
Sylvain Calinon- PhD
- Senior Researcher at Idiap Research Institute
Sylvain Calinon
- PhD
- Senior Researcher at Idiap Research Institute
About
270
Publications
73,072
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,878
Citations
Introduction
Skills and Expertise
Current institution
Additional affiliations
May 2014 - present
April 2009 - March 2014
April 2009 - present
Education
January 2003 - July 2007
Publications
Publications (270)
Developing autonomous robots capable of learning and reproducing complex motions from demonstrations remains a fundamental challenge in robotics. On the one hand, movement primitives (MPs) provide a compact and modular representation of continuous trajectories. On the other hand, autonomous systems provide control policies that are time independent...
Imitation Learning offers a promising approach to learn directly from data without requiring explicit models, simulations, or detailed task definitions. During inference, actions are sampled from the learned distribution and executed on the robot. However, sampled actions may fail for various reasons, and simply repeating the sampling step until a...
This research addresses the challenge of performing search missions in dynamic environments, particularly for drifting targets whose movement is dictated by a flow field. This is accomplished through a dynamical system that integrates two partial differential equations: one governing the dynamics and uncertainty of the probability distribution, and...
Generating intelligent robot behavior in contact-rich settings is a research problem where zeroth-order methods currently prevail. A major contributor to the success of such methods is their robustness in the face of non-smooth and discontinuous optimization landscapes that are characteristic of contact interactions, yet zeroth-order methods remain...
Non-prehensile manipulation such as pushing is typically subject to uncertain, non-smooth dynamics. However, modeling the uncertainty of the dynamics typically results in intractable belief dynamics, making data-efficient planning under uncertainty difficult. This article focuses on the problem of efficiently generating robust open-loop pushing pla...
Humans are experts in collaborating with others physically by regulating compliance behaviors based on the perception of their partner states and the task requirements. Enabling robots to develop proficiency in human collaboration skills can facilitate more efficient human-robot collaboration (HRC). This paper introduces an innovative impedance reg...
In this article, we present a feedback control method for tactile coverage tasks such as cleaning or surface inspection. Although these tasks are challenging to plan due to the complexity of continuous physical interactions, the coverage target and progress can be effectively measured using a camera and encoded in a point cloud. We propose an ergod...
Humanoid robots are envisioned as embodied intelligent agents capable of performing a wide range of human-level loco-manipulation tasks, particularly in scenarios that require strenuous and repetitive labor. However, learning these skills is challenging due to the high degrees of freedom of humanoid robots, and collecting sufficient training data f...
We present a novel approach to enhance the performance of sampling-based Model Predictive Control (MPC) in constrained optimization by leveraging products of experts. Our methodology divides the main problem into two components: one focused on optimality and the other on feasibility. By combining the solutions from each component, represented as di...
Generating collision-free motions in dynamic environments is a challenging problem for high-dimensional robotics, particularly under real-time constraints. Control Barrier Functions (CBFs), widely utilized in safety-critical control, have shown significant potential for motion generation. However, for high-dimensional robot manipulators, existing Q...
Humanoid robots are envisioned as embodied intelligent agents capable of performing a wide range of human-level loco-manipulation tasks, particularly in scenarios requiring strenuous and repetitive labor. However, learning these skills is challenging due to the high degrees of freedom of humanoid robots, and collecting sufficient training data for...
Contact-rich manipulation plays a vital role in daily human activities, yet uncertain physical parameters pose significant challenges for both model-based and model-free planning and control. A promising approach to address this challenge is to develop policies robust to a wide range of parameters. Domain adaptation and domain randomization are com...
Distance functions are crucial in robotics for representing spatial relationships between the robot and the environment. It provides an implicit representation of continuous and differentiable shapes, which can seamlessly be combined with control, optimization, and learning techniques. While standard distance fields rely on the Euclidean metric, ma...
Machine learning methods have a groundbreaking impact in many application domains, but their application on real robotic platforms is still limited. Despite the many challenges associated with combining machine learning technology with robotics, robot learning remains one of the most promising directions for enhancing the capabilities of robots. Wh...
Virtual fixtures assist human operators in teleoperation settings by constraining their actions. This extended abstract introduces a novel virtual fixture formulation \emph{on surfaces} for tactile robotics tasks. Unlike existing methods, our approach constrains the behavior based on the position on the surface and generalizes it over the surface b...
Contact-rich manipulation plays an important role in human daily activities, but uncertain parameters pose significant challenges for robots to achieve comparable performance through planning and control. To address this issue, domain adaptation and domain randomization have been proposed for robust policy learning. However, they either lose the ge...
