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Carbon dioxide (CO2) is one of the commonly emitted gaseous by-products in industrial processes.While CO2 gas
is the main cause to greenhouse effect, various CO2 capture technologies have been proposed and implemented
to sequester the CO2 before the waste gases being released into the atmosphere. One of themature technologies
for CO2 absorption is by using amine-based solvents. In this regard, different single amine solvents or blended
amine solvents have been proven for their capability to remove CO2. However, the dissolution and reaction of
CO2 gas with the amine solvents turn the solution corrosive. Such phenomenon is undesired as it posts corrosion
problem to the absorption column, which normally built of carbon steel material. Henceforth, understanding the
behaviour of different amine-based solvents in absorbing CO2 and its subsequent impact on carbon steel corro-
sion is very significant. In this review article, we will outline some of the more commonly used solvents and
their respective advantages and disadvantages, motivating further investigation into the corrosion tendency.
Meanwhile, existing gaps in this research area are discussed for future investigation.
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1. Introduction

Fossil fuel consumption in power stations, industrial facilities aswell
as manufacturing processes have all contributed to the emission of CO2

gas [1,2]. Releasing large amount of CO2 gas into the environment is un-
acceptable as it is themain cause of greenhouse effect. Henceforth, post
combustion CO2 capture (PCCC) technology has been actively
researched by many organisations with the aim to reduce the amount
of CO2 released into the environment. In this regard, CO2 absorbers
can be installed in the industrial facilities to remove the amount of
CO2 at large for the sake of the product quality besides the concerns
for the environment. The idea implemented here is rather straightfor-
ward, whereby an absorbing agent is used to absorb the CO2 gas before
the waste gaseous product from the industries being released into the
environment.

Most of the CO2 absorbers are built of carbon steel owing to its rela-
tively low costing and high tensile strength [3–5]. Carbon steel is a type
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of steel that has an approximate carbon percentage of 0.1%–0.3% and up
to 2.1% at most by weight. The categorisations of carbon steels com-
prised of low carbon steel, medium carbon steel and high carbon steel
which are classified according to the amount of carbon containing in
the carbon steel. Carbon steel exhibits very unique properties in which
an increase in the carbon percentage would cause the ductility of the
steel to decrease but the tensile strength and hardness to increase [6].
Unfortunately, utilisation of carbon steel as buildingmaterial (especially
for PCCC technology) is limited by corrosion issue [4].

Corrosion is a chemical reaction that occurs upon the interaction of a
metal with its environment [7]. The rate of corrosion is dependent on
the relative humidity, temperature, acidity and oxygen content in the
environment. For the case of immersed carbon steel, the prime factor
that affects the corrosion is the relative acidity of the solvent, especially
upon dissolution of CO2. It is interesting to note that CO2 itself is not cor-
rosive when present in gaseous state; however, it turns corrosive upon
dissolution in water and further dissociation into acidic ions [8]. In re-
sponse to this, the properties of the metal materials especially the
strength and hardness will undergo significant changes, making it
more vulnerable to pits and cracks. This occurrence not only disrupts
the entire production process but also causes some health-related
issue [9]. Moreover, the impacts of the corrosion are very significant
when it comes to costing [5]. For instance, it was reported that the direct
and indirect costs of corrosion have been amounted to approximately
l Industry Press Co., Ltd. All rights reserved.
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6% of the total Gross National Products (GNP) in USA [10]. In other
words, around 552 billion dollars have been spent on all the costs in-
curred on the corrosion.

As prescribed, one of the possible strategies to eliminate/reduce
direct release of CO2 into the environment is by means of absorption
column. Amine-based solvents are the preferred agent employed for
this purpose [11,12]. The commonly used amine-based solvents are
monoethanolamine (MEA) [13,14], 2-amino-2-methylpropanol
(AMP) [15], methyldiethanolamine (MDEA) [16], diglycolamine
(DGA) [17] and piperazine (PZ) [13,18]. Despite presented different
chemical structures as well as cost structures, all of these amine-
based solvents have been experimentally proven for their CO2 cap-
ture ability. Nevertheless, equipment corrosion caused by the
amine solvent itself or the CO2-loaded amine solvent has been a
major concern associated with this PCCC technique [12,19]. Some
of the amine solvent, for instance MEA and its degraded products,
are known to be corrosive [20,21]. Hence, recent investigation has
been focussing the corrosion behaviour of carbon steel upon im-
mersed in amine solvent or CO2-loaded amine solvent. More impor-
tantly, it is crucial to know how the corrosion of carbon steel can be
varied by the type of amine solvent used. Considering this piece of
information is important for the development of PCCC technology,
the present review paper aims to provide an overview on (1) the
mechanism involved in CO2-induced carbon steel corrosion, (2) the
role of common amine-based solvent on CO2 absorption and carbon
steel corrosion rate, as well as (3) the research gaps urged for more
investigations.

