T. Laarmann

T. Laarmann
Deutsches Elektronen-Synchrotron · DESY Photon Science

Priv. Doz. Dr.

About

168
Publications
12,017
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,165
Citations
Additional affiliations
January 2009 - present
Universität Hamburg
Position
  • Privatdozent
January 2008 - present
Deutsches Elektronen-Synchrotron DESY
Position
  • Research Team Leader
December 2003 - December 2007
Max-Born-Institut for Nonlinear Optics and Short Pulse Spectroscopy
Position
  • Young Investigator

Publications

Publications (168)
Article
Here, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission...
Preprint
Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant inter-atomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dep...
Article
Interferometric pump-probe experiments in the extreme ultraviolet (XUV) domain are experimentally very challenging due to the high phase stability required between the XUV pulses. Recently, an efficient phase stabilization scheme was introduced for seeded XUV free electron lasers (FELs) combining shot-to-shot phase modulation with lock-in detection [...
Article
Full-text available
Controlling the temporal and spectral properties of ultrashort laser pulses in the visible and near-infrared spectral range by means of a femtosecond pulse-shaping device is a powerful tool with many applications in ultrafast spectroscopy. A major and successful concept is known as the 4f design, which has a symmetric zero-dispersion-compressor geo...
Preprint
Interferometric pump-probe experiments in the extreme ultraviolet (XUV) domain are experimentally very challenging due to the high phase stability required between the XUV pulses. Recently, an efficient phase stabilization scheme was introduced for seeded XUV free electron lasers (FELs) combining shot-to-shot phase modulation with lock-in detection...
Article
Full-text available
Short-pulse metrology and dynamic studies in the extreme ultraviolet (XUV) spectral range greatly benefit from interferometric measurements. In this contribution a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode is presented. The autocorrelator works under a grazing incidence angle in a bro...
Article
Full-text available
We study theoretically x-ray absorption and ionization spectra of an atom or molecule by two coherent x-ray pulses that show a relative phase shift resulting in a time delay of the pulse envelopes. We demonstrate that the phase modulation of the spectra is shifted with respect to the phase oscillation comb of the x-ray double pulse. The reason for...
Article
Full-text available
Optically responsive materials are present in everyday life, from screens to sensors. However, fabricating large-area, fossil-free materials for functional biocompatible applications is still a challenge today. Nanocelluloses from various sources, such as wood, can provide biocompatibility and are emerging candidates for templating organic optoelec...
Preprint
Full-text available
High-resolution Fourier-transform spectroscopy using table-top sources in the extreme ultraviolet (XUV) spectral range is still in its infancy. In this contribution a significant advance is presented based on a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode. The autocorrelator works under...
Article
Interferometric pump-probe experiments in the extreme ultraviolet (XUV) domain are experimentally very challenging due to the high phase stability required between the XUV pulses. Recently, an efficient phase stabilization scheme was introduced for seeded XUV free electron lasers (FELs) combining shot-to-shot phase modulation with lock-in detection...
Article
Full-text available
Wave packet interferometry provides benchmark information on light-induced electronic quantum states by monitoring their relative amplitudes and phases during coherent excitation, propagation, and decay. The relative phase control of soft x-ray pulse replicas on the single-digit attosecond timescale achieved in our experiments makes this method a p...
Preprint
Full-text available
Structural changes in nature and technology are driven by charge carrier motion. A process such as solar-energy conversion can be more efficient, if energy transfer and charge motion proceeds along well-defined quantum mechanical pathways keeping the coherence and minimizing dissipation [1-5]. The open question is: do long-lived electronic quantum...
Article
Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulse...
Preprint
Collinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulse...
Article
Focused short-wavelength free-electron laser (FEL) pulses interacting with gas phase samples can induce by inner-shell ionization a short-lived population inversion, followed by coherent collective emission of directed, short, and strong radiation bursts. We extend our studies into the warm-dense matter (WDM) regime by investigating the nanoplasmas...
Article
Full-text available
The electron linear accelerators driving modern X-ray free-electron lasers can emit intense, tunable, quasi-monochromatic terahertz (THz) transients with peak electric fields of V Å ⁻¹ and peak magnetic fields in excess of 10 T when a purpose-built, compact, superconducting THz undulator is implemented. New research avenues such as X-ray movies of...
Article
Full-text available
The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, the...
Article
Full-text available
The dream of physico-chemists to control molecular reactions with light beyond electronic excitations pushes the development of laser pulse shaping capabilities in the mid-infrared (MIR) spectral range. Here, we present a compact optical parametric amplifier platform for the generation and shaping of MIR laser pulses in the wavelength range between...
Preprint
The recent development of novel extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their i...
Preprint
Full-text available
The dream of physico-chemists to control molecular reactions with light beyond electronic excitations pushes the development of laser pulse shaping capabilities in the mid-infrared (MIR) spectral range. Here, we present a compact optical parametric amplifier platform for the generation and shaping of MIR laser pulses in the wavelength range between...
Article
We present the design of an extreme ultraviolet (XUV) pulse shaper relying on reflective optics. The instrument will allow tailoring of the time-frequency spectrum of femtosecond pulses generated by seeded free-electron lasers (FEL) and high-harmonic generation (HHG) sources down to a central wavelength of ~15 nm. The device is based on the geometr...
Article
Full-text available
We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using...
Article
Full-text available
We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XU...
Conference Paper
Full-text available
sFLASH is the experimental free-electron laser (FEL) setup producing seeded radiation installed at FLASH. Since 2015 it has been operated in the high-gain harmonic generation (HGHG) mode. A detailed characterization of the laser-induced energy modulation, as well as the temporal characterization of the seeded FEL pulses is possible by using a trans...
