
CCFI-Cache: A Transparent and Flexible Hardware
Protection for Code and Control-Flow Integrity

Jean-Luc Danger 1,2, Adrien Facon 2,4, Sylvain Guilley 2,4, Karine Heydemann 3,
Ulrich Kühne 1, Abdelmalek Si Merabet 1 Michaël Timbert 1,2*,

1Institut Mines-Télécom Paris, France
{jean-luc.danger, sylvain.guilley, ulrich.kuhne, abdelmalek.si-merabet, michael.timbert}@telecom-paristech.fr

2Secure-IC Paris, France
{jean-luc.danger, sylvain.guilley, adrien.facon, michael.timbert}@secure-ic.com

3Université Pierre et Marie Curie Paris, France
karine.heydemann@lip6.fr

4École normale supérieure (ENS), Département d’Informatique, CNRS, PSL University, Paris, France

Abstract—In this paper we present a hardware based solu-
tion to verify simultaneously Code and Control-Flow Integrity
(CCFI), aiming at protecting microcontrollers against both cyber-
and physical attacks. This solution is non-intrusive as it does
not require any modification of the CPU core. It relies on two
additional hardware blocks external to the CPU: The first one
– called CCFI-cache – acts as a dedicated cache for the storage
of information to check the code and control-flow integrity,
and the second one – CCFI-checker – performs control-flow
and code integrity verification. Based on a RISC-V platform
implementation, we show that the proposed scheme is able to
perform online CCFI validation at the price of a small hardware
area overhead and doubling the size of the .text section. In
most cases, the impact on the run-time performance is on average
32 percent, offering for the first time a generic and practical
hardware-enabled cyber-security solution.

Index Terms—Hardware security, cybersecurity, Control Flow
Graph, Control-Flow Integrity, Code Integrity, Instruction Hash-
ing, Hardware protection

I. INTRODUCTION

Cyber-attacks are known to be a major threat for all kinds of
systems ranging from cloud-servers to embedded devices and
industrial control systems. This threat will become even bigger
with the proliferation of the Internet of Things (IoT). Control-
flow hijacking attacks try to take over the target machine with
the goal to execute malicious code. A common attack vector
is to take advantage of code weaknesses to provoke buffer
overflows. This can be used to either directly inject code or
– in presence of a protection preventing the processor from
executing data segments – to change the return address, which
is known as code-reuse attacks [1]. While in principle, code
weaknesses enabling buffer overflows can be eliminated by the
use of static analysis, memory-safe programming languages or
mechanically proved programs, it is very challenging to ensure
that no control flow hijacking is possible. Indeed, there is a
gap between proven code and code generated by tools, which
are themselves seldom proven. Moreover, formal approaches
require time and expertise that prevent their use in industry

* Michaël Timbert is the corresponding author.

pushed by time-to-market constraints, legacy code reuse, and
high competition.

Control-flow integrity (CFI) refers to protections against
control-flow hijacking and was introduced in Abadi’s seminal
paper [2]. The idea is to verify at run-time by a monitor
process or by dedicated hardware that the correct control
flow is respected. A common specification of the control
flow is given by the static control flow graph (CFG) of the
application, which can be determined at compile-time. We
differentiate intra-procedural CFI – protecting branches and
jumps – from inter-procedural CFI, which considers function
calls and returns.

In the recent years, many CFI approaches have been pro-
posed. Software-only approaches that offer full CFI protection
suffer from a high performance overhead [3]. Some software
implementations focus only on specific protections in order
to reduce this overhead. Hardware-based solutions range from
lightweight solutions – ensuring only some types of control
transfer (such as a so-called shadow stack) or reducing the
amount of reusable code by marking valid call/jump destina-
tions – to solutions covering all control transfers that can be
determined statically at compile-time, at link-time, or at load-
time of the application [4], [5]. Unfortunately, such approaches
either do not cover all control transfers or they require a
significant modification of the CPU, which prevents them from
being deployed in practice due to either the huge amount of
work required for validating a modified processor or the use
of off-the-shelf processor cores. This is why we target a non-
intrusive solution that does not modify the CPU core.