2. Mechanism of Corrosion

Corrosion involves an oxidation of a metal surface producing elec-
trons and a reduction reaction that consumes the electrons which oc-
curs simultaneously [22]. These oxidation and reduction reactions are
known as redox reaction and can be correlated to electrochemical pro-
cesses. On a general note, this redox reaction occurs upon interaction of
three elements, namely the anode, the cathode, and the electrolyte. The
electrolyte, in this case, refers to the corrosive solution (or the CO2-
dissolved solvent). Upon interaction with this electrolyte, electrons
are released from the anode (site of the corroding metal) and being
transferred to the cathode [22,23]. The tendency of a metal to corrode
may depend on the type of metal involved and the pH of the electrolyte
[24].

The chemical reactions start with the dissolution of CO2 gas in water
as illustrated in Scheme (1). The dissolved CO2 reacted with water
forming carbonic acid, H2CO3 (Scheme (2)). Further dissociation of the
H2CO3 forming acidic solution (Scheme (3)) [25].

Scheme (1):

CO2 gð Þ→CO2 aqð Þ Dissolution of CO2 in Waterð Þ

Scheme (2):

CO2aq þH2O⇌H2CO3 Hydrolysis of CO2ð Þ

Scheme (3):

H2CO3⇌Hþ þHCO3
− Dissociation of H2CO3ð Þ

At the anode side, an oxidation reaction occurs involves the dissolu-
tion of iron as shown in Scheme (4).

Scheme (4):

Fe→Fe2þ þ 2e− Dissolution of ironð Þ

On the other hand, reduction reactions associated with the cathode
involve the reduction of hydronium ion, bicarbonate ion as well as
undissociated water. The reduction of hydronium ion that takes place
as illustrated in Scheme (5); while the equation representing the reduc-
tion of bicarbonate ion and the undissociated water are shown in
Scheme (6) and Scheme (7), respectively [26],

Scheme (5):

2H3O
þ þ 2e−⇌2H2OþH2 gð Þ Reduction of Hydronium Ionð Þ

Scheme (6):

2HCO3
− þ 2e−⇌2CO3

2− þ H2 gð Þ Reduction of bicarbonate ionð Þ

Scheme (7):

2H2Oþ 2e−⇌2OH− þH2 gð Þ Reduction of undissociated waterð Þ

The redox reactions then lead to two overall reactions comprising of
the formation of ferrous hydroxide and ferrous carbonate. The forma-
tion of ferrous hydroxide is shown in Scheme (8) and the formation of
ferrous carbonate is shown in Scheme (9) [25,27].

Scheme (8):

Fe2þ þ 2OH−→Fe OHð Þ2 Formation of ferrous hydroxideð Þ

Scheme (9):

Fe2þ þ CO3
2−→FeCO3 Formation of ferrous carbonateð Þ

The final products formed are iron (ii) hydroxide and iron (ii) car-
bonate respectively. The iron (ii) ion is very unstable and it can be easily
oxidised by the oxygen in the air to form iron (iii) ion, which is rust that
exhibit reddish brown in colour. Fig. 1 shows the schematic of the cor-
rosion mechanism [28].

3. Amine-Based Solvents: Roles in CO2 Absorption and Carbon Steel
Corrosion

Amine-based solvents have been discovered to have good ab-
sorbability to CO2 gas. Accordingly, it is the most mature solvent
used in CO2 absorption [29,30]. Fig. 2 shows a typical process
flow in amine-based CO2 capture technology. The flue gas is first
passing through an absorber column where lean amine is used to
absorb CO2 gas. The CO2-loaded amine (or rich amine) is then
transferred to a stripper where the amine solvent is recovered
via heating [31].

The amine-based solvents compose of N, O and C atoms which
have high electron density. Amines can be furthered categorised
into three classes on the basis of the number of hydrogen atom that
adhered to the nitrogen atom [32]. These three classes are the pri-
mary, secondary, and tertiary amines which correspondingly con-
tains two H atoms, one H atom, and no H atom adhered to the
nitrogen atom [32,33]. Both the primary and secondary amines are
weak base which tend to react with CO2 to form carbamates [34].
This reaction is reversible and thus the amine solvent can be regen-
erated for next absorption usage [35]. As prescribed, there are few
types of commonly used amine solvents, namely the MEA, AMP,
MDEA, DGA and PZ. Each of this amine solvent has been investigated
for their CO2 absorption capacity as well as their impact on carbon
steel corrosion. The following section will discuss the current re-
search outputs on this field.

