level range. The
maximum in D, did correspond to the threshold between
DNAPL and background found from visual inspection.

An intermediate maximum in the box-counting dimensions
was identified in every image. The function of D, versus gray
level beyond this point reproduced the features of the intensity
histogram (compare with Figure 3). Convexity or concavity in
the shape of the histogram curve was strictly preserved in the
spectrum of D,,.

A plot was developed which combines the box-counting di-
mensions of all horizontal cross sections from one experiment.
Each spectrum was normalized by removing the part to the
left-hand side of the intermediate maximum (shifting the spec-
trum from gray level 35 to zero in Figure 4). An overview of
several parameters, i.e., penetration depth, relative intensity
variation, and fractal dimensions, is intended. The overall pat-
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Fractal patterns for DNAPL experiments (see text for explanation).

Figure 5.
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Experiment I
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Figure 6. Generalized dimensions D, versus moments g for DNAPL experiments.

terns of these plots identify the spatial distribution of the
DNAPL and are also interpretable as relative DNAPL satura-
tion.

Almost identical patterns were attained for the repetitions of
the same experiment with different initial and boundary con-
ditions (experiments V-a through V-c). We conjecture that a
particular combination of sand and DNAPL yields a specific
fractal pattern, independent of the spill conditions.

In Figure 5 we present results of this analysis for all exper-
iments. The pattern of experiment V-a is herein taken as rep-
resentative for experiments V. It was found for experiments I
and IV that both systems with TCE are characterized by a wide
intensity range at the infiltration front and approximately a
straight decline in the fractal distribution versus relative inten-
sity (symbolized as a back slash). Dibutyl phthalate (DBP)
likewise revealed a wide range for the penetration front in
experiments III and VI, but has a concave fractal spectrum
(N). For experiments II and V with TCA, we recognize a small
range at the front and a maximum intensity at half the depth of
penetration. The fractal spectrum here is typically concave-
convex (NU). Contrasting such correlation of patterns from
coarse to medium sand for all tested DNAPLs, a similarity
subsists among the patterns developed in fine sand (experi-
ments VII and VIII). The highest intensities are depicted in
the top portion of the plumes, and the fractal distribution is
generally concave (N or NN). None of the characteristics seen

in the coarser two sands are evident for displacement by TCE
and TCA in the fine sand.

This leads us to the interpretation that the porous medium
defines the pattern for the DNAPLSs in fine sand, whereas the
DNAPL properties determine the distribution pattern in very
coarse and medium sand. According to these findings a clear
distinction between displacement regimes is suggested: viscous
fingering in the coarser porous media and capillary fingering in
the fine porous media (compare to the phase diagram, Figure 1).

3.2. Multifractal Analysis

Plots of log x, (&) versus log € gave a good linear fit for 7(g),
which justifies the application of the method of moments
[Evertsz and Mandelbrot, 1992, p. 942]. Hence the method of
moments should produce the correct results, Complete dia-
grams of D, and f(«) functions for the experiments are pre-
sented in Figures 6 and 7. We did not plot error estimates,
since all cross sections of an experiment are overplotted in one
graph and give an idea of the spread in the data.

The generalized dimensions D, offer an interpretation of
the measure with respect to modeling approaches. Malgy et al.
[1987] observed a quantitative change in the scaling exponents
D, between fingering in diffusion-limited aggregation (DLA)
and invasion percolation models. The slope of D, for positive
q is taken as an indication of the degree of self-similarity of the
structure. D, should be constant for an exactly self-similar
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Figure 7. Spectrum of singularities f(«) versus singularity strength o for DNAPL experiments.

cluster. A flat slope of the curve is expected for the compact
structures in the invasion percolation regime. Experiments III,
VI, V1, and VIII in Figure 6 would then confirm an invasion
percolation type structure. A crossover to DLA type structures
with steeper gradients is perceived in experiments I and IL

The f(«) functions in Figure 7 were computed directly [after
Chhabra and Jensen, 1989]. The f(a) from the sections of a
specific experiment are found fo be stable. All f( ) spectra are
nontrivial, with a fairly large range of «. A consistent widening
of the left part of the curves, for the range of @, .o to @, , 10,
is seen in our experiments from fine to coarse sands and from
DBP to TCE. The ranges of « for positive moments increase
from 0.05 (in experiment VI) to 0.6 (in experiment I). The «
ranges for the negative moments are unchanged. It is recog-
nized that the error margins grow with larger moments. The
error estimates for positive moments were such that the wid-
ening of f(«) is confirmed in the above limits.

According to Lutsko et al. [1992], the broadening of the f(a)
spectrum indicates destabilizing factors in the displacement.
They documented numerically a widening of the a spectrum by
lowered surface tensions or enlarged porosities. We showed
that a higher density contrast and higher viscosity contrast have
the same effect and can be added to that list. These findings are
in agreement with the theory of displacement stability [see
Chuoke et al., 1959). The f(«) functions are fully quantitative
and allow a consistent classification of DNAPL displacement
in porous media.