Most CFI approaches assume that the code cannot be
modified, due to the presence of widely used data execution
prevention (DEP) protections. Such a protection is commonly
present on high performance processors but rarely deployed
on embedded platforms or micro-controllers. Furthermore,
different threats may invalidate this assumption: There exist
physical attacks able to perform fault injections that result in a
modification of the executed code [6], [7]. Since the discovery
of the RowHammer attack [8], it is known that changes in read-

only memory can even be induced by software. Hence, code
integrity (CI) is also to be targeted in order to protect systems
against a large body of attacks that disrupt the execution.

In this paper, we present a hardware-based solution that
combines CFI with CI, while being non-intrusive. The code
and control-flow integrity (CCFI) checks are performed at
runtime by a dedicated hardware module outside the processor
core. The control flow information – referred to as metadata –
is stored in a dedicated section in memory and is aligned with
the instructions. These metadata are fetched by a cache named
CCFI-cache. Whenever a new instruction is requested by the
processor, the corresponding metadata is fetched transparently
and in parallel, so as not to disrupt or slow down the execution
flow. The CCFI-checker verifies the integrity of execution
flow changes by checking the effective target addresses. Func-
tion calls and returns are protected by an integrated shadow
stack. Additionally, we ensure code and metadata integrity
by computing a signature based on the executed instructions
and metadata fetched by validating it against a precomputed
signature contained in the metadata.

The proposed CCFI-cache architecture has been imple-
mented on a RISC-V [9] platform, without modifying the pro-
cessor core. Our experiments show that the run-time overhead
is acceptable for different benchmarks. The price to pay for
this very flexible solution is a two-fold increase in instruction
memory.

In summary, the contribution of this work is a novel
hardware-based CFI scheme that

• is non-intrusive, since the CPU core remains untouched,
• combines intra-procedural and inter-procedural CFI with

code integrity,
• has low run-time overhead, and
• only requires very minor code modifications of the ap-

plication code.
The rest of the paper is organized as follows: In Section II,

we give some background on CFI and attacks. Related work
and existing CFI solutions are discussed in Section III. In Sec-
tions IV and V, we present our solution and its implementation
on a RISC-V platform, respectively. We give experimental
results in Section VI, before concluding the paper with some
remarks on future work in Section VII.

II. BACKGROUND

In this section, we introduce the basic notions and security
guarantees in the context of control-flow integrity.

A. Control Flow Graph

At the level of the machine code, a program is composed
of multiple functions which in turn can be decomposed into
basic blocks. A basic block (BB) is a straight-line sequence
of instructions with a unique entry point and a unique exit
point, i.e. if the control flow enters a BB, it will execute all
of its instructions in sequence until leaving the BB at the exit
point. A control flow transfer can only take place at the last
instruction. Each function can be represented as a control-
flow graph (CFG), where each node corresponds to a BB,

and edges represent the control transfers between the BBs.
A whole program is composed of the CFG of each function
linked by edges representing function calls and returns.

B. Control Flow Hijacking

There are multiple ways in which an attacker can take over
the control of a machine. In many cases, buffer overflows –
due to bad programming – offer an entry point for an attacker.
They can be exploited to inject code and/or to compromise
return addresses stored on the stack to divert the execution
flow.

Executing injected code can be mitigated by DEP which
prevents written data to be executed. This protection can be
circumvented by code reuse attacks that rely on (stubs of)
existing functions in libraries, so-called gadgets. Known vari-
ants of this type of attacks are return-oriented programming
(ROP), jump-oriented programming (JOP) or call-oriented
programming (COP) [1]. As shown in [10], all such attacks
rely on code pointer corruption. In this way, only legitimate
code of the application is executed, but the CFG of the
program is not respected anymore.

Another threat – invalidating DEP protections – are fault
attacks, where memory contents are altered by physical
means [6], [7]. Using the RowHammer attack [8], a dynamic
RAM cell can be changed by rapidly reading neighboring cells
before a refresh. Its stealthiness makes this threat extremely
dangerous: Even trusted firmware code with a digital signature
can be corrupted when residing in RAM. Some examples
of attacks enabled by such modifications are Shamir’s bug
attack [11] (e.g., on RSA) or Sbox tampering attacks [12]
(e.g., on AES). Fault attacks are difficult to master, but can
be used to change instructions, to manipulate access rights, to
skip an instruction, or to directly change the current program
counter, in some cases without violating the CFG.