3.1. Common Amine Solvents For CO2 Absorption

3.1.1. Monoethanolamine (Mea)
Monoethanolamine is an organic chemical compound that is both a

primary amine and primary alcohol [36]. It is a weak base with the



Fig. 1. Corrosion mechanism of carbon steel under CO2-H2O environment.
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formula of NH2CH2CH2OH. MEA is widely applied for CO2 absorption
due to its non-toxicity and economical cost. The reaction between
MEA and CO2 in the aqueous solution is illustrated as below [32,35],

Scheme (10):

CO2 þ 2RNH2⇌RNHCOO− þ RNH3
þ Formation of carbamateð Þ

where R represents the alcohol group. From the stoichiometry of reac-
tion stated above, it is clearly shown that the loading capacity of the
MEA is stoichiometrically 0.5 mol CO2·mol−1 of MEA [37]. Experimen-
tally, Choi et al. found that the CO2 absorption amount was approxi-
mately 0.46 mol CO2/mol amine when aqueous 30 wt% of MEA was
used. The absorption capacity can be further enhanced by increase the
gas pressure. Tan et al. reported that the CO2 absorption performance in-
creases gradually with the increase of pressure in an aqueousMEA solu-
tion. Their results showed that approximately 76% of CO2 removal was
achieved when the pressure is at 0.1 MPa and go up to 95% when the
pressure is increased to 1 MPa (see Fig. 3a) [38]. This phenomenon
was ascribed to Marangoni effect, whereby the increase in the partial
pressure increases the CO2 concentration at the gas/liquid-phase inter-
face; such condition disrupts the interface and thus promote the absorp-
tion rate [38–40].

In addition, the solution temperature also will affect the CO2 capture
efficiency; in this regard, Joel et al. reported that the CO2 capture effi-
ciency increaseswith the increase in lean-MEA temperature. This obser-
vation is obvious especially when the temperature was increased from
25 °C to 50 °C (see Fig. 3b) [41]. At higher temperature, the viscosity
of a gas will increase but the same lead to lower viscosity of lean MEA;
Fig. 2. A typical design of amine-based CO2 absorption and desorption columns.
(Adapted with permission from [31]. Copyright (2015). American Chemical Society).
such condition enhances the mass transfer owing to thinner liquid
film (note that CO2 absorption in amine solvent is a liquid film con-
trolled process) [41–43]. Nevertheless, Joel et al. also found that temper-
ature above 50 °C has not much impact on the efficiency [41].

3.1.2. 2-Amino-2-Methylpropanol (AMP)
2-Amino-2-Methyl Propanol (AMP) is an organic compound that

contains both amine and alcohol groups. It is also a primary amine
with the chemical formula of (CH3)2C(NH2)CH2OH and has been exten-
sively studied due to its promising alternatives for the capturing of CO2
Fig. 3. (a) CO2 removal performance in a 20 wt% MEA aqueous solution (Adapted with
permission from [38]. Copyright 2015. Elsevier). (b) Effect of operating temperature and
MEA concentration on CO2 capture efficiency (in rotating packed bed (RPB) column).
(Adapted with permission from [41] under CC BY).
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gas in various fields. AMP is preferred owing to its unique sterically hin-
dered characteristic [44,45]. Sterically hindered amines form an unsta-
ble carbamate intermediate and when mixing them along with
organic solvents, the formation of this carbamate will be favoured
since the formation of bicarbonate cannot take place with the absence
of water [46]. The instability of the carbamate (due to steric hindrance)
results in lower regeneration temperature of this amine as compared to
other amine solvents. Hence, giving it an advantage in which the utility
cost can be reduced. Additionally, AMP is preferred as it is degradation
resistance [44].

According to Aroonwilas & Tontiwachwuthikul, amole of CO2 can be
absorbed using 1mol of AMPon a theoretical basis of stoichiometry. The
overall reaction of CO2 in AMP is illustrated in Scheme (11); note that in
the present of water, bicarbonate can be formed too [47],

Scheme (11):

CO2 þ RR
0
NHþH2O⇌RR

0
NH2

þ þHCO−
3

where R and R′ represents the alcohol group, and -H, respectively.
Choi et al. reported that CO2 absorption using 30 wt% AMP aqueous

