Preemptive Regression Test Scheduling Strategies: A New Testing Approach to Thriving on the Volatile Service Environments*

Lijun Mei
IBM Research – China
Beijing, China
meilijun@cn.ibm.com

Ke Zhai
The University of Hong Kong
Pokfulam, Hong Kong
kzhai@cs.hku.hk

Bo Jiang
Beihang University
Beijing, China
jiangbo@buaa.edu.cn

W. K. Chan**
City University of Hong Kong
Tat Chee Avenue, Hong Kong
wkchan@cityu.edu.hk

T. H. Tse
The University of Hong Kong
Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract—A workflow-based web service may use ultra-late binding to invoke external web services to concretize its implementation at run time. Nonetheless, such external services or the availability of recently used external services may evolve without prior notification, dynamically triggering the workflow-based service to bind to new replacement external services to continue the current execution. Any integration mismatch may cause a failure. In this paper, we propose Preemptive Regression Testing (PRT), a novel testing approach that addresses this adaptive issue. Whenever such a late-change on the service under regression test is detected, PRT preempts the currently executed regression test suite, searches for additional test cases as fixes, runs these fixes, and then resumes the execution of the regression test suite from the preemption point.

Keywords—adaptive service composition, adaptive regression testing, preemptive regression testing, test case prioritization

I. INTRODUCTION

A workflow-based web service may use ultra-late binding to invoke other web services to concretize its implementation at run time. In general, such an implementation is known as a service-based application or a service composition. Nonetheless, the services that are invoked by the workflow-based web services, which we refer to as external services, may evolve without prior notification. The availability of recently used external services for the next service request is also uncertain. Both types of changes dynamically trigger the workflow-based service to bind to replacement external services so that the former service can continue with its execution. The testing of adaptive systems, such as a service composition led by a workflow-based web service, should assure that the workflow-based web service can successfully and dynamically switch its external services and successfully continue with the execution.

For example, during a round of regression test, a test case \(t \) having been executed on a service composition (such as version \(u \) of a workflow-based web service and version \(v \) of an external service) may require re-execution over the evolved version of the service composition (such as version \(u \) of the workflow-based web service and an evolved version \(v' \) of the external service) so as to test the adaptability of the service composition.

Along any execution path of the workflow-based web service, there is a sequence of service invocation points, each of which leads the workflow-based web service to invoke an external service to provide a result. Moreover, every such service invocation may or may not bind to a new external service. For a “retest-all version” of regression testing, every test case of a regression test suite that goes through this execution trace may potentially be rerun to assure different sequences of binding configurations for the service invocation points. This process is intuitively heavy. On the other hand, testing each test case once irrespective of the possible number of such binding configuration sequences is inadequate.

To the best of our knowledge, existing test case prioritization techniques (such as \([2][8][9][14][15][17][18][19][20]\)) do not take into account the changes in service binding. For instance, in a typical round of regression test, such techniques simply apply all the not-yet-executed test cases once to the service-based application. They are, therefore, inadequate in testing dynamic web services.

In this paper, we propose a novel approach — Preemptive Regression Testing (PRT) — for the regression testing of (dynamic) web services. We define a dynamic web service as a web service that can dynamically change its own processing logic or bind to and use new external services during the course of an execution. We refer to such a change during
execution as a *late-change*. Whenever a late-change is detected, PRT preempts the currently executed regression test suite, searches for additional test cases as fixes, runs these fixes, and then resumes the execution of the suspended regression test suite from the preemption point. It continues to test the service with the prioritized test suite until all the test cases in the regression test suite have been applied to the service without further detecting any late-change. In this paper, we present three workflow-based strategies, each of which concretizes PRT. They use the workflow coverage of the web service as an indicator of whether a late-change may have occurred. They adaptively and dynamically prioritize and select test cases from a regression test suite until no change in the workflow coverage of the web service by the selected test cases is detected. We note, however, that PRT is general and not limited to the testing of workflow-based web services. Other PRT strategies following the preemption idea above can be similarly developed.

The basic idea of the three PRT strategies is as follows: Given a test case t of a prioritized regression test suite T that aims to verify a modified version u of a workflow-based web service, a PRT strategy executes u with t and compares the workflow coverage of u achieved by t with that of the last execution of u achieved by t. In case that no prior execution of u is available, the PRT strategy compares the current workflow coverage with that of the preceding version of u achieved by t.

If any change in the workflow coverage of u achieved by t is detected by the above comparison, the PRT strategy immediately preempts the current execution of T, searches T, and identifies a subset $X (\subseteq T)$ as *fixes* that collectively covers the missed workflow coverage. The PRT strategy then executes X. Finally, it resumes from the preemption point to continue executing the remaining prioritized test cases in $T \setminus X$. However, unlike existing techniques, the execution of $T \setminus X$ is not the end of the PRT strategy.