Soft object manipulation poses significant challenges for robots, requiring effective techniques for state representation and manipulation policy learning. State representation involves capturing the dynamic changes in the environment, while manipulation policy learning focuses on establishing the relationship between robot actions and state transf...
Implementing virtual fixtures in guiding tasks constrains the movement of the robot's end effector to specific curves within its workspace. However, incorporating guiding frameworks may encounter discontinuities when optimizing the reference target position to the nearest point relative to the current robot position. This article aims to give a geo...
We focus on designing efficient Task and Motion Planning (TAMP) approach for long-horizon manipulation tasks involving multi-step manipulation of multiple objects. TAMP solvers typically require exponentially longer planning time as the planning horizon and the number of environmental objects increase. To address this challenge, we first propose Le...
Learning from Demonstration (LfD) stands as an efficient framework for imparting human-like skills to robots. Nevertheless, designing an LfD framework capable of seamlessly imitating, generalizing, and reacting to disturbances for long-horizon manipulation tasks in dynamic environments remains a challenge. To tackle this challenge, we present Logic...
Planning robot contact often requires reasoning over a horizon to anticipate outcomes, making such planning problems computationally expensive. In this letter, we propose a learning framework for efficient contact planning in real-time subject to uncertain contact dynamics. We implement our approach for the example task of robot air hockey. Based o...
The signed distance field is a popular implicit shape representation in robotics, providing geometric information about objects and obstacles in a form that can easily be combined with control, optimization and learning techniques. Most often, SDFs are used to represent distances in task space, which corresponds to the familiar notion of distances...
Virtual Fixtures (VFs) provide haptic feedback for teleoperation, typically requiring distinct input modalities for different phases of a task. This often results in vision- and position-based fixtures. Vision-based fixtures, particularly, require the handling of visual uncertainty, as well as target appearance/disappearance for increased flexibili...
Reasoning about distance is indispensable for establishing or avoiding contact in manipulation tasks. To this end, we present an online approach for learning implicit representations of signed distance using piecewise polynomial basis functions. Starting from an arbitrary prior shape, our method incrementally constructs a continuous and smooth dist...
Humans use tools to complete impact-aware tasks such as hammering a nail or playing tennis. The postures adopted to use these tools can significantly influence the performance of these tasks, where the force or velocity of the hand holding a tool plays a crucial role. The underlying motion planning challenge consists of grabbing the tool in prepara...
Planning multi-contact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the executi...
Geometry is a fundamental part of robotics, and there have been various frameworks of representation over the years. Recently, geometric algebra (GA) has gained attention for its property of unifying many of those previous ideas into one algebra. While there are already efficient open source implementations of GA available, none of them is targeted...
This paper presents a whole-body robot control method for exploring and probing a given region of interest. The ergodic control formalism behind such an exploration behavior consists of matching the time-averaged statistics of a robot trajectory with the spatial statistics of the target distribution. Most existing ergodic control approaches assume...
The convergence of many numerical optimization techniques is highly dependent on the initial guess given to the solver. To address this issue, we propose a novel approach that utilizes tensor methods to initialize existing optimization solvers near global optima. Our method does not require access to a database of good solutions. We first transform...
Many problems in robotics are fundamentally problems of geometry, which have led to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra, and dual quaternions. A unification and generalization of these popular formalisms can be found in...
In this work, we propose to learn robot geometry as distance fields (RDF), which extend the signed distance field (SDF) of the robot with joint configurations. Unlike existing methods that learn an implicit representation encoding joint space and Euclidean space together, the proposed RDF approach leverages the kinematic chain of the robot, which r...
Robot programming tools ranging from inverse kinematics (IK) to model predictive control (MPC) are most often described as constrained optimization problems. Even though there are currently many commercially-available second-order solvers, robotics literature recently focused on efficient implementations and improvements over these solvers for real...
This paper presents a whole-body robot control method for exploring and probing a given region of interest. The ergodic control formalism behind such an exploration behavior consists of matching the time-averaged statistics of a robot trajectory with the spatial statistics of the target distribution. Most existing ergodic control approaches assume...
Soft object manipulation tasks in domestic scenes pose a significant challenge for existing robotic skill learning techniques due to their complex dynamics and variable shape characteristics. Since learning new manipulation skills from human demonstration is an effective way for robot applications, developing prior knowledge of the representation a...
Planning multi-contact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the executi...
