
Sylvain MonnierClaude Bernard University Lyon 1 | UCBL · Institut lumière matière
Sylvain Monnier
PhD
About
24
Publications
4,369
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
736
Citations
Citations since 2017
Introduction
Skills and Expertise
Additional affiliations
December 2016 - January 2026
Publications
Publications (24)
Tumors are subjected to mechanical stress generated by their own growth in a confined environment, and by their surrounding tissues. Recent works have focused on the study of the growth of spherical aggregates of cells, spheroids, under controlled confinement or stress. In this study we demonstrate the measurement of spatially and temporally resolv...
There is increasing evidence that multicellular structures respond to mechanical cues, such as the confinement and compression exerted by the surrounding environment. In order to understand the response of tissues to stress, we investigate the effect of an isotropic stress on different biological systems. The stress is generated using the osmotic p...
In this study we demonstrate the use of adaptive optics to correct the biasing effects of optical aberrations when measuring the dynamics of molecules diffusing between cells in multicellular spheroids. Our results indicate that, on average, adaptive optics leads to a reduction of the 3D size of the point spread function that is statistically signi...
Fidgetin is a member of the AAA protein superfamily with important roles in mammalian development. Here we show that human Fidgetin is a potent microtubule severing and depolymerizing the enzyme used to regulate mitotic spindle architecture, dynamics and anaphase A. In vitro, recombinant human Fidgetin severs taxol-stabilized microtubules along the...
We develop a theory of a resonant effect in protein-membrane coupling taking place in the vicinity of instabilities in tubular lipid membranes (TLMs) under longitudinal force and pressure difference constraints. Two critical low-energy modes defining the stability domain boundaries are found. We show that these modes mediate long-range TLM-protein...
We present an in-depth investigation of a fully automated Fourier-based analysis to determine the cell size and the width of its distribution in 3D biological tissues. The results are thoroughly tested using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy. We demonstrate that the most important p...
Significance
Volume regulation is key in maintaining important tissue functions, such as growth or healing. In this process, the role of efflux of cellular fluids is difficult to capture due to the lack of apt technologies. Here, we use a tool based on Brillouin light scattering (BLS) that uses the interaction of a laser light with inherent picosec...
Imposed deformations play an important role in morphogenesis and tissue homeostasis, both in normal and pathological conditions. To perceive mechanical perturbations of different types and magnitudes, tissues need appropriate detectors, with a compliance that matches the perturbation amplitude. By comparing results of selective osmotic compressions...
Imposed deformations play an important role in morphogenesis and tissue homeostasis, both in normal and pathological conditions. To perceive mechanical perturbations of different types and magnitudes, tissues need appropriate detectors, with a compliance that matches the perturbation amplitude. By comparing results of selective osmotic compressions...
We present an in-depth investigation of a fully automated Fourier-based analysis to determine ensemble averages of the cell size in 3D biological tissues. The results are thoroughly tested using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy. Cells cannot be imaged indefinitely either because of...
The structure of tumors can be recapitulated as an elastic frame formed by the connected cytoskeletons of the cells invaded by interstitial and intracellular fluids. The low-frequency mechanics of this poroelastic system, dictated by the elastic skeleton only, control tumor growth, penetration of therapeutic agents, and invasiveness. The high-frequ...
Despite decades of research, how mammalian cell size is controlled remains unclear because of the difficulty of directly measuring growth at the single-cell level. Here we report direct measurements of single-cell volumes over entire cell cycles on various mammalian cell lines and primary human cells. We find that, in a majority of cell types, the...
Red blood cells (RBC) ability to circulate is closely related to their surface area-to-volume ratio. A decrease in this ratio induces a decrease in RBC deformability that can lead to their retention and elimination in the spleen. We recently showed that a subpopulation of “small RBC” with reduced projected surface area accumulated upon storage in b...
Volume is an important parameter regarding physiological and pathological characteristics of neurons at different time scales. Neurons are quite unique cells regarding their extended ramified morphologies and consequently raise several methodological challenges for volume measurement. In the particular case of in vitro neuronal growth, the chosen m...
Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular s...
MultiCellular Tumor Spheroids (MCTS), which mimic the 3-Dimensional (3D) organization of a tumor, are considered as better models than conventional cultures in 2-Dimensions (2D) to study cancer cell biology and to evaluate the response to chemotherapeutic drugs. A real time and quantitative follow-up of MCTS with simple and robust readouts to evalu...
Despite decades of research, it remains unclear how mammalian cell growth varies with cell size and across the cell division cycle to maintain size control. Answers have been limited by the difficulty of directly measuring growth at the single cell level. Here we report direct measurement of single cell volumes over complete cell division cycles. T...
Volume is a basic physical property of cells; however, it has been poorly investigated in cell biology so far, mostly because it is difficult to measure it precisely. Recently, large efforts were made to experimentally measure mammalian cell size and used mass, density, or volume as proxies for cell size. Here, we describe a method enabling cell vo...
The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%)....