In case that some workflow coverage missed by t is really due to the evolved external service binding (say, the use of a version v_2), any test case in T executed before t can only assure u in the presence of a service other than v_2 — none of such test cases, in fact, has assured u in the presence of v_2. The PRT strategy thus re-executes all such test cases. The above procedure will continue until the entire T has been executed on u (in a round-robin manner) and no more change in workflow coverage is detected during the execution of the entire test suite T. This is because, by then, the strategy has no further evidence indicating that any external service used by the service-based application has changed.

Intuitively, if the service environment of a web service under test is violated, the PRT approach will conduct a “long” regression testing, which is different from existing regression testing techniques that may terminate too early, so that the service adaptation characteristics of the service composition cannot be thoroughly tested by the regression test suite.

We further note that existing test case prioritization strategies wait until the next round of regression test to find test cases based on the new coverage profiles. They are both unaware of the *missed* coverage for a particular service composition and unable to schedule target test cases to verify the present service composition in time. In our PRT strategies, a test case may be executed multiple times during the *same* round of regression testing. Furthermore, a regression test suite does not need to be completely executed before any test case is selected for re-execution. Hence, our PRT approach can be more lightweight than existing regression testing techniques in rescheduling test cases.

We conduct an empirical study using all the subjects from [14][17], and include a comparison between peer techniques [17][19] and new techniques built on top of our strategies. Our study confirms that our techniques are significantly more lightweight than existing techniques.

The main contribution of this paper is threefold: (i) We propose preemptive regression testing, which is a new approach in continuous regression testing to assuring service-based applications that address the challenges due to the presence of external services that may evolve or are of low availability. (ii) We concretize PRT to formulate three strategies. (iii) We present the first empirical study on the efficiency and effectiveness of techniques for continuous regression testing of services.

The rest of this paper is organized as follows: Section II gives a motivating example. Section III presents our strategies and our regression testing techniques. Section IV reports an empirical study, followed a review of related work in Section V. Finally, Section VI concludes the paper.

II. Motivating Example

This section adapts an example from the TripHandling project [1] to illustrate the new challenges in regression testing of a web service such that its communicating external services may evolve during the execution of a prioritized regression test suite. For ease of presentation, we follow [14][17] to use an activity diagram to depict this web service, which we denote as P.

Fig. 1 shows a scenario where the developer of P modifies version v_1 into version v_2. Version v_1 communicates with version s_1 of an external hotel price enquiry service (denoted by S). Version s_1 is, however, not controlled by the developer of P. The binding of version s_1 of S to v_2 of P is not guaranteed and may change dynamically. For example, the developer of S may modify the implementation and publish a new version s_2 to replace s_1. Alternatively, at run time, the quantity-of-service of s_1 may not be good enough for v_2, and hence v_2 finds a replacement service S' and binds to it.

Our target for testing is to assure v_2. We note that v_2 has a dynamic adaptive ability; otherwise, it cannot achieve ultra-late binding to external services. In each activity diagram, a node and an edge represent a workflow process and a transition between two activities, respectively. We annotate the nodes with extracted program information, such as the input-output parameters of the activities and XPath [24]. We number the nodes as $A_i (i = 1, 2, ..., 8)$.

(a) A_1 receives a hotel booking request from a user and stores it in the variable *BookRequest*.

(b) A_2 extracts the input room price and the number of persons via XPath //price/ and //persons/ from *BookRequest* and stores them in the variables *Price* and
price enquiry service. Test case booking of a single room. Test cases
rooms are available, namely, single rooms at a price of $105
inputs as follows. We assume that only two types of
price (\(v\)) and
and
Fig. 2(a) shows the execution traces of the five test cases
A
Version v1 of P

d
\[\text{Version v2 of P}\]

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{Price (Num)} \textbf{Test case} \textbf{Price (Num)} \textbf{Test case} \\
\hline
(\(200\), 1) \text{Test case } t_1 \ (\(100\), 5) \text{Test case } t_2 \\
(\(125\), 3) \text{Test case } t_3 \ (\(20\), 2) \\
(\(-1\), 1) \text{Test case } t_5 \ \\
\hline
\end{tabular}
\end{center}

Note 1: A binding kept in a regression test case may be invalid when the test case is re-run.

(c) \(A_1\) invokes the service \(HotelPriceService\) to select available hotel rooms with prices not exceeding the input \(Price\) (that is, within budget), and keeps the reply in \(HotelInformation\).

(d) \(A_4\) assigns \(RoomPrice\) using the price extracted via XPath /\(\text{room[@prices='Price' and @persons='Num'}/price\).

(e) \(A_5\) verifies locally that the price in \(HotelInformation\) should not exceed the input \(Price\).

(f) If the verification passes, \(A_4\) executes \(HotelBookService\) to book a room, and \(A_6\) returns the result to the customer.

(g) If \(RoomPrice\) is erroneous or \(HotelBookService\) in \(A_7\) produces a failure, \(A_6\) will invoke a fault handler.

Suppose we have five test cases \(t_1\) to \(t_5\) containing the price (\(Price\)) and the number of persons (\(Num\)) as parametric inputs as follows. We assume that only two types of rooms are available, namely, single rooms at a price of $105 and family rooms (for 3 persons) at a price of $150.