C. Control Flow Integrity

To prevent control flow hijacking and fault attacks, it is
necessary to ensure that control transfer instructions execute
as expected, i.e. any control transfer originates from an address
that corresponds to a control transfer instruction and targets a
valid destination address for this specific instruction.

For direct jumps and conditional branches, the valid des-
tinations can be determined at compile-time. Verifying the
integrity of these control transfers boils down to checking that
for each executed jump or branch, there is a corresponding
edge in the function’s CFG. We refer to this check as intra-
procedural CFI.

A different treatment is needed for function calls and re-
turns. Since common functions – such as printf – are called
from many sites, just checking that the function returns to one
of these call sites does not provide a reasonable protection
against ROP attacks. Instead, the correct pairing of call and
return addresses needs to be ensured. We refer to this as inter-
procedural CFI.

It should be noted that indirect jumps and calls pose a
special problem for CFI as the set of destination addresses

can be significant. However, in many cases – such as a
switch statement which has been compiled to an indirect
jump – the set of target addresses is usually small and can
often be determined at compile-time. Otherwise, either manual
code changes are necessary or these specific instructions must
remain unprotected.

While these checks only consider control transfer instruc-
tions, it is necessary to ensure that inside a BB, all instructions
are executed in-order, thereby preventing instruction skips.
This verification, which is hard to implement in software,
is called intra-BB CFI. Finally, Code integrity (CI) refers to
verifying that all instructions have been executed unaltered.

In summary, a combined CFI and CI protection must ensure
basic block integrity and verify both intra-procedural and inter-
procedural control transfers.

III. RELATED WORK

There exists a large body of research on protections against
hardware and software attacks. Due to page limitation, we
only present the most closely related work. For an overview
on existing techniques, we refer the reader to [10]. Table I
summarizes the protection levels of related techniques, which
will be briefly discussed in the following.

A simple and effective protection against code injection is
DEP, which is implemented in all modern general purpose
CPU architectures. It allows to prevent the execution of
memory segments that contain only data (such as the stack),
making code injection difficult. It does however not protect
against ROP and related attacks nor against hardware attacks.

In [5], de Clercq et al. present SOFIA, an architecture
supporting software and control-flow integrity. The archi-
tecture has a two stage protection: Firstly, instructions are
encrypted with a block cipher in a way that depends on
the correct control flow, such that deviating from the CFG
results in wrongly decrypted instructions. Secondly, groups
of instructions are protected with a Message Authentication
Code (MAC) to ensure code integrity and confidentiality. The
proposed architecture achieves a protection level similar to
our technique, while changes in the internal pipeline and the
encryption and MAC computation make it both more intrusive
and costly.

Intel’s Control-flow Enforcement Technology (CET) [13]
introduces a shadow stack, which stores return-addresses in
addition to the normal stack. When a return instruction is
encountered, the two addresses are compared and a security
exception is raised in case of a mismatch. While the shadow
stack is a powerful solution for inter-procedural CFI, it does
not provide any other guarantees. The second feature of CET,
Indirect Branch Tracking provides new instructions to mark
valid branch targets, which provides a rudimentary protection
against ROP-style attacks. In [15], the authors present HCFI
(Hardware-enforced CFI), which is a modified SPARC ar-
chitecture. It combines a shadow stack with a CFI-dedicated
extension of the SPARC instruction set. While the solution
concentrates only on call/return instructions, it achieves an
impressively low run-time overhead of only 1%.

CPU

D
Cache

I
Cache

pc

instr

daddr

data

CCFI
Cache

CCFI
Checker

meta

M
em

or
y
B
u
s

interrupt

Fig. 1. Overview of the proposed architecture

PICON [3] is a purely software based solution, which is
integrated into the LLVM compiler framework. The control
flow policy is represented by a push-down automaton, which
is then used at runtime by a monitoring process to match
the actual execution. PICON provides a robust and portable
protection against ROP-style attacks, while it does not protect
against hardware attacks and compromised binaries. A similar
approach has been presented in [14]. Their solution – called
PathArmor – consists in a kernel module that monitors the
execution paths of user processes. Its goal is a strong but
practical protection of inter-procedural control transfers. By
analyzing paths (rather than just single edges) in the CFG,
they achieve a context-sensitive CFI without resorting to a
shadow stack. These purely software-based solutions can be
considered complementary to our approach.