solution was found to be 0.84 mol·CO2·mol−1 of amine. This value
was about two times higher than the absorption capacity of 30 wt%
MEA aqueous solution (0.46 mol·CO2·mol−1 amine) [37]. Such varia-
tion is in fact, in line with the stoichiometry estimation. However, de-
spite having greater absorption capacity, AMP was found to perform
poorer in CO2 removal as compared to MEA, probably due to greater re-
action rate of MEA. Accordingly, the authors proposed the use blended
MEA/AMP solution for CO2 removal whereby the MEA/AMP is expected
to have higher CO2 loading than MEA alone and greater reaction rate
than AMP alone. They found that the CO2 removal efficiency decrease
Fig. 4. (a) The CO2 absorption amounts and removal efficiencies at different MEA/AMP
blending amount (Adapted with permission from [37]. Copyright (2009). Elsevier).
(b) Plot of CO2 loading against different CO2 partial pressure using AMP or PZ/AMP.
(Adapted with permission from [48]. Copyright (2019). Taylor & Francis).
with the increase in AMP concentration inside the blended solution
(see Fig. 4a). On the other hand, Jahangiri & Hassankiadeh reported
that AMP has a higher CO2 absorption capacity at higher pressure. How-
ever, addition of small amount of piperazine (PZ) should be considered
when the partial pressure of the CO2 is high in order to enhance and
promote CO2 absorption (see Fig. 4b) [48].

3.1.3. Methyldiethanolamine (MDEA)
Methyldiethanolamine (MDEA) or more commonly known as N-

methyldiethanolamine is an organic compound with the chemical for-
mula CH₃N(C₂H₄OH)₂. MDEA has been receiving a considerable amount
of attention in recent years in the area of PCCC due to its resistance to-
wards corrosion and degradation [49].

UnlikeMEA and AMP, theMDEAdoes not react directlywith CO2 be-
cause it cannot form a reaction product. In particular, no carbamate can
be generated as theMDEA is a tertiary amine which contains no proton
(H atom) to react with the CO2 [50]. This tertiary amine can only func-
tion as a sink for the hydrogen ions produced from the hydrolysis of
CO2 in the water. The chemical reactions involved are described as fol-
lows [51]:

Scheme (12):

CO2 þH2O⇌Hþ þHCO3
− Hydrolysis of CO2ð Þ

HCO3
−⇌Hþ þ CO3

− Dissociation of bicarbonate ionð Þ

Scheme (13):

Hþþ R3N⇌R3NH
þ Reaction between hydrogen ionand tertiary amineð Þ

Even though MDEA has a higher ultimate absorption capacity as
compared to primary amines, its absorption rate is rather slow
[50–53]. This claim is supported by the reaction rate constant of CO2 ab-
sorption determined at 298 K whereby the reaction rate constant for
MDEA is 6.71 m3·kmol−1·s−1; while the one for MEA is 5939
m3·kmol−1·s−1 [54–56]. Besides that, Mindaryani et al., have con-
ducted a CO2 absorption study for initial gas content 40% using different
concentrations of MDEA (20% and 35.3%) at various gas flow rates (1
L⋅min-1, 1.5 L⋅min-1 and 1.8 L⋅min-1) [49]. Based on the experimental
data, the outlet concentration of CO2 falls in the range of 15% to 20%
when 20% or 35.3% of MDEA was employed (see Fig. 5). The difference
was rather insignificant despite the increase in MDEA concentration.
Owing to the low performance, usage of MDEA normally coupled with
promoters such as PZ, MEA, DEA, or ionic liquids [52,57,58].

3.1.4. Diglycolamine (DGA)
Diglycolamine (DGA) or 2-(2-aminoethoxy)ethanol is a primary

amine with the chemical formula of C4H11NO2. According to Material
Safety Data Sheet (MSDS) provided by Silver Fern Chemical Inc., DGA
is a slightly viscous, colourless liquid with very mild amine odour.
DGAwas found to has same reactivity asMEA but exhibits lower vapour
pressure; thus, DGA can be employed in more concentrated solution
with lesser flow rate of solvent [59].

Al-Juaied & Rochelle have conducted a CO2 absorption study
using aqueous solutions containing 65 wt% and 25 wt% of DGA solu-
tions at 25 °C and 60 °C in a wetted wall column. Based on the ab-
sorption experiment, a rigorous model on the eddy diffusivity was
done and it was found out that the reaction involving DGA and CO2

is as follows [60]:
Scheme (14):

DGA : H2Oþ CO2⇌DGACOO− þH3O
þ

The findings of the experiment are that the reaction between DGA
and CO2 is dominant only at low loading whilst at high loading,



Fig. 5. Outlet CO2 concentration for (a) 20% MDEA and (b) 35.3% MDEA.
(Adapted with permission from [49] under CC BY).

Fig. 6. The comparison between the MEA and DGA in term of the condenser duty in
response to the number of stages.
(Adapted with permission from [17]. Copyright (2011). John Wiley & Sons).
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instantaneous reactions tend to take place and the diffusion of reactants
and products are the deciding factor for the absorption of CO2.