Note 2: \(s_2\) can be either a newer version of \(s_1\) or a service independent to \(s_1\). (Uncontrollable by developer of \(P\)).

Fig. 2(a) shows the execution traces of the five test cases over version v1 of \(P\) that uses version s1 of \(S\) as the hotel price enquiry service. Test case \(t_1\) results in the successful booking of a single room. Test cases \(t_2\) to \(t_5\) results in unsuccessful bookings. The price validation process rejects \(t_1\) and \(t_5\). Since the minimum room price by \(HotelQueryService\) is $40, the \(HotelInformation\) resulting from \(t_4\) and \(t_5\) both include a “no vacancy” notice, the input price, and a default number of persons (set at 99). Thus, although both \(t_4\) and \(t_5\) passes the price validation process, no room can be booked using the low price of \(t_4\), while the price “−1” of \(t_5\) will trigger a fault.

Suppose a software engineer Jim decides to make the following changes to the precondition at node \(A_4\) of version v1 of \(P\) in Fig. 1. He attempts to allow customers to select any room that can accommodate the requested number of persons. However, he wrongly changes the precondition in the XPath by changing “\(\text{and}\)” to “\(\text{or}\)”.

![Diagram showing changes to the precondition](image)

Although he intends to provide customers with more choices, the change does not support his intention (because the process is designed to immediately proceed to book rooms, rather than allowing customers to specify their preferences). This results in a fault as indicated in version v2 of \(P\) in Fig. 1. Fig. 2(b) shows the traces of version v2 of \(P\) using version s1 of \(S\), whereas Fig. 2(c) shows the traces of v2 of \(P\) using s2 of \(S\).

Note that only the execution trace of \(t_5\) is different among Fig. 2(a)–(c). The test case \(t_5\) aims to book a family room; however, owing to the modification, a single room is booked. This test case can detect a regression fault. Moreover, suppose that \(t_1\) and \(t_2\) are failed test case on \(s_2\) due to the incorrect implementation of \(s_2\); whereas they are both passed test cases in Fig. 2(b).

In Fig. 2(d), we present a test case permutation generated by the existing addtl-workflow-branch test case prioritization technique, which is a traditional strategy adopted from addtl-statement coverage from [6][19]. The test suite detects a failure by the second test case (\(t_5\)). Suppose, further, that \(s_1\)
(a) Traces of test cases on v_1 of P using s_1

(b) Traces of test cases on v_2 of P using s_1

(c) Traces of test cases on v_2 of P using s_2

(d) Applying addtl-workflow-branch coverage to test version v_2 of P using version s_1 (see Scenario 1 of Fig. 3)

(Note: The coverage information of each test case is from its previous round of execution.)

(e) Applying Strategy 1 when $v_1 \rightarrow v_2$ and $s_1 \rightarrow s_2$ during a round of regression test (see Scenario 2 of Fig. 3)

(Note: The coverage information of each test case is from its latest execution.)

Figure 2. Brief example illustrating the preemptive regression testing of service-based applications.
A web-based application is divided into two parts. The first part is a web service under test, denoted by P. We assume that P adopts a dynamic service-oriented architecture that can bind a service invocation point to different web services during the course of execution. Similar to a lot of regression testing research [8][11][17][18][19], our objective is to safeguard P from faulty modification of its implementation of the internal computation and dynamic service binding configurations. Testers may test P in a laboratory to collect the coverage data.

The second part is a set of services outside the service under test P. P needs to bind to and communicate with them in order to compute its functions properly. We call them external services of P. In other words, in our setting, executing a test case over a given version u of P may involve the invocation of external services and obtaining their results.

In general, a web service P has no control over the evolution of external services, the availability of each external service, and the network conditions. It is unrealistic to assume that external services remain unchanged during any round of execution of a regression test suite in the real-world situation.

A. Preliminaries

The idea of PRT is intuitive. Whenever a late-change is detected by service P, PRT preempts the currently executed regression test suite, searches for a subset of the regression test suite as a fix, runs the fix, and then resumes the execution of the regression test suite from the preemption point. PRT also continues to execute the remaining part of the prioritize test suite (possibly marking the test cases in the fix as executed) until all test cases have been executed without any preemption among them.

There are many aspects that a PRT technique can use:

- A late-change can be detected at the URL level or from the message header of some service message. However, if they fail to provide clues, testers may still need techniques to help them assure the web services under test. An approximate condition is that such a late-change will lead to a change in the implementation of the external service with respect to the service under test. The behavior of the new implementation may alter the execution flow of the service under test. Such change in execution flow can be viewed as a rough indicator for late-changes. Based on this insight, we formulate three PRT strategies to be presented in the next subsection.