Long-term non-prehensile planar manipulation is a challenging task for planning and control, requiring determination of both continuous and discrete contact configurations, such as contact points and modes. This leads to the non-convexity and hybridness of contact optimization. To overcome these difficulties, we propose a novel approach that incorp...
Optimal control in robotics has been increasingly popular in recent years and has been applied in many applications involving complex dynamical systems. Closed-loop optimal control strategies include model predictive control (MPC) and time-varying linear controllers optimized through iLQR. However, such feedback controllers rely on the information...
Long-term non-prehensile planar manipulation is a challenging task for robot planning and feedback control. It is characterized by underactuation, hybrid control, and contact uncertainty. One main difficulty is to determine contact points and directions, which involves joint logic and geometrical reasoning in the modes of the dynamics model. To tac...
Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geome...
Achieving reactive robot behavior in complex dynamic environments is still challenging as it relies on being able to solve trajectory optimization problems quickly enough, such that we can replan the future motion at frequencies which are sufficiently high for the task at hand. We argue that current limitations in Model Predictive Control (MPC) for...
We present
drozBot: le robot portraitiste
, a robotic system that draws artistic portraits of people. The input images for the portrait are taken interactively by the robot itself. We formulate the problem of drawing portraits as a problem of coverage which is then solved by an ergodic control algorithm to compute the strokes. The ergodic computa...
Optimal control in robotics has been increasingly popular in recent years and has been applied in many applications involving complex dynamical systems. Closed-loop optimal control strategies include model predictive control (MPC) and time-varying linear controllers optimized through iLQR. However, such feedback controllers rely on the information...
In Receding Horizon Planning (RHP), it is critical that the motion being executed facilitates the completion of the task, e.g. building momentum to overcome large obstacles. This requires a value function to inform the desirability of robot states. However, given the complex dynamics, value functions are often approximated by expensive computation...
The convergence of many numerical optimization techniques is highly sensitive to the initial guess provided to the solver. We propose an approach based on tensor methods to initialize the existing optimization solvers close to global optima. The approach uses only the definition of the cost function and does not need access to any database of good...
This letter describes an approach to achieve well-known Chinese cooking art stir-fry on a bimanual robot system. Stir-fry requires a sequence of highly dynamic coordinated movements, which is usually difficult to learn for a chef, let alone transfer to robots. In this letter, we define a canonical stir-fry movement, and then propose a decoupled fra...
In the field of Learning from Demonstration (LfD), movement primitives learned from full trajectories provide mechanisms to generalize a demonstrated skill to unseen situations. Key position demonstrations, requiring the user to provide only a sequence of via-points rather than a complete trajectory, have been shown to be an appealing alternative....
This letter describes an approach to achieve well-known Chinese cooking art stir-fry on a bimanual robot system. Stir-fry requires a sequence of highly dynamic coordinated movements, which is usually difficult to learn for a chef, let alone transfer to robots. In this letter, we define a canonical stir-fry movement, and then propose a decoupled fra...
Enabling household robots to passively learn task-level skills from human demonstration could substantially boost their application in daily life. In this letter, we propose a Learning from Demonstration (LfD) scheme capturing human uni/bimanual demonstrations with motion capture suit and virtual reality (VR) trackers, wherein the demonstrated skil...
Daily manipulation tasks are characterized by regular characteristics associated with the task structure, which can be described by multiple geometric primitives related to actions and object shapes. Such geometric descriptors can not be expressed only in Cartesian coordinate systems. In this paper, we propose a learning approach to extract the opt...
Task space mapping approaches for bilateral teleoperation, namely object-centered ones, have yielded the most promising results. In this paper, we propose an invertible mapping approach to realize teleoperation through online motion mapping by taking into account the locations of objects or tools in manipulation skills. It is applied to bilateral t...
Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are often best explained within several task spaces. In many approaches, distributions within relevan...
This paper presents a framework to learn the sequential structure in the demonstrations for robot imitation learning. We first present a family of task-parameterized hidden semi-Markov models that extracts invariant segments (also called sub-goals or options) from demonstrated trajectories, and optimally follows the sampled sequence of states from...
Robot programming methods for industrial robots are time consuming and often require operators to have knowledge in robotics and programming. To reduce costs associated with reprogramming, various interfaces using augmented reality have recently been proposed to provide users with more intuitive means of controlling robots in real-time and programm...
In robotics, ergodic control extends the tracking principle by specifying a probability distribution over an area to cover instead of a trajectory to track. The original problem is formulated as a spectral multiscale coverage problem, typically requiring the spatial distribution to be decomposed as Fourier series. This approach does not scale well...