It is interesting to note that DGA posts advantage over MEA in term
of the energy consumption during the recovery stage. In this regard,
Salkuyeh &Mofarahi have conducted a study to compare the consumed
energy duty during a stripping process to recover MEA or DGA solvent.
Results showed that at low lean amine loadings, the DGA solvent
reboiler duty is lower than that of MEA with equal and even lower
aminemass flow. In this context, a large heat reduction can be achieved,
and the operational cost can be reduced while the overall safety of the
process can be attained. Another noticeable finding is that at equal
lean amine loading, DGA requires lower flow and lower condenser
duty than MEA, especially in the case where the feed stream contains
a high CO2 concentration [17]. The comparison of the MEA and DGA in
term of the condenser duty is illustrated in the Fig. 6 below.

3.1.5. Piperazine (PZ)
Piperazine (PZ) or (1,4-hexahydropyrazine) is another amine sol-

vent employed for CO2 absorption. It is a cyclic organic molecule
possessing two nitrogen atoms in opposite positions. Several studies
have been carried out on the rate of CO2 absorption in piperazine.
Bishnoi & Rochelle found that the rate constant of PZ with CO2 is higher
than MEA [61]. The primary chemical reaction involved is as follows
[62]:

Scheme (15),

PZþ CO2 þ H2O⇌PZCOO− þH3O
þ

At low CO2 loading, the dominant reaction product is piperazine car-
bamate (PZCOO−) and the reaction scheme is shown in Scheme (15).
On the other hand, at high CO2 loading, the dominant reaction product
is protonated piperazine carbamate (H+PZCOO−) [63] and the reaction
scheme is illustrated in the Scheme (16).

Scheme (16),

H2OþHþPZCOO−⇌H3O
þ þ PZCOO−

The main finding of this study is that PZ is proven to be an effective
promoter for the removal of CO2 from the gas streams. This finding is
well supported by Wong et al. which have also conducted a study on
the CO2 absorption by PZ-activated MDEA and PZ-activated AMP [64].
In this study, different weight percents of PZ (2% and 8%) was mixed
with MDEA and AMP to aid as promoter. Results showed that the CO2

loading capacity in MDEA and AMP increased substantially with the ad-
dition of PZ. More importantly, it was found that the solution with the
largest amount of PZ (8%) has the highest CO2 loading capacity. Fig. 7
is the results obtained by Dubois & Thomas which also showed that
the addition of PZ further enhanced the CO2 absorption in MEA or
MDEA [65].

Noteworthy that PZ is commonly used as promoter instead of as sole
solvent for CO2 capture. This could ascribe to its limited solubility. In
specific, increase in PZ concentration as the absorbed CO2 is stripped
off may lead to crystallisation of PZ [66]. Owing to this issue, PZ has
been mainly employed at low quantity (b10 wt%) as promoter to aid
other amine solvents with slow reaction rates [67].

In a nutshell, each of the amine-based solvent discussed in this sec-
tion have their own advantages and disadvantages. Also, different
amine-based solvents might be employed for different applications de-
pending on their properties and the nature of the flue gases produced.
However, MEA solvent which has been developed for approximately
60 years are typically used in industry for removing CO2 in both physical
or chemical absorption [68,69]. Also, MEA is typically considered as
benchmark solvent for the comparison of other newly introduced alter-
native solvent.



Fig. 7. CO2 absorption in different blended amine solutions with PZ or (piperazinyl-1)-2-ethylamine (PZEA) as promoter.
(Adapted with permission from [65]). Copyright (2011). Elsevier).
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3.2. Corrosion of Carbon Steel Caused By CO2-Dissolved Amine Solvent

Despite being commonly used,MEA is not without limitation. One of
the critical limitations of MEA is that it is more corrosive than other
Fig. 8. (a) Photo of AISI 1018 carbon steel coupon upon 3 weeks of exposure in the lean solve
(b) SEM images of carbon steel immersed in carbonated-2 mol⋅L-1 and 4 mol⋅L-1 MEA solu
dispersed islands of corrosion products were found on the 4 mol⋅L-1 MEA-immersion sample
in MEA loaded with different CO2 amounts (0, 0.25, 0.50 mol CO2/mol MEA) (Adapted with pe
amines [20,21,70]. Moreover, the corrosivity of MEA was further af-
fected by (i) its own concentration, (ii) the CO2 loading capacity, as
well as (iii) the operating temperature [71]. Kittel et al. conducted a 4-
year-long study to investigate the corrosion in a MEA pilot plant used
nt outlet of the stripper (Adapted with permission from [20]. Copyright (2009). Elsevier).
tions; some pitting spots were seen on the 2 mol⋅L-1 MEA-immersion sample, while

(Adapted with permission from [72] under CC BY). (c) Polarisation curves of carbon steel
rmission from [73] under CC BY).