- A preemption can immediately occur or put in a priority queue and handled similar to how an operating system handles software interrupts. A search for fix can be expanded to the generation of new test cases. Alternatively, it may source test cases that are not originally in the regression test suite. The execution of a fix and the marking of test cases that serve as fixes can also be handled similarly to how a preemption can be handled. The execution of the whole test suite can continue as the stopping criterion can be further modified, such as considering all preemption points rather than merely the last one, or none of them.
C. Our Coverage-Based PRT Strategies

In this section, we present three PRT strategies.

Strategy 1 (Fix). Suppose a test case \(t \) misses at least one coverage item that it has covered in its last execution. Let \(F \) be the set of missed coverage items of \(t \). This strategy selects a sequence \(U \) of test cases in \(T \) such that the last execution of all the test cases in \(U \) can minimally cover all the missed coverage items in \(F \). Moreover, this strategy records the coverage items achieved by each newly selected test case in \(U \) with respect to \(F \).

Because the coverage achieved by many not-yet-executed test cases in \(T \) in their corresponding last executions may cover some item in \(F \), Strategy 1 adopts the following criterion to construct \(U \) and run these test cases.

For every missed coverage item in \(F \), Strategy 1 chooses and executes one test case among the not-yet-executed test cases in \(T \) in a round-robin fashion (starting from the position of \(t \) in \(T \)) in descending order of the number of items covered by each test case.

In addition, executing such a replacement test case may discover additional coverage items that have been missed as well. In this case, Strategy 1 will suspend its current round, invoke a new round of Strategy 1, wait for this newly invoked round to complete, remove from \(F \) of the current round those coverage items already covered by the recursively invoked rounds of Strategy 1, and then resume the execution of the current round of Strategy 1.

Strategy 2 (Reschedule). If a test case covers new item(s) that have not been covered in its last execution, the strategy records the additional coverage items achieved by the test case, and reprioritizes the not-yet-executed test cases according to the additional item coverage technique (see `addtl-statement` coverage in [6] for details).

Strategy 3 (Fix and Reschedule). This strategy is a hybrid of Strategies 1 and 2. If a test case does not cover some item(s) it has covered in its last execution, Strategy 3 first invokes Strategy 1. After the completion of Strategy 1, if there are any additional coverage items that have not been covered in the last execution of the test cases executed by Strategy 1, it will invoke Strategy 2.

Compared with existing strategies, our strategies require additional storage so that we can mark the end of each iteration of a strategy. In the implementation, we use an integer array (of the same length as the size of the test suite), which is sufficient to support the marking, and hence the incurred space requirement is light.

Determining the workflow coverage after the execution of every test case will cause additional overhead. However, the computation of workflow coverage changes can be done by comparing the current test trace with the previous one, which is fast. The runtime slowdown factor on the workflow process can be small because a workflow process tends to be small and the major delay appears to be the time needed to wait for the results from external services.

Intuitively, Strategy 1 only requires fixing the coverage, while Strategy 2 requires reprioritization of the not-yet-executed test cases. Therefore, Strategy 2 involves more slowdown overhead than Strategy 1. When the number of test cases per iteration increases (where the term “iteration” has the same meaning as that in `addtl-statement` coverage), the reprioritization definitely takes more time to complete. However, the procedure does not need to be conducted on the whole test suite. Therefore, the reprioritization only depends on the number of test cases executed in each iteration, regardless of the size of the whole regression test suite.

Although our strategies require computation and storage costs, such costs are less than those of retesting all the test cases in a test suite, which involves invoking external services, arranging resources, and even human interactions.

D. Implementation

This section describes the application of our strategies to build three test case prioritization techniques (listed as M1–M3 in Table 1).

1) Our PRT Techniques

We apply our three strategies to the existing additional-branch technique [19] (also known as `addtl-workflow-branch` coverage in [17]) to build three new evolution-aware techniques (M1–M3 in Table 1). Each new technique has a stopping criterion: For a web service \(P \) and a regression test suite \(T \) for \(P \), the technique will stop applying test cases to \(P \) if every test case in \(T \) results in no further change in the workflow coverage of \(P \).

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addtl-Workflow-Branch-Fix</td>
<td>M1</td>
</tr>
<tr>
<td>Addtl-Workflow-Branch-Reschedule</td>
<td>M2</td>
</tr>
<tr>
<td>Addtl-Workflow-Branch-FixReschedule</td>
<td>M3</td>
</tr>
</tbody>
</table>

M1 (Addtl-Workflow-Branch-Fix). This technique consists of two phases. Phase 1: preparation. It first updates the workflow branches covered by individual test cases to be the same as the `addtl-workflow-branch` coverage in [17] to generate a sequence of test cases. Phase 2: runtime adjustment. Right after the execution of a test case, it runs Strategy 1 and then continues to apply the given sequence of prioritized test cases in a round-robin fashion until the entire test suite has been executed and no test case changes its achieved coverage between the current execution and the last execution.

M2 (Addtl-Workflow-Branch-Reschedule). This technique consists of two phases: Phase 1: preparation. This phase is the same as Phase 1 of M1. Phase 2: runtime adjustment. It is the same as Phase 2 of M1, except that it runs Strategy 2 rather than Strategy 1.