When data are organized in matrices or arrays of higher dimensions (tensors), classical regression methods first transform these data into vectors, therefore ignoring the underlying structure of the data and increasing the dimensionality of the problem. This flattening operation typically leads to overfitting when only few training data is availabl...
This chapter presents an overview of techniques used for the analysis, edition, and synthesis of time series, with a particular emphasis on motion data. The use of mixture models allows the decomposition of time signals as a superposition of basis functions. It provides a compact representation that aims at keeping the essential characteristics of...
This article proposes an approach for coupling internally-guided learning and social interaction in the context of a multi-task robot skill acquisition framework. More specifically, we focus on learning a parametrized distribution of robot movement primitives by combining active intrinsically-motivated learning and active imitation learning. We foc...
Mapping operator motions to a robot is a key problem in teleoperation. Due to differences between local and remote workspaces, such as object locations, it is particularly challenging to derive smooth motion mappings that fulfill different goals (e.g. picking objects with different poses on the two sides or passing through key points). Indeed, most...
In high dimensional robotic system, the manifold of the valid configuration space often has complex shape, especially under constraints such as end-effector orientation or static stability. We propose a generative adversarial network approach to learn the distribution of valid robot configurations under such constraints. It can generate configurati...
In the context of learning from demonstration (LfD), trajectory policy representations such as probabilistic movement primitives (ProMPs) allow for a rich modeling of demonstrated skills. In order to reproduce a learned skill with a real robot, a feedback controller is required to cope with perturbations and to react to dynamic changes in the envir...
Learning from Demonstration permits non-expert users to easily and intuitively reprogram robots. Among ap- proaches embracing this paradigm, probabilistic movement primitives (ProMPs) are a well-established and widely used method to learn trajectory distributions. However, providing or requesting useful demonstrations is not easy as quantifying wha...
In daily life, humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to unstable dynamics of the external environments. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by exte...
In robotics, ergodic control extends the tracking principle by specifying a probability distribution over an area to cover instead of a trajectory to track. The original problem is formulated as a spectral multiscale coverage problem, typically requiring the spatial distribution to be decomposed as Fourier series. This approach does not scale well...
Mapping operator motions to a robot is a key problem in teleoperation. Due to differences between workspaces, such as object locations, it is particularly challenging to derive smooth motion mappings that fulfill different goals (e.g. picking objects with different poses on the two sides or passing through key points). Indeed, most state-of-the-art...
Optimal control is often used in robotics for planning a trajectory to achieve some desired behavior, as expressed by the cost function. Most works in optimal control focus on finding a single optimal trajectory, which is then typically tracked by another controller. In this work, we instead consider trajectory distribution as the solution of an op...
In high dimensional robotic system, the manifold of the valid configuration space often has complex shape, especially under constraints such as end-effector orientation, static stability, and obstacles. We propose a generative adversarial network approach to learn the distribution of valid robot configurations. It can generate configurations that a...
In learning from demonstrations, many generative models of trajectories make simplifying assumptions of independence. Correctness is sacrificed in the name of tractability and speed of the learning phase. The ignored dependencies, which often are the kinematic and dynamic constraints of the system, are then only restored when synthesizing the motio...
Collaborative robots offer increased interaction capabilities at relatively low cost but, in contrast to their industrial counterparts, they inevitably lack precision. Moreover, in addition to the robots' own imperfect models, day-to-day operations entail various sources of errors that, despite small, rapidly accumulate as tasks change and robots a...
Probability distributions are key components of many learning from demonstration (LfD) approaches. While the configuration of a manipulator is defined by its joint angles, poses are often best explained within several task spaces. In many approaches, distributions within relevant task spaces are learned independently and only combined at the contro...
Body posture influences human and robot performance in manipulation tasks, as appropriate poses facilitate motion or the exertion of force along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control, and design the robot dexterity as a function of the articulatory joint configuration. This descrip...
Learning from demonstration (LfD) is an intuitive framework allowing non-expert users to easily (re-)program robots. However, the quality and quantity of demonstrations have a great influence on the generalization performances of LfD approaches. In this paper, we introduce a novel active learning framework in order to improve the generalization cap...
Humans exhibit outstanding learning, planning and adaptation capabilities while performing different types of industrial tasks. Given some knowledge about the task requirements, humans are able to plan their limbs motion in anticipation of the execution of specific skills. For example, when an operator needs to drill a hole on a surface, the postur...