Fig. 9. Polarisation curve of carbon steel in (a) lean amine solution and (b) rich amine
solution (Adapted with permission from [79]. Copyright (2015). VÚRUP, a. s.). [label 1
= 60 °C; label 2 = 80 °C] It is clearly seen that the corrosion potential is largely affected
by temperature in lean amine solution and less affected by temperature in rich amine
solution.
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for CO2 capture; they found that the AISI 1018 carbon steel installed at
the outlet of the stripper experiences high corrosion rates (4.5 mm/
year–8.5 mm/year) causing almost 80% lost in its initial weight [20].
Fig. 8(a) shows the photo of the corroded carbon steel; while Fig. 8
(b) shows the scanning electronmicrographic of a carbon steel exposed
to different MEA concentrations at 40 °C [72].

The corrosiveness of carbon steel will increase with the increase of
MEA concentration [74]. In particular, the corrosion risk is enhanced
when the MEA concentration is N30%. Thus, 20%–30% MEA concentra-
tion has been set as the rule-of-thumb for industrial usage
[71,73,75,76]. One of the possible reasons for this effect is that the
amount of absorbed CO2 will increase with the increase inMEA concen-
tration.MoreH3O+ is formed under high CO2 content and thus resulting
in higher corrosion rate [74].

The effect of CO2 loading appears to be the most influencing factor
on the corrosion rate. This is expectable as corrosion starts with the dis-
sociation of CO2 and its subsequent reactionwith the amine solvent and
metal surface. As illustrated in Fig. 8(c), about tenfold increase in the
corrosion current density was observed when the CO2 loading was in-
creased from 0 to 0.5 [73]. Similarly, Kladkaew et al. recorded a remark-
able increase in corrosion rates from 12 mpy, to 79 mpy, 159 mpy,
192mpy, for loading of 0, 0.2, 0.4, and 0.5mol CO2·(molMEA)-1, respec-
tively [74].

A work done by Xiang et al. revealed that corrosion rate of carbon
steel (which has been exposed to MEA/CO2 solution) decreases with
time [77]. Here, the corrosion rate was found to decrease from an initial
value of ~0.9mm/year to ≤0.1mm/year after 24 h exposure to theMEA/
CO2 solution. Such remarkable reduction could be due to the formation
of thin protective FeCO3 layer and the adsorption of MEA. Meanwhile,
the carbon steel that being exposed to MEA/CO2/O2 solution experi-
enced a high corrosion rate over time. This study also found that tem-
perature has only mild impact on the corrosion rate as the solubility of
both CO2 and O2 reduced with the increase in temperature. On the
other hand, Veawab found that the corrosion rate of carbon steel in
2 kmol·m−3MEA solution rises from 2.6mpy to 16.2mpywhen the op-
erating temperature increases from 30 °C to 80 °C [78].

Erfani et al. found that the extent of temperature effect is depending
on the presence of CO2 in the amine solution [79]. The temperature ef-
fect is significant in lean amine solution and less significant in rich
amine solution. In lean amine solution, the corrosion potential at 60 °C
and 80 °C were recorded as −708 mV and −909.6 mV, respectively.
In addition, the corrosion rate of the specimen at 80 °C was found to
be 11.86 mpy; while the specimen at 60 °C has corrosion rate b 1
mpy. On the contrary, the same temperature change induced only a
mild to negligible impact when come to rich amine solution. In this re-
gard, the corrosion potential obtained for the temperature 60 °C and 80
°C in rich amine were−860.5 mV and−888.6 mV, respectively; while
the corrosion rates were 10.20 mpy and 12.21 mpy, respectively.
Polarisation profiles of the carbon steel shown in Fig. 9 clearly demon-
strate this different.

Numerous studies have been done to compare the corrosive-
ness of different amine solvents over the carbon steel. One of this
is the fascinating work by Gunasekaran et al. which showed that
the corrosiveness of CO2-saturated amines decreases in the order
of MEA N AMP N diethanolamine (DEA) N PZ N MDEA [80]. Never-
theless, in certain cases, the AMP was found leading to higher ini-
tial corrosion rate than MEA, probably due to preferable formation
of HCO3

− in AMP [78,81]. While recent research has moving to the
uses of blended amines for synergetic effect, the corrosion induced
by the blended amines need to be known as well. In this regard,
Gunasekaran et al. revealed that the corrosiveness of CO2-
saturated blended amines following the order MEA-PZ ≥ MEA-
AMP ≥ MEA-MDEA N MDEA-PZ N AMP-PZ [80]. Table 1 lists the cor-
rosion rates reported by literature works using either sole amine
solvent or blended of MEA with another solvent as CO2 absorbent.
Two information can be gained from Table 1; firstly, MEA appears
to be more corrosive than other solvents under the same study
conditions. Secondly, mixing another amine solvent with MEA in-
duces a lower corrosion rate as compared to the use of sole MEA.