M1 only deals with test cases that miss to cover some items that have been covered in the last executions of the test cases, whereas M2 only deals with test cases that cover more items than those covered in the last executions of the test cases. The following technique strikes a balance between M1 and M2 by using Strategy 3.
M3 (Addtl-Workflow-Branch-FixReschedule). This technique also consists of two phases. Phase 1: preparation. This phase is the same as Phase 1 of M1. Phase 2: runtime adjustment. It is the same as Phase 2 of M1, except that it runs Strategy 3 instead of Strategy 1.

In some regression testing techniques (such as [10]), new test cases need to be introduced into the original test suite to check the revised code. Such consideration is not in the scope of the present paper. However, it is not difficult to adapt our PRT approach to use the new test cases. Here is one possible solution: We first categorize the new test cases into a few new iterations. After executing the test cases of an existing iteration, we will then execute the new iterations.

IV. EVALUATION

This section evaluates our PRT techniques.

A. Experimental Setup

We chose a set of eight subject programs to evaluate our strategies, as listed in Table 2. They were representative service-based applications developed in WS-BPEL. This set of applications was also used in previous empirical studies reported in [14][17].

We generated 100 test suites for each application. The statistics of these test suites are shown in Table 3. It presents the maximum, average, and minimum numbers of test suites for each benchmark application.

<table>
<thead>
<tr>
<th>Subject Ref</th>
<th>Subject Description</th>
<th>Modified Versions</th>
<th>Elements</th>
<th>LOC</th>
<th>XPaths</th>
<th>XRG</th>
<th>Branches</th>
<th>WSDL</th>
<th>Elements</th>
<th>Used Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>atm</td>
<td>8</td>
<td>94</td>
<td>180</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>buybook</td>
<td>7</td>
<td>153</td>
<td>532</td>
<td>3</td>
<td>16</td>
<td>14</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>dslservice</td>
<td>8</td>
<td>50</td>
<td>123</td>
<td>3</td>
<td>16</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>gymlocker</td>
<td>7</td>
<td>23</td>
<td>52</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>loanapproval</td>
<td>8</td>
<td>41</td>
<td>102</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>marketplace</td>
<td>6</td>
<td>31</td>
<td>68</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>purchase</td>
<td>7</td>
<td>41</td>
<td>125</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>triphandling</td>
<td>9</td>
<td>94</td>
<td>170</td>
<td>6</td>
<td>36</td>
<td>20</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
<td>527</td>
<td>1352</td>
<td>23</td>
<td>114</td>
<td>106</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Statistics of Test Suite Sizes

<table>
<thead>
<tr>
<th>Subject Ref</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>146</td>
<td>93</td>
<td>128</td>
<td>151</td>
<td>197</td>
<td>189</td>
<td>193</td>
<td>113</td>
<td>108</td>
</tr>
<tr>
<td>Average</td>
<td>95</td>
<td>43</td>
<td>56</td>
<td>80</td>
<td>155</td>
<td>103</td>
<td>82</td>
<td>80</td>
<td>86.8</td>
</tr>
<tr>
<td>Minimum</td>
<td>29</td>
<td>12</td>
<td>16</td>
<td>19</td>
<td>50</td>
<td>30</td>
<td>19</td>
<td>27</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Strictly following the methodology in [6], we generated 60 modified versions [17], as shown in Table 2. The fault in any modified version could be detected by some test case in every test suite. We discarded any modified version if more than 20 percent of the test cases could detect the failures in that version. All the 43 remaining versions were used in the empirical study.

We obtained the implementation tool of Mei et al. [17], configured it, and used it for test case generation, test suite construction, and fault seeding in our empirical study.

We revisit the procedure here: First, it randomly generated test cases based on the WSDL specifications, XPath queries, and workflow logics of the original application (rather than the modified versions). For each application, 1000 test cases were generated to form a test pool. The tool then added a test case to a constructing test suite (initially empty) only if the test case can increase the coverage achieved by the test suite over the workflow branches, XRG branches, or WSDL elements. This construction process is also adopted in [6][19]. We successfully generated 100 test suites for each application.

To simulate scenarios in a real dynamic service environment, our setting is that web service modifications, external service evolutions, and test case prioritization and selection may occur concurrently during any round of execution of a test suite. For ease of reference, each of them is called a change. We define a change window to refer to the time interval between two changes. For ease of comparison, we directly use the number of test case executions to represent the time spent. We set the change windows to x * |T|, where x = 0.2, 0.4, 0.6, and 0.8, and |T| is the size of the test suite T. (We note that when x = 1.0, the entire test suite will be completely executed before any evolution occurs. In this case, our initialized techniques will degenerate to traditional techniques.) For each test suite T, we randomly chose among the modified versions and generated a sequence of versions to simulate a sequence of changes. We set each sequence to consist of 50 changes.