The extreme values of the coarse Holder exponent, o, and
Oy Usually converge to f(a) = 0; @y, and @y, correspond
to the mormients g — + and ¢ — —, respectively. The fact
that the spectrum ¢ — +% ends at a finite f(a) value is
assigned to a phase transition or given a physical interpreta-
tion: The densest parts of the measure are not contracted to
points, but fill up some space [Halsey et al., 1986]. The finite
values of f(«) relate to a high fractal dimension at large pos-
itive moments or the flat slope in D,. Such behavior of f(«) is
seen in Figure 7 for the experiments with a more stable dis-
placement configuration. In the sections of experiment IV we
did observe a transition from an upper stable plume to domi-
nant fingering, which is revealed in f(«,_ . ,,) as a shift from
nonzero values to zero.

4. Discussion _

With a statistical object analysis, phenomenological charac-
teristics of the DNAPL distributions were measured that had
been observed during disassembly of the experiments. Criteria
to classify all experiments could not be found by investigating
areas, perimeters, or intensities in the usual sense. The fractal
nature of the DNAPL distribution was implied from our im-
ages and led us to a scaling analysis. ‘

Fingering in fluid-fluid displacement does not necessarily
produce fractal geometries. An attraction to nonfractal re-
gimes for viscosity-controlled displacements is suggested by
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Lee et al. [1990]. The randomness of the process is assumed as
decisive for fractality of the displacement structures [Chen,
1987]. We demonstrated that fractal fingers are created under
experimental conditions with real porous media. Irregularities
and randominess exist in the pore network at small length
scales and give rise to complex process dynamics.

The literature reports a lower scale cutoff in immiscible
displacement. The effects of wetting properties and interface
velocity at the pore scale have been discussed in that context
[Weitz et al., 1987; Cieplak and Robbins, 1988]. The same mech-
anisms probably opposed a fractal scaling of the perimeter at
high resolutions. Fractal behavior is expected to extend only
down to the pore scale; for the coarse sand our image resolu-
tion actually exceeded the mean pore size. A lower limit for
geometrical scaling can be physically foreseen. An upper limit
of scaling was 1mp0sed experimentally with the limited size of
the spill.

The fractal patterns of the DNAPL distributions (Figure 6)
can be looked at as a firigerprint of the respective displacement
system. For each system of DNAPL and pordus medium we
found a probabilistic scaling behavior that indicates the finger-
ing regime, dominated either by viscous and gravitational
forces or by capillarity. These patterns describe the spatial
distribution or variation of relative DNAPL saturations result-
ing from a spill situation.

Employment of multifractal formahsms on our data was
motivated by the idea of retrieving dynamical information of
the system from multifractal scaling properties [see Jensen,
1987]. This would be possible if the underlying dynamical pro-
cesses are well defined: Such information may not be retriev-
able for the kind of data we have. We restrict ourselves in this
study to presenting multifractal spectra of the experiments for
the quantification and classification of displacement instability.

Several formalisms for the determination of multifractal be-
havior have been employed in our study, for example, those
according to Vicsek [1990] and Lutsko et al. [1992] (based on a
correlation integral), or Halsey et al. [1986] and Chhabra and
Jensen [1989] (based on box counting). The calculation of neg-
ative moments from experimental data was found particularly
difficult and brought about obscure results for the former of
the above procedures. It should be noted that good conver-
gence of negative moments is rarely found, even for mathe-
matical constructions of a multifractal,

When we used the images as a whole, including intensity
values of the background.and the DNAPL range, the methods
based on box counting produced straight-line fits for positive
and negative moments and a continuous f( ) curve. There was
no procedure for eliminating all the background information in
the images that would not lead to the loss of scaling behavior
for negative moments. The range of negative moments was
thus affected by image information of the background. We try
to avoid the term noise in this context, since these réadings
reflect the structure of the porous medium. They may have a
greater influence on the displacement dynamics and on the
resulting DNAPL distributions than one might perceive at first.

The positive moments of the D, function and corresponding
left-hand side of the f(a) function, however, can be clearly
attributed to the DNAPL distribution. D, relates structures to
a type of fingering simulated with probablhstlc models [Malpy
et al., 1987]. The spectrum of singularities f(a) is remarkably
stable for all sections of an experiment. They show a consistent
widening of the a range from fine to coarser sands and from
highly viscous to less viscous DNAPL. In other words, the
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range of « is related to the stability in the DNAPL displace-
ment. Destabilizing factors are seen in a coarser pore network,
higher density, and lower viscosity of the DNAPL. We com-
puted finite values of f(«) for large positive moments in sev-
eral experiments. They ordinarily indicate a phase transition in
the dynamical system.

We also tested higher-order correlation functions, i.e., lacu-
narity, as a descriptor for the displacement systems. The scal-
ing averages in a fractal and multifractal approach lump some
information together that is valuable for a refined analysis of
the physical mechanisms and dynamics. Multifractality still
seems to be a suitable approach for the quantification of hy-
drodynamic instabilities in porous media. A theoretical or nu-
merical model of DNAPL fingering should match the docu-
mented multifractal behavior as a necessary condition.

The combination of the above analyses allows the charac-
terization and classification of DNAPL fingering in porous
media. The system configurations, the combinations of sand
and DNAPL, cover fingering phenomena from a dominantly
gravitational regime to viscous and capillary fingering, and
rather stable displacements.
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