Besides all the above mentioned factors, it is noteworthy that
MEA tends to be degraded [14,86,87] whereby the degradation
process is induced thermally under the presence of CO2, or via ox-
idative degradation [88]. The degraded products may also cause to
corrosion effect [21].

3.3. Role of corrosion inhibitors in lean and rich amine solution

One of the possible ways to reduce the corrosion impact from CO2-
dissolved amine solution will be to select stainless steel (instead of car-
bon steel) as the buildingmaterial for the absorber column [73]. Never-
theless, this is expected to increase the capital cost. Corrosion inhibitor
came into play if it is the aim to reduce the corrosion along with
minimisation of costs.

Veawab et al. has conducted a study on the role of corrosion inhibitors
in lsean amine solution. It was determined that the addition of corrosion
inhibitors such as sodium metavanadate (NaVO3) and sodium sulphite
(Na2SO3) can effectively protect the metal from corrosion [89].
10 μl⋅L-1of NaVO3 demonstrates at least 93.8% of corrosion protection,



Table 1
Summary on corrosion rates of carbon steel metal in sole and blended amine-based solvents

Solvent Alloy Study conditions Corrosion rates/mpy Ref.

Single solvent
MEA Carbon steel 1020

(C content: 0.20 wt%)
– 3 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

136.4 [78]

Carbon steel 1018 – 5 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

164.17① [80,82]

Carbon steel
(C content: 0.20 wt%)

– 4 mol⋅L-1 amine solvent
– Load with 0.55 mol CO2·(mol MEA)-1

– 80 °C

124.96① [70]

Carbon steel 1020 – 5 mol⋅L-1 amine solvent
–Load with 0.55 mol CO2·(mol MEA)-1

– 80 °C

166.35 [83]

AMP Carbon steel 1020
(C content: 0.20 wt%)

– 3 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

125.9 [78]

Carbon steel 1018 – 4 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

122.44① [80,82]

Carbon steel A106 – 30 wt% amine solvent
– Load with 0.43 mol CO2·(mol AMP)-1

– 80 °C

78.74① [81]

PZ Carbon steel 1018 – 5 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

64.57① [80,82]

Carbon steel A106 – 30 wt% amine solvent
– Load with 0.23–0.43 mol C⋅(mol N)-1

– 80 °C

19.29–120.87① [84]

MDEA Carbon steel 1020
(C content: 0.20 wt%)

– 3 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

67.6 [78]

Carbon steel 1018 – 5 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

35.04① [80,82]

Carbon steel A36
(C content: 0.23 wt%)

– 50 wt% amine solvent
–Load with 0.13 mol CO2·(mol MDEA)-1

– 50 °C

8.27① [85]

Blended of MEA with another solvent
MEA/MDEA Carbon steel 1020

(C content: 0.20 wt%)
– 3 kmol·m−3 amine solvent
–Saturated with CO2

– 80 °C

77.6 [78]

MEA/MDEA Carbon steel 1018 – 5 kmol·m−3 amine solvent (1:1 mol ratio)
– Saturated with CO2

– 80 °C

112.60① [80,82]

MEA/AMP Carbon steel 1020
(C content: 0.20 wt%)

– 3 kmol·m−3 amine solvent
– Saturated with CO2

– 80 °C

127.3 [78]

MEA/AMP Carbon steel 1018 – 5 kmol·m−3 amine solvent (1:1 mol ratio)
– Saturated with CO2

– 80 °C

118.50① [80,82]

MEA/PZ Carbon steel 1018 – 5 kmol·m−3 amine solvent (1:1 mol ratio)
– Saturated with CO2

– 80 °C

122.84① [80,82]

① The original article provided data in mmpy. (taking 1 mmpy = 39.37 mpy).
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resulting in b1 mpy corrosion rate. The protection can go up to 99.9%
when the concentration of NaVO3 increased to 75 μl⋅L-1. In addition to
the NaVO3, Na2SO3 is also another satisfactory corrosion inhibitor
which induced 90%–93%protection even by just added in small quantity.

Erfani studied the effectiveness of a commercialised corrosion inhibi-
tor in both lean and rich amine solution [79]. The experiment was con-
ducted at 80 °C along with 200 μl⋅L-1 corrosion inhibitor. It was found
that the corrosion inhibitor works well in the lean amine solution by re-
ducing the corrosion rate from 11.86 mpy to 8 mpy. Similarly, 200 μl⋅L-1

of corrosion inhibitor was able to mix well in the rich amine solution
and aid in reducing the corrosion rate down to 7.089 mpy. It shall be
taken note that further increases the concentration of corrosion inhibitor
N200 μl⋅L-1 does not further reduce the corrosion rate but cause to a slight
increase in corrosion rate. Hence, optimum concentration of corrosion in-
hibitor needs to be determined for effective protection. In fact, too high
concentration of corrosion inhibitor will cause issue such as plugging
and eroding [89].