Since all the test case execution results of the applications can be determined, we can figure out whether a fault has been revealed by a test case through comparing the test result of the modified version with that of the original program. Our tool automatically performed the comparisons.

B. Measurement Metrics

A fault in a service composition is only detected when the faulty service composition is being dynamically bound and a test case that can reveal the fault is successfully scheduled by a technique to execute over the faulty service composition. Once the service composition has evolved, the test case may only detect a fault due to another service composition rather than this one.

The first effectiveness measure that we will use is, therefore, the number of test cases successfully scheduled by a technique such that each test case detects a failure from a service composition. For ease of reference, we simply refer to this metric as the number of fault-revealing test cases. Using this metric allows us to measure the precision of a scheduling technique. A higher metric value indicates a higher precision.

Many existing test case prioritization experiments use the Average Percentage of Faults Detected (APFD) [6], which only takes into account the first test case that can detect a fault, regardless of the actual round of regression test that the test case is executed. As we have illustrated in
Section I, service compositions may evolve. The ability of an algorithm to schedule a test case to detect the presence of faults in one version inadequately represents the ability to schedule the same test case to detect such presence in another version of the same composition.

We also measure the number of test cases that a technique needs to reschedule. We refer to this metric as the number of reordered test cases. Note that, in practice, reordering test cases is not merely giving a new index to every test case. Rather, any change in a test schedule means that testers need to make new arrangements for resources, internal (human) users, and service partners accordingly. Reducing the number of reordered test cases is crucial.

C. Data Analysis
This section analyzes the results of the empirical study.

1) Analysis on Precision
Table 4 presents the mean results of the total number of fault-revealing test cases produced by each technique for the eight subjects within each change window. The cells that indicate noticeable advantages over benchmark techniques are typeset in bold.

First, we find that as the size of a change window increases from 0.2 * |T| to 0.8 * |T|, the effectiveness (in terms of precision) of our techniques generally increase. This finding is consistent with the expectation on our strategies: As a size of a change window increases, the probability of detecting a change in workflow coverage achieved by at least one test case will, on average, increase. Every such detection will trigger our rescheduling strategy (which is the core difference between our dynamic strategy and traditional static counterparts) to find and apply test cases to verify the service composition within the corresponding change window period.

Second, we observe the M2 is less effective than M1 and M3. The result may indicate that Strategy 1 can be more effective than Strategy 2.

Finally, the difference between M1 and M3 is small. The result indicates that adding Strategy 2 on top of Strategy 1 has no noticeable effect.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Change Window between Test Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2*</td>
</tr>
<tr>
<td>M1</td>
<td>105.4</td>
</tr>
<tr>
<td>M2</td>
<td>103.0</td>
</tr>
<tr>
<td>M3</td>
<td>105.6</td>
</tr>
</tbody>
</table>

2) Analysis on Efficiency
Since the test cases used in each technique are the same throughout the empirical study, in order to compare the efficiency, we study the number of reordered test cases incurred by each technique.

Random ordering simply selects a test case from the whole test suite randomly, and hence there is no additional reordering cost. Table 5 shows the results of M1 to M3, in which we normalize each result by the mean number of reordered test cases achieved by disabling any strategy (which essentially renders M1–M3 into the same technique, referred to as Disabled in the rest of this paper) when the change window is 0.2 * |T|. We have typeset in bold those cells that correspond to fewer reordering test cases than those of Disabled.

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.

3) Hypothesis Testing
We apply hypothesis testing to the raw data for Table 4 to identify the differences among different techniques. We only show the hypothesis testing results for the change window of 0.8*|T| in Table 6. The results of 0.2*|T|, 0.4*|T|, and 0.6*|T| are similar. We omit then owing to page limit. The hypothesis testing results for the change windows of other sizes are similar and consistent with the results in Table 6.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Change Window between Test Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2*</td>
</tr>
<tr>
<td>Disabled</td>
<td>1.000</td>
</tr>
<tr>
<td>M1</td>
<td>0.950</td>
</tr>
<tr>
<td>M2</td>
<td>0.137</td>
</tr>
<tr>
<td>M3</td>
<td>1.238</td>
</tr>
</tbody>
</table>

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.

3) Hypothesis Testing
We apply hypothesis testing to the raw data for Table 4 to identify the differences among different techniques. We only show the hypothesis testing results for the change window of 0.8*|T| in Table 6. The results of 0.2*|T|, 0.4*|T|, and 0.6*|T| are similar. We omit then owing to page limit. The hypothesis testing results for the change windows of other sizes are similar and consistent with the results in Table 6.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Change Window between Test Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2*</td>
</tr>
<tr>
<td>Disabled</td>
<td>1.000</td>
</tr>
<tr>
<td>M1</td>
<td>0.950</td>
</tr>
<tr>
<td>M2</td>
<td>0.137</td>
</tr>
<tr>
<td>M3</td>
<td>1.238</td>
</tr>
</tbody>
</table>

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.