Overall, the originality of our approach is a combined
protection against cyber and hardware attacks, while being
non-intrusive in contrast to other hardware-based solutions.

IV. SOLUTION

In this section, we present the principles of our proposed so-
lution, before discussing implementation issues in Section V.

A. Architecture Overview

The basic architecture is shown in Figure 1. We consider a
simple platform based on a CPU core with separate instruction
and data cache, which connect to the memory bus. CFI is
ensured by two added hardware modules (shown in red): The
CCFI-cache fetches the metadata which has been computed at
compile-time, containing all control-flow related information.
This information is used at runtime by the second module, the
CCFI-checker. In order to follow and monitor the execution
of the CPU, the CCFI-checker is hooked up to the interface
signals between the CPU and the instruction cache.

The CCFI-cache has the same characteristics (bit width,
size, associativity, replacement policy, . . .) as the instruction
cache. For each basic block in the executed program, there is
a corresponding block of metadata. Each block of metadata
is perfectly aligned in memory to its corresponding BB, with
a constant offset. For each access to the instruction cache,

TABLE I
COMPARISON OF SOME OF THE MOST PROMINENT PROTECTIONS

Protection W⊕X SOFIA [5] Intel CET [13] PICON [3] HCODE [4] PathArmor [14] HCFI [15] Our solution

a) Inter Procedural X X X X X X X X
b) Intra Procedural X X (X) X X X X X
c) Intra BB X X X X X X X X
d) Code Integrity X X X X X X X X
e) Non-intrusive X X X X X X X X

StartBB VD EndType NInstr

31 30 29 28 27 26 . . . 8 7 . . . 0

ValidDest Addr *
Empty *
EndBB Hash

EndType ::= Branch | Call | Return

NInstr - 2

Fig. 2. Metadata format description

a parallel access to the CCFI-cache will be issued. In this
way, complex address calculations are avoided. Furthermore,
the instruction cache and the CCFI-cache will always be
consistent, i.e. either both a BB and its metadata are cached
or none of them.

The metadata for each BB contain three crucial elements
that serve for the CFI verification:

1) The number of instructions in the current BB
2) The valid destination addresses of the succeeding BBs
3) A hash value of the instructions in the BB and its

corresponding metadata

Section IV-B discusses in more detail the format of the
metadata.

The actual verification is realized by the CCFI-checker.
At the end of each BB, it checks the validity of the target
address by comparing it with the precomputed valid addresses
contained in the metadata, thereby ensuring intra-procedural
CFI. In case of a function call or return, an integrated
shadow stack is used to verify inter-procedural CFI. This
shadow stack in embedded inside de CCFI-Checker and is
not accessible from the main processor. Intra-BB consistency
is ensured by a watch-dog counter that controls the number of
executed instructions before a control transfer. Finally, code
and metadata integrity is ensured by a precomputed signature
that is compared to a hash value over the executed instructions
computed at run-time. In case of any violation, an interrupt
is raised. The details of the CCFI-checker are presented in
Section IV-C.

B. Metadata

The format of the metadata is shown in Figure 2. There
are four different entry types, which are distinguished by a
label contained in the two most significant bits. For each BB,
the metadata record has the same format: A StartBB entry,

followed by zero or more ValidDest and Empty entries, and
ending with a EndBB entry.

The entry StartBB marks the beginning of a BB. The bit
VD indicates the presence of one or more valid destination
addresses in the record. Note that in some cases destination
of indirect branch or jump cannot be computed statically, in
this case the VD bit is unset and there will be no verification
of the destination address at the end of the BB. The field
EndType defines the type of control transfer at the end of
the BB: Call and Return indicate a function call and return,
respectively. For any other type of control transfer, Branch
marks either a BB that will always be succeeded by the next
consecutive BB – i.e. there is no branch or jump at the end
– or one ending with a direct or indirect jump or branch
instruction. Typically, blocks ending with a direct jump or call
will have one valid destination and conditional branches two,
while indirect control transfers can have an arbitrary number
of valid destinations. Finally, there is an 8-bit field NInstr,
which gives the total number of instructions in the BB.

