Swee Su Lim

Swee Su Lim
Universiti Kebangsaan Malaysia | ukm · Fuel Cell Institute

PhD (Newcastle University UK)

About

22
Publications
5,443
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
794
Citations
Introduction

Publications

Publications (22)
Article
A microbial electrolysis cell (MEC) fully catalysed by microorganisms is an attractive technology because it incorporates the state-of-the-art concept of converting organic waste to hydrogen with less external energy input than conventional electrolysers. In this work, the impact of the anode feed mode on the production of hydrogen by the biocathod...
Article
Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The...
Article
Full-text available
Technologies able to convert CO2 to various feedstocks for fuels and chemicals are emerging due to the urge of reducing greenhouse gas emissions and de-fossilizing chemical production. Microbial electrosynthesis (MES) has been shown a promising technique to synthesize organic products particularly acetate using microorganisms and electrons. However...
Article
Full-text available
Microbial electrosynthesis (MES) is a promising technology to convert CO2 into value-added chemicals. Enhancing the interactions between biofilms and electrodes is the key of bioelectrochemical systems (BES). In this work, we studied the conversion of CO2 by MES in reactors equipped with novel gas diffusion electrodes (GDEs) modified with a polyani...
Article
Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-effici...
Article
Full-text available
The effect of the operating voltage on the performance of a microbial electrolysis cell (MEC) equipped with both a bioanode and a biocathode for hydrogen production is reported. Chronoamperometry tests ranged between 0.3 and 2.0 V were carried out after both bioelectrodes were developed. A maximum current density up to 1.6 A m⁻² was recorded at 1.0...
Article
Full-text available
Understanding the mechanism of electron transfer between the cathode and microorganisms in cathode biofilms in microbial electrolysis cells (MECs) for hydrogen production is important. In this study, biocathodes of MECs were successfully re-enriched and subjected to different operating parameters: applied potential, sulfate use and inorganic carbon...
Article
Ceramic membranes (CMs) with different pore sizes (0.14 μm CM1, 150 kDa CM2 and 5 kDa CM3) were tested as separators in two-chamber microbial fuel cells (MFCs). The performance and ionic gradient concentration of MFCs using CMs were compared with that of cation exchange membrane (CEM), Nafion 117. MFC with CMs exhibited a higher performance than th...
Article
Full-text available
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from -0.3 up to +1.0 V. Ch...
Article
The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reduc...
Article
Manganese oxide/functionalised carbon nanotubes (MnO2/f-CNT) nanocomposite is believed to be a good catalyst for oxygen reduction reaction (ORR) in a neutral solution; especially in a microbial fuel cell. The unique interaction between MnO2 and f-CNT will enhance the electron transfer process and facilitate the ORR. MnO2/f-CNT nanocomposite was fab...
Article
Oxygen Reduction Reactions (ORR) are one of the main factors of major potential loss in low temperature fuel cells, such as microbial fuel cells and proton exchange membrane fuel cells. Various studies in the past decade have focused on determining a method to reduce the over potential of ORR and to replace the conventional costly Pt catalyst in bo...
Article
α-Manganese oxide/ functionalized carbon nanotubes (α-MnO2/f-CNT) nanocomposite was believed to be a good catalyst for oxygen reduction reaction (ORR) in neutral solution especially in microbial fuel cell. The unique interaction between α-MnO2 and f-CNT will enhance the electron transfer process and facilitate the ORR. α- MnO2/f-CNT nanocomposite w...
Chapter
The screening of cultivation conditions for the highest hydrogen production using mixed microflora was performed in serum bottles. The fermentation conditions were studied for temperature, inoculum size, and initial pH, and it shows the significant effect of these factors in enhancing the biohydrogen production. The optimum condition was found at 6...
Data
a b s t r a c t Carbohydrates from hydrolyzed biomass has been a potential feedstock for fermentative hydrogen production. In this study, oil palm empty fruit bunch (OPEFB) was treated by sulfuric acid in different concentrations at 120 C for 15 min in the autoclave. The optimal condition for pretreatment was obtained when OPEFB was hydrolyzing at...
Article
Microbial fuel cells (MFCs) are a device that utilises microorganisms as a biocatalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this study was to evaluate laboratory scale MFC which was inoculated with sludge containing mixed culture grown in palm oil mill effluent (POME). This work also aimed to c...
Article
Custom-made proton exchange membranes (PEM) are synthesized by incorporating sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFCs). The composite PES/SPEEK membranes at various composition of SPEEK are prepared by the phase inversion method. The membranes are characterized...
Article
This study investigated the microbial community of an anaerobic sequencing batch reactor (ASBR) operating at mesophilic temperature under varying hydraulic retention times (HRTs) for evaluating optimal hydrogen production conditions, using palm oil mill effluent (POME) as substrate. POME sludge enriched by heat treatment with hydrogen-producing bac...
Article
A solid polymer electrolyte (SPE) membranes were synthesized by incorporation of sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFC). The composite membranes were prepared at 5% percent weight of SPEEK mixed with PES by phase inversion method and characterized by measurin...
Article
Natural micro-flora of Palm Oil Mill Effluent (POME) sludge was grown in dual-chamber Microbial Fuel Cells (MFC) to produce electricity by providing glucose at different concentration. A greater strength of Open Circuit Voltage (OCV) was observed with optimal biomass metabolism activity, as increasing glucose concentrations. The time Response Const...

Network

Cited By