3) Hypothesis Testing
We apply hypothesis testing to the raw data for Table 4 to identify the differences among different techniques. We only show the hypothesis testing results for the change window of 0.8*|T| in Table 6. The results of 0.2*|T|, 0.4*|T|, and 0.6*|T| are similar. We omit then owing to page limit. The hypothesis testing results for the change windows of other sizes are similar and consistent with the results in Table 6.

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.

3) Hypothesis Testing
We apply hypothesis testing to the raw data for Table 4 to identify the differences among different techniques. We only show the hypothesis testing results for the change window of 0.8*|T| in Table 6. The results of 0.2*|T|, 0.4*|T|, and 0.6*|T| are similar. We omit then owing to page limit. The hypothesis testing results for the change windows of other sizes are similar and consistent with the results in Table 6.

Table 5 shows that M1–M3 significantly reorder fewer test cases than Disabled in almost all the cells. The only exception is M3 when the change window size is 0.2 * |T|. The result shows that, in general, our strategies are more lightweight than Disabled. Overall speaking, they save around 48% of test cases reordering incurred by Disabled.

We also observe that, as the size of a change window increases, M1–M3 reorder increasingly smaller ratios of test cases with respect to Disabled. This result is encouragingly.

We further observe that M2 is particularly efficient. From Table 4, on average, it only incurs 9.0% of the total number of test cases needed to be reordered by Disabled. This saving is significant.
explained the rationales of the two metrics. A risk of the
other metrics may give different results. We have
experimented with other types of artifacts and discovered that
methods from the perspective of continuous regression testing. In
the experiment, we propose two metrics to evaluate our tech-
niques to prioritize test cases. By comparing the test
requirements of the new version with that of the previous version, we
aimed to identify revised fragments of code in a service
and Chen et al. [5] conducted impact analysis on web services.
They aimed to identify revised fragments of code in a service
to reduce bias, we use a random scheduler to
generate of such schedules. However, the random scheduler
could produce quite many diverse schedules. To address this
threat, we have used a fairly large number of test suites (100
test suites per subject) in each of the four change window
setting. As indicated by Table 3, the average number of test
cases per test suite is about 88. We believe that we have
collected a sufficiently large pool of data to measure the
central tendency in terms of precision and efficiency.

External validity refers to whether the experiment can be
generalized. The current subject programs are not large,
even though they have been used in [14][17]. The use of
service-based applications with other binding characteristics
may produce different results. We only use four change
windows in the empirical study. The interpolation and
extrapolation of the data points to change windows of other
sizes may not be applicable. Our subjects are based on WS-
BPEL, and the results of other types of artifacts are still
unclear. We have only used three particular instances of
PRT techniques. The results thus obtained should be inter-
preted with care before evaluating PRT in general. Our
experiment has not compared with other techniques except
“Disabled”, which is basically the traditional additional test
case prioritization strategy. Comparisons with other stra-
tegies as baselines can help make PRT more mature.

4) Threats to Validity

This section discusses the threats to validity of the
experiment.

Construct validity relates to the metrics used to evaluate
the effectiveness of test case prioritization techniques. In the
experiment, we propose two metrics to evaluate our tech-
niques from the perspective of continuous regression testing. Using
other metrics may give different results. We have
explained the rationales of the two metrics. A risk of the
current experiment is that it has not measured the APFD
values of the techniques under study. We have explained that
the faults in various versions of external services are to
simulate problematic requests and responses from the
environment of the web service under test. Such faults in the
simulated artifacts cannot be meaningfully located by the
testers of the web service under test. Hence, we do not
proceed to measure APFD.

Threats to internal validity are the influences that can
affect the dependency of the experimental variables in-
volved. During the execution of a test case, the contexts
(such as database status) of individual services involved in a
service composition may affect the outcome and give
nondeterministic results. In the experiment, we follow [13]
to use a tool to reset the contexts to the same values every
time before rerunning any test case. This approach is also
advocated by agile software development. Another threat in
our experiment is the scheduler used in determining the
evolution sequence. The use of another scheduler may affect
the results. To reduce bias, we use a random scheduler to
generate of such schedules. However, the random scheduler
may produce quite many diverse schedules. To address this
threat, we have used a fairly large number of test suites (100
test suites per subject) in each of the four change window
setting. As indicated by Table 3, the average number of test
cases per test suite is about 88. We believe that we have
collected a sufficiently large pool of data to measure the
central tendency in terms of precision and efficiency.

External validity refers to whether the experiment can be
generalized. The current subject programs are not large,
even though they have been used in [14][17]. The use of
service-based applications with other binding characteristics
may produce different results. We only use four change
windows in the empirical study. The interpolation and
extrapolation of the data points to change windows of other
sizes may not be applicable. Our subjects are based on WS-
BPEL, and the results of other types of artifacts are still
unclear. We have only used three particular instances of
PRT techniques. The results thus obtained should be inter-
preted with care before evaluating PRT in general. Our
experiment has not compared with other techniques except
“Disabled”, which is basically the traditional additional test
case prioritization strategy. Comparisons with other stra-
tegies as baselines can help make PRT more mature.