Article
Full-text available
In this joint theoretical and experimental work we investigate the population and decay dynamics of excited states of the C60 molecule by time-resolved two-photon photoemission. We map out how the thermally excited vibrational degrees of freedom lead to a transient redistribution of the photo-excited states. This includes the super-atom molecular o...
Article
Full-text available
Light-phase-sensitive techniques such as coherent multidimensional spectroscopy are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to nonlinear optics with table-top lasers in the visible to ultraviolet spectral range. Here, the ability to tailor the phases of electroma...
Article
Full-text available
In this work we present a reflective split-and-delay unit (SDU) developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet) XUV pump-XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a sp...
Data
Supplementary Figures, Supplementary Notes and Supplementary References.
Article
Full-text available
Free-electron lasers are unique sources of intense and ultra-short x-ray pulses that led to major scientific breakthroughs across disciplines from matter to materials and life sciences. The essential element of these devices are micrometer-sized electron bunches with high peak currents, low energy spread, and low emittance. Advanced FEL concepts su...
Conference Paper
Full-text available
sFLASH, the experimental setup for external seeding of free-electron lasers (FEL) at FLASH, has been operated since 2015 in the high-gain harmonic generation (HGHG) mode. A detailed characterization of the laser induced energy modulation, as well as the temporal characterization of the seeded FEL pulses is possible by using a transverse deflecting...
Article
Full-text available
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in iso...
Article
Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition t...
Article
Full-text available
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the...
Article
Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sou...
Conference Paper
A 100 kHz high harmonic source with record high >1011 photons/s in single harmonics between 55-73 eV is presented. The unique capabilities are underlined by using it for coincidence experiments and measurements on magnetic samples.
Article
Full-text available
Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of 1015-1016 Wcm-2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about 25 and 40 eV for simula...
Article
Full-text available
Measurements of the longitudinal phase-space distributions of electron bunches seeded with an external laser were done in order to study the impact of collective effects on seeded microbunches in free-electron lasers. When the collective effects of Coulomb forces in a drift space and coherent synchrotron radiation in a chicane are considered, veloc...
Article
Full-text available
Intense pulses from a short wavelength free-electron laser turn xenon nanoparticles into a high energy density nanoplasma within femtoseconds. Recently, the generation of multiply charged xenon ions during the initial phase of plasma evolution has been studied by energy-resolved XUV fluorescence detection as a function of cluster size and cluster c...
Article
Full-text available
We report on the ionization and nanoplasma dynamics of small xenon clusters irradiated by intense, short pulses of a short-wavelength free-electron laser. Fluorescence spectroscopy indicates that inelastic electron collisions play a prominent role in the formation of the highest charge states. From the spectral distribution an electron temperature...
Conference Paper
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brightness electron bunches driving free-electron lasers (FELs). In this contribution, we demonstrate suppression of FEL lasing induced by a laser-triggered microbunching instability at the...
Conference Paper
The free-electron laser facility FLASH at DESY operates in SASE mode with MHz bunch trains of high intensity extreme ultraviolet and soft X-ray FEL pulses. A seeded beamline which is designed to be operated parasitically to the main SASE beamline has been used to test different external FEL seeding methods. First lasing at the 7th harmonic of a 266...
Conference Paper
Measurements of the longitudinal phase-space distribution of electron bunches seeded with an external laser were done in order to study the impact of collective effects on seeded microbunches in free-electron lasers. When the collective effects of Coulomb forces in a drift space and coherent synchrotron radiation in a chicane are considered, veloci...
Conference Paper
Full-text available
The free-electron laser facility FLASH at DESY operates since several years in SASE mode, delivering high-intensity FEL pulses in the extreme ultraviolet and soft x-ray wavelength range for users. In order to get more control of the characteristics of the FEL pulses, external FEL seeding has proven to be a reliable method to do so. At FLASH, an exp...
Article
Full-text available
A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the s...
Conference Paper
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brightness electron bunches needed for the operation of free-electron lasers. In this contribution, we demonstrate the application of a laser-induced microbunching instability to selectivel...
Conference Paper
Full-text available
For seeding of a free-electron laser, the spatial and temporal overlap of the seed laser pulse and the electron bunch in the modulator is critical. To establish the temporal overlap, the time difference between pulses from the seed laser and spontaneous undulator radiation is reduced to a few picoseconds with a combination of a photo-multiplier tub...
Article
We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay. We show that the initial mo...
Article
Highly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviol...
Article
Direct seeding with a high-harmonic generation (HHG) source can improve the spectral, temporal, and coherence properties of a free-electron laser (FEL) and shall reduce intensity and arrival-time fluctuations. In the seeding experiment sFLASH at the extreme ultraviolet FEL in Hamburg FLASH, which operates in the self-amplified spontaneous emission...
Article
We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration...
Article
Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called "seeding" suffers from the lack of adequate source...
Conference Paper
Full-text available
The sFLASH project at DESY is an experiment to study direct seeding using a source based on the high-harmonic generation (HHG) process. In contrast to SASE, a seeded FEL exhibits greatly improved longitudinal coherence and higher shot-to-shot stability (both spectral and energetic). In addition, the output of the seeded FEL is intrinsically synchro...