The ValidDest entry contains one valid destination address,
corresponding to an allowed edge in the CFG. Finally, the end
of the BB is marked by an EndBB entry, which additionally
contains a hash signature computed over all the instructions
of the BB.

All metadata are computed offline at the end of the compi-
lation, after code optimization. For each BB a metadata record
of the same size is allocated. Metadata are stored in a custom
section of the program file, which has the same size as the
.text section.

If the number of entries needed for the CFI information is
smaller than the number of instructions in the corresponding
BB, then the metadata is simply padded with Empty entries
before the EndBB entry. The opposite case can occur as well,
if the BB is very short or if there are multiple valid address
entries. In order to match the BB size with the metadata record,
the compiler inserts nop (no operation) instructions just before
the last instruction of the BB.

Depending on the specific implementation of the CPU, there
can be other situations that require adjustment of the binary
code. One such case is branch prediction, which potentially
leads to a mismatch between the fetched instructions and
those that are effectively executed. Since the CFI-cache only
monitors the interface signals of the CPU, it needs to be aware
of such features in order to correctly detect the destination of
branches. Section V explains how we have resolved this issue
for the used RISC-V implementation and gives an example

for the correspondence between binary code and metadata. We
evaluate the performance penalty of these code adjustments in
Section VI.

C. CFI Verification

At loading time, the .metadata section is loaded into a
reserved memory region, at a constant offset from the .text
section. This offset allows calculating the metadata address
on-the-fly based on the current instruction address.

During the execution of the program, the instruction cache
and the CCFI-cache are always kept in a consistent state,
which allows the CCFI-checker to follow the execution and
verify the control flow on-the-fly using the metadata. The
checker processes the metadata in parallel to the execution. For
this purpose, the CCFI-checker is composed of the following
principal components:

• A set of registers to store the valid destination addresses,
• A shadow stack to store function return addresses,
• An instruction counter, and
• A signature register to compute a hash value of the

executed instructions.
A simplified view of the control state machine of the

checker is shown in Figure 3. The state machine basically
follows the structure of the metadata record (cf Figure 2). At
the beginning of a BB (state Start BB in Figure 3), it sets
the instruction counter to the number of instructions in the
BB and initializes the signature register. It also checks that
the beginning of the BB is correctly labeled with StartBB.
The valid destination addresses are collected while traversing
the BB (state Store Dest) and stored in the internal register
bank1. If there are Empty entries in the metadata record, the
state machine loops in the Inside BB state until the end of
the BB. During the traversal, the signature register is updated
after each instruction. For this purpose, a suitable hash digest
function H needs to be chosen.

The actual verification takes place in the End BB state.
There are two conditions that each triggers the transition into
this state: Either an EndBB label is found or the instruction
counter reaches zero. This ensures that both too long and too
short BBs will be detected immediately. Normally, the end of
the BB should coincide with the instruction counter reaching
zero, which is verified in the End BB state. It is also checked
if the hash value extracted from the EndBB entry equals
the signature register. Call and Return are verified using the
shadow stack. If there have been any valid address entries
in the metadata, these are used to verify the effective target
address. Note that this applies either for calls or local branches
and jumps. The implementation of the internal register bank
must ensure that the address comparison can be performed in
parallel for all valid entries in one clock cycle, before the state
machine continues to process the next BB.

In case any of the checks fails, an interrupt will be triggered,
allowing the CPU to react to the attack immediately. Note

1Note that the size k ≥ 2 of this register bank is an implementation
parameter that can be chosen freely. Any BB with more than k valid targets
can be split recursively until each BB has at most k valid successors.

Start BB

check Op = StartBB
valid← ∅
count← NInstr
sig ← H(0, instr,md)

start

Store Dest

valid← valid ∪ {Addr}
count← count− 1
sig ← H(sig, instr,md)

Inside BB

count← count− 1
sig ← H(sig, instr,md)

End BB

check count = 0
check Op = EndBB
check sig = Hash
if (Return):

check pc = pop()
else:

check pc ∈ valid
if (Call):

push(pc)

VD = true

VD = false

Op = Empty ∧
count > 0

count = 0 ∨
Op = EndBB

Op = ValidDest ∧
count > 0

count = 0 ∨
Op = EndBB

Op = Empty ∧
count > 0

Fig. 3. CCFI-checker state machine

that for simplicity reasons, Figure 3 does not show the state
transitions in the case of a security violation.