V. RELATED WORK

This section reviews other work related to our proposal.

The project most relevant to this proposal is the work in
Mei et al. [17]. It proposed to prioritize test cases based on the
workflow coverage achieved by a test suite over a preceding
copy of a modified application. It built its techniques on top of
the earlier data flow testing work [14], which aims to reveal
the potential integration of messages and code through XML
Schemas and XPaths. Like classical test

The use of another scheduler may affect
the results. To reduce bias, we use a random scheduler to
generate of such schedules. However, the random scheduler
may produce quite many diverse schedules. To address this
threat, we have used a fairly large number of test suites (100
test suites per subject) in each of the four change window
setting. As indicated by Table 3, the average number of test
cases per test suite is about 88. We believe that we have
collected a sufficiently large pool of data to measure the
central tendency in terms of precision and efficiency.

External validity refers to whether the experiment can be
generalized. The current subject programs are not large,
even though they have been used in [14][17]. The use of
service-based applications with other binding characteristics
may produce different results. We only use four change
windows in the empirical study. The interpolation and
extrapolation of the data points to change windows of other
sizes may not be applicable. Our subjects are based on WS-
BPEL, and the results of other types of artifacts are still
unclear. We have only used three particular instances of
PRT techniques. The results thus obtained should be inter-
preted with care before evaluating PRT in general. Our
experiment has not compared with other techniques except
“Disabled”, which is basically the traditional additional test
case prioritization strategy. Comparisons with other stra-
tegies as baselines can help make PRT more mature.

V. RELATED WORK

This section reviews other work related to our proposal.

The project most relevant to this proposal is the work in
Mei et al. [17]. It proposed to prioritize test cases based on the
workflow coverage achieved by a test suite over a preceding
version of a modified application. It built its
techniques on top of the earlier data flow testing work [14],
which aims to reveal the potential integration of messages and
code through XML Schemas and XPaths. Like classical test

techniques to prioritize test cases to maximize the test requirement
coverage under such quota constraints. They have not observed
that an external service may evolve during a round of
regression test of the modified application. Ruth and Tu [20]
and Chen et al. [5] conducted impact analysis on web services.
They aimed to identify revised fragments of code in a service
by comparing the flow graph of the new version with that of
the previous version. Chen et al. [5] also prioritize test cases
based on the weights thus identified. Mei et al. [16] also
propose an interface-based test case prioritization technique.
However, they have not considered the evolution of external
services in the course of testing.

Li et al. [12] studied the generation of control-flow test
cases for the unit testing of BPEL programs. Fu et al. [7]
considered the role of XPath when studying the formal
verification of web services. They translated services into
Promela, and translated XPath into a Promela procedural
routine using self-proposed variables and code to simulate
XPath operations in the web service environment. Chan et al.
[4] proposed to use metamorphic testing to alleviate the test
oracle issues for stateless web services. Zhai et al. [25]

dynamically activate service selection to
reduce the service invocation cost. Zhu and Zhang [26]
proposed a framework that integrates different test components
wrapped as a web service to realize testing techniques using
service-oriented approaches.

Finally, we review related regression testing techniques.
Leung and White [10] pointed out that simply rerunning all
existing test cases in a regression test suite is far from ideal.
Many existing techniques for regression test selection (such
as [18]) and test case prioritization (such as [19]) selected test cases that are related to the modified edges of the control flow graphs of the revised applications. Kim and Porter [9] proposed to use the history information of different program versions to prioritize test cases. Our techniques are aware of the potential changes in the environment of the application under test and can select the same test case multiple times before every test case in the test suite has been selected.

VI. CONCLUSION

A service using the dynamic service-oriented architecture can bind to different external services and communicate with the latter dynamically at run time. The testing of such a service should address adaptability characteristics. We call such a dynamical change in binding as a late-change. Many existing techniques on regression testing are unaware of such dynamic evolution of binding with respect to the service under test.

Preemptive Regression Testing (PRT) is a new approach proposed in this paper. It detects late-changes during the execution of a regression test suite, preempts the execution, selects test cases from a regression test suite as fixes, runs the fixes, and then resumes the suspended execution of the regression test suite. It repeats the process until no test execution preemption between any two test cases of the whole test suite occurs. To demonstrate PRT, we have formulated three strategies that detect the changes in workflow coverage achieved by the regression test suite over the modified web service. We have also reported an empirical study. The results have shown that our techniques are more efficient, and demonstrated a clear tradeoff between effectiveness and efficiency among the PRT strategies.

It will be interesting to explore PRT further by formulating other strategies with higher fault-detection effectiveness and lower slowdown overheads. It will also be interesting to investigate how to make PRT scalable and develop a framework for developing different PRT techniques.

ACKNOWLEDGMENT

This research is supported in part by the General Research Fund of the Research Grant Council of Hong Kong (project nos. 111410 and 717811), and a basic research funding of Beihang University (project no. YWF-12-LXGY-008).

REFERENCES