4. Comparison with Amino Acid Salt Solution as Alternative CO2 Ab-
sorbing Agent

Besides amine-based solvents, recent works have ventured into
the uses of amino acid salt (AAS) solutions as an alternative CO2 ab-
sorbing agent [90–92]. Similar to amine-based solvents, the AAS also
possess amine functional group; thus, able to react with CO2 mole-
cules. Potassium L-asparaginate, potassium lysinate, potassium
taurinate, sodium glycinate, sodium L-phenylalaninate are some of
the commonly studied AAS for CO2 absorption [90]. In terms of ad-
vantages, AAS exhibits low toxicity, good biodegradability [93,94],
and higher pKa value than amine-based solvents [90]. The latter
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suggesting a higher reactivity with CO2. Meanwhile, the AAS has low
volatility and ability to resist O2 degradation [95]; this serves as an
answer to the traditional amine solvents (e.g. MEA, MDEA) which
are susceptible to CO2 thermal degradation and are volatile at high
operating temperatures [90,96].

Another unique feature of AAS is that they able to form solid
precipitates upon absorbing CO2 [97–99]. The formation of solid
precipitates helps to shift the reaction equilibrium to produce
more carbamate or bicarbonate [98]. Such phase-change also in-
duces higher driving force for absorption as the equilibrium CO2

pressure are maintained while the CO2-loading of the solvent is
further increases [97,98]. In terms of performance, Lerche et al. re-
ported that 0.5 mol⋅L-1 potassium glycinate has the same CO2 load-
ing capacity as 0.5 mol⋅L-1 MEA (i.e. 0.8 mol CO2 per mol amine)
[100]. On the other hand, Sanchez-Fernandez et al. proven that
AAS (by taking potassium salt of taurine as model) consume less
energy and induce less corrosion impact as compared to MEA
[99]. In particular, the regeneration energy required to recover po-
tassium salt of taurine is lesser than MEA [99,101]. Moiolia et al.
via a detail techno-economic analysis showed that the overall cap-
ital cost of the system using potassium taurate is ~20% lesser than
the one using MEA [102].

5. Conclusions and Future Outlooks

Despite the well development of amine-based PCCC technology,
there are still many undiscovered areas requires for exploration.
First and foremost, ongoing research should focus on the strategies
to reduce the environmental and health risks associated with the
usage of amine solvents. In particular, available studies have allo-
cated little attention on the potential risks upon degradation of
amine solvent. Amine solvent may degrade via three mechanisms,
namely the oxidative degradation, thermal degradation and atmo-
spheric degradation. Oxidative degradation often takes place in the
absorber while thermal degradation generally takes place in the
stripper where it depends mainly on the operating temperature.
For the case of atmospheric degradation, amines will start degrading
and turn into other products once they are emitted from the CO2 cap-
ture plant. There are a variety of degradation products such as am-
ides, nitrosamines, nitramines and aldehydes [103]. The degraded
products with themost negative impacts will probably be nitramines
and nitrosamines as they are carcinogenic andmutagenic [103–105].
While the ultimate goal of PCCC is to reduce the adverse impact of in-
dustrial revolution on the environment by not introducing second-
ary pollution, the creation of various degraded amine wastes has to
be reduced. Hence, it is necessary to investigate method to mitigate
the degradation of amine solvents.

Secondly, available literatures mostly describe the role of single
amine-based solvents in affecting the corrosion rates. On the other
side, there is a lack of related information for the blended amine-
based solvent. While it has been proven that blended amine solvents
can provide a better performance in CO2 removal as compared to single
amine solvent, the absorption mechanism and the corrosion rate in-
duced by these blended amine solvents are less reported. Meanwhile,
other technical information such aswhether this blended amine solvent
can demonstrate high degree of CO2 capturewith least volume of usage,
reduced energy requirement, reduced corrosion impact, as well as min-
imum environmental impact is scarcely available in open literature. To
disclose this piece of information, research effort shall allocate on the
process optimization to determine the optimum mixture ratio, opti-
mum process temperature and etc. Meanwhile, regenerability of the
blended amines is another factor that will directly reflect the cost in-
curred on the entire CO2 capture process.

Another research area quest for more investigation is the contra-
dict role of amine solvent as corrosion promoter or corrosion inhibi-
tor. Taking MEA as an example, it has been reported that MEA is a
corrosive solvent especially at concentration N 30%; on the other
hand, there are also studies showing that the adsorption of MEA on
the metal surface can protect the metal from corrosion [106,107].
Apparently, there is a need to understand the working mechanisms
of MEA and other amine solvents under both roles.
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