D. Attack Model and Security Guaranties

In this work, we address the protection of embedded plat-
forms without DEP. We consider that the attacker is able
to exploit programming bugs which allow buffer overflows.
Such attacks can either modify the return address on the stack
and/or inject malicious code. Note that this attack model is
quite permissive in contrast to the classical CFI setting, which
usually considers that code memory is immutable [2].

Additionally, we consider non-destructive physical attacks.
This includes random changes in memory by either software-
driven attacks (row-hammer) or hardware attacks (such as
electromagnetic injection or glitches) leading to instruction
skips. Since the successful demonstration of practical attacks
such as row-hammer, physical attacks must be considered a
realistic scenario, especially in the context of embedded and
mobile devices.

Assuming that the main memory contains the code along-
side with its correctly generated metadata, the CCFI-checker
enables detection of the following attacks:

• Changing a return address on the stack (detected by
shadow stack)

• Changing the target of a call, branch or jump outside of
the static CFG (detected by destination address verifica-
tion)

• Returning or jumping into the middle of a BB (detected
by StartBB label check)

• Adding instructions at the end of a BB (detected by
EndBB label check and instruction counter)

• Turning a branch into a nop (detected by signature
check)

• Changing the pc to skip an instruction (detected by
signature and instruction counter)

TABLE II
CODE AND METADATA CORRESPONDENCE

Instruction address Instruction Metadata address Metadata Metadata description
0x00000A88 lbu a5,0(s1) 0x40000A88 0xA0000004 StartBB | VD=1 | EndType=Branch | NInstr=4
0x00000A8C nop 0x40000A8C 0x4000029A ValidDest | Addr=0xA68
0x00000A90 bnez a5,0xA68 0x40000A90 0x400002A6 ValidDest | Addr=0xA98
0x00000A94 nop 0x40000A94 0xFC035B60 EndBB | Hash=0xFC035B60

0x00000A98 lw a5,-68(s0) 0x40000A98 0xA0000004 StartBB | VD=1 | EndType=Branch | NInstr=4
0x00000A9C addi a5,a5,1 0x40000A9C 0x40000118 ValidDest | Addr=0x460
0x00000AA0 sw a5,-68(s0) 0x40000AA0 0x0 Empty
0x00000AA4 j 0x460 0x40000AA4 0xDAF87E5C EndBB | Hash=0xDAF87E5C

• Changing any instruction word in memory or up to the
CPU interface (detected by signature)

• Deleting or manipulation metadata in any way inconsis-
tent with the code (detected by signature)

One obvious limitation are physical attacks that directly
affect the internal state of the CPU, such as the register state or
skipping computations within the pipeline. Note that however
such attacks will be caught if they directly or indirectly change
the instruction address on the cache interface. We also do
not consider advanced destructive attacks (such as focused ion
beams) that could e.g. cut the interrupt line on the circuit die
and thereby practically disable the CCFI-checker.

Furthermore, data only attacks that do not change the static
control flow are not detected. An attacker that has full control
over the memory could also forge metadata. A typical solution
for this problem is to assume that the metadata (or the meta-
data and the code) reside in a protected read-only memory.
Considering our proposed architecture in Figure 1, such a
solution can easily be implemented by having a completely
separated memory bus for the CCFI-cache, thereby preventing
any access to the metadata originating from the CPU.

Finally, special care needs to be taken for the treatment of
the interrupt triggered by the CCFI-checker. Since interrupt
mechanisms vary greatly on different target platforms, there
is no system-independent solution. For instance, if interrupt
target vectors are writable from user code, the interrupt service
routine (ISR) itself needs to be protected. Any tampering
with the ISR would then lead to a re-occurring violation,
blocking the system in an infinite loop. In embedded platforms,
watchdog counters are typically used to reset the system when
it gets caught in a deadlock. Depending on the application, if
recovery is considered less important, the interrupt line of the
CCFI-checker can also be routed directly to the reset line,
preventing any attack path via the ISR.

V. IMPLEMENTATION

To validate the CCFI-cache architecture, we have imple-
mented it on a microcontroller platform based on the Pi-
coRV32 [16], a free implementation of the RISC-V ISA [9].
The CPU core is a 3-stage pipeline processor with a single
memory interface for accessing instructions and data. In our
platform, the separate instruction and data caches are accessed
via an address decoder. The platform uses a crossbar for
memory access. To highlight memory contention between

instruction cache and CCFI-cache, we have implemented two
different memory layouts: 1) Two separate memories for
application code (.text and .rodata) and metadata, 2)
a single memory to store both. In all cases, our platform uses
one big RAM as runtime memory.

As mentioned in Section IV-B, branch prediction can poten-
tially pose a problem for the CCFI-checker, since the address
seen on the memory interface (i.e. the program counter) may
not coincide with the effective branch target address. The
PicoRV32 does not feature branch prediction, but branches
are decided late in the pipeline, such that the instruction
following a conditional branch is always fetched. We resolve
this specific case during the compilation phase by always
inserting a nop instruction after a conditional branch, thereby
deferring the actual control transfer by one instruction. We
claim that the proposed architecture is suitable for more
complex prediction schemes, for instance using a checker
that mimics the prediction logic. A detailed discussion of the
required modifications is beyond the scope of this paper.

Table II shows an example with two BBs and the corre-
sponding metadata. The upper BB ends with a conditional
branch and there are two valid destinations stored in the
metadata record. In the code, there are two additional nops,
which are needed to match the size of the metadata, and –
for the second one – to resolve the prefetch of the conditional
branch.

VI. PERFORMANCE

We have tested the solution on a Digilent Nexys4 DDR
board with an Artix 7 FPGA [17]. The resource usage is
summarized in Table III. As can be seen, the hardware
overhead is small, it is in the order of 10% in terms of LUTs
and FFs 2.

Figure 4 left shows the impact of the inserted nop instruc-
tions on the code size. Over the different benchmarks (bubble
sort, Dhrystone, and an AES encryption) and optimization
levels (-O1, -O2, -O3, and -Os), the overhead ranges from
9% to 30%.

Figure 4 right shows the impact of our solution on runtime
performance. We compare 1) the original program with 2) the
modified program, but without protection, 3) CCFI enabled

2The difference between total CCFI and the sum of CCFI-cache and checker
is due to glue logic and the more complex memory and bus infrastructure.

0

500

1000

1500

2000

2500

3000

Bub
ble

so
rt-

O1

Bub
ble

so
rt-

O2

Bub
ble

so
rt-

O3

Bub
ble

so
rt-

Os

Dhry
sto

ne
-O

1

Dhry
sto

ne
-O

2

Dhry
sto

ne
-O

3

Dhry
sto

ne
-O

s

AES-O
1

AES-O
2

AES-O
3

AES-O
s

nu
m

be
r

of
in

st
ru

ct
io

ns

original benchmark
nops inserted after conditional branches

nops inserted into small BBs

0

1× 106

2× 106

3× 106

4× 106

5× 106

6× 106

Bub
ble

so
rt-

O1

Bub
ble

so
rt-

O2

Bub
ble

so
rt-

O3

Bub
ble

so
rt-

Os

Dhry
sto

ne
-O

1

Dhry
sto

ne
-O

2

Dhry
sto

ne
-O

3

Dhry
sto

ne
-O

s

AES-O
1

AES-O
2

AES-O
3

AES-O
s

nu
m

be
r

of
cy

cl
es

original program
nop added without CCFI protection

CCFI protected program with 2 memories
CCFI protected program with 1 memory

Fig. 4. Overhead on code size and execution time

TABLE III
HARDWARE COST

Component LUTs FFs RAMB18
Original 11094 8939 8
CCFI-cache 531 (+4.8%) 139 (+1.6%) 8 (+100.0%)
CCFI-checker 294 (+2.6%) 443 (+4.9%) 0 (+0%)
Total CCFI2 1250 (+11.3%) 777 (+8.7%) 8 (+100.0%)

with parallel memory access, and 4) CCFI enabled with
sequential memory access. We can see that most of the perfor-
mance penalty is due to the inserted nop instructions leading
to a runtime overhead between 2% and 63%. Beyond this
overhead, the CCFI protection using parallel memory access
does not further impact the performance. The implementation
using sequential memory access incurs a small additional cost
in the order of 1% (up to 8% in the worst case), which is
directly related to the instruction miss rate of the benchmark.

a) Fault attacks.: We have simulated fault attacks by
modifying an instruction code in the main memory and in the
cache. All performed attacks have been detected by the CCFI-
checker, through the signature check. Any fault injection inside
the processor which directly manipulates the program counter
is detected as well.

b) Software attacks.: We have also tried several software
attacks on the protected platform. Any buffer overflow ma-
nipulating the stack is detected thanks to the shadow stack.
Even changing unprotected indirect jumps is detected if the
destination address is not the beginning of a BB (labeled by
a StartBB entry). Thus, ROP or JOP attacks are made very
difficult, since the number of useful gadgets is significantly
reduced.

VII. CONCLUSION

We have presented a non-intrusive hardware-based protec-
tion able to effectively mitigate cyber- and physical attacks.
Our solution uses precomputed control flow information which
are verified at runtime. Only requiring a double code memory
size, our solution is very competitive regarding the hardware
overhead and the performance penalty, which are minimal and

affordable in most cases which make our technology practical
and deployable.

Up to now, the metadata are computed as a post-processing
step using the binary code. The integration of this step into
the compiler flow is left to future work, to have better control
over well sized BBs and the resolution of indirect jump
destinations.

REFERENCES

[1] N. Carlini and D. A. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in Proceedings of the 23rd USENIX Security Symposium, San
Diego, 2014., 2014, pp. 385–399.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 13, no. 1, 2009.

[3] T. Coudray, A. Fontaine, and P. Chifflier, “PICON: control flow integrity
on LLVM IR,” in Symposium sur la sécurité des technologies de
l’information et des communications, Rennes, France, June 3-5, 2015,
2015.

[4] “hidden for blind review.”
[5] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene, K. D.

Bosschere, B. Preneel, B. D. Sutter, and I. Verbauwhede, “SOFIA:
software and control flow integrity architecture,” in Design, Automation
& Test in Europe (DATE), Dresden, 2016, pp. 1172–1177.

[6] D. Karaklajić, J. M. Schmidt, and I. Verbauwhede, “Hardware Designer’s
Guide to Fault Attacks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 12, pp. 2295–2306, Dec. 2013.

[7] M. Werner, E. Wenger, and S. Mangard, “Protecting the control flow of
embedded processors against fault attacks,” in Smart Card Research and
Advanced Applications (CARDIS), Bochum. Revised Selected Papers,
2015, pp. 161–176.

[8] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
an experimental study of DRAM disturbance errors,” SIGARCH Comput.
Archit. News, vol. 42, no. 3, pp. 361–372, 2014.

[9] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, Aug 2014.

[10] L. Szekeres, M. Payer, T. Wei, and R. Sekar, “Eternal war in memory,”
IEEE Security & Privacy, vol. 12, no. 3, pp. 45–53, 2014.

[11] E. Biham, Y. Carmeli, and A. Shamir, “Bug attacks,” in CRYPTO, ser.
LNCS, vol. 5157. Springer, 2008, pp. 221–240, Santa Barbara, CA,
USA.

[12] A. C. Aldaya, A. C. Sarmiento, and S. Sánchez-Solano, “AES t-box
tampering attack,” J. Cryptographic Engineering, vol. 6, no. 1, pp. 31–
48, 2016.

[13] Intel, “Control-flow enforcement technology preview,
revision 2.0,” June 2017. [Online]. Available:
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf

[14] V. van der Veen, D. Andriesse, E. Göktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
CFI,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, 2015, pp. 927–940.

[15] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“HCFI: hardware-enforced control-flow integrity,” in Proceedings of the
Sixth ACM on Conference on Data and Application Security and Privacy,
CODASPY, New Orleans, 2016, pp. 38–49.

[16] C. Wolf, “PicoRV32 - A size-optimized RISC-V CPU.” [Online].
Available: https://github.com/cliffordwolf/picorv32

[17] Digilent, “Nexys4 DDR FPGA board refer-
ence manual,” april 2016. [Online]. Available:
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-
ddr/reference-manual

