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Editorial on the Research Topic

Combating Diabetes and Diabetic Kidney Disease

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease, resulting in more than
950,000 deaths each year globally (Thomas et al., 2015; Cooper and Warren, 2019). These patients
carry a significantly increased risk of cardiovascular morbidity and mortality. The link between renal
disease and cardiovascular disease is poorly understood and this knowledge gap contributes to the
suboptimal treatment options available for these patients. Improved understanding of the
pathogenesis of DKD and its association with the development of cardiovascular disease is
urgently needed to catalyze the development of novel therapeutics and should be targeted to the
early stages of these diseases, before kidney and/or cardiovascular damage becomes irreversible.

Currently approved therapeutic regimens include ACE inhibitors, angiotensin receptor blockers
(ARBs), and statins which minimize, but do not prevent, the progression of cardiovascular
morbidities and the incidence of ESRD (Srivastava et al., 2020a; Hartman et al., 2020).
Moreover, these therapies are neither tissue- nor cell-specific and are ineffective in reversing
kidney fibrosis and diabetic complications. In recent years, a number of reno-protective agents,
including sodium glucose co-transporter (SGLT-2) inhibitors, mineralocorticoid receptor
antagonists, endothelin A antagonists, dipeptidyl transferse-4 (DPP-4) inhibitors, and N-seryl-
acetyl-lysyl-proline have been studied in both preclinical settings and in controlled clinical trials,
some with promising outcomes (Kanasaki et al., 2014; Stavropoulos et al., 2018; Srivastava et al.,
2020b). Still, more research is needed to validate their cell- and tissue-specific mechanisms to
optimize their use in human disease. Understanding these critical pathways will guide future
therapies to combat kidney fibrosis and cardiovascular complications in diabetes.

In this special issue of Frontiers in Pharmacology, we discuss new pathophysiologic mechanisms
which are driving therapies to combat kidney fibrosis in diabetes. We focused on three major sections.

NEW LEADS TARGETED TO DKD

First, we discuss new leads targeted to DKD. In recent years SGLT-2 inhibitors are of significant
importance in restoring kidney structure and fibrotic phenotypes in diabetes. SGLT-2 plays a key role
in reabsorption of glucose filtered from the glomerulus. Nearly all (90–95%) filtered glucose in the
urine is reabsorbed through SGLT2. The EMPA-REG trial demonstrated that the SGLT2 inhibitor
empagliflozin reduced renal complications in high-risk diabetic patients and was also effective in
patients with advanced kidney disease; this finding represents a key development which advances the
clinical practice of diabetic medicine (Mayer et al., 2019). These researchers explain that the renal
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benefit of SGLT2 inhibition is based on hemodynamic alterations
and the ability to lower blood glucose. However, SGLT2 inhibitors
might also protect the kidneys from defective central metabolism as
evidenced by their ability to mitigate abnormal glycolysis and
improve lipid metabolism (Li et al., 2020b). In this issue, a
meta-analysis and randomized clinical trials demonstrate the
beneficial effect of SGLT-2 inhibitors on hemoglobin and
hematocrit levels, suggesting that SGLT-2 inhibitors treatment
may offer additional benefit in DKD (Qu et al.). Similarly,
DPP-4 inhibitors such as linagliptin, and incretin analogs,
which are known drugs for treatment of type II diabetes, are
effective in improving kidney fibrosis in diabetes in preclinical
settings. Various DPP-4 inhibitors have diverse effects in kidney
health and are dependent on specific drug types and metabolic
characteristics. Research led by Professor Kawanami discusses the
beneficial effects and clinical efficacy of glucagon-like-peptide-1
(GLP-1) agonists in DKD (Kawanami and Takashi.). GLP-1
agonists have the potential to develop into a future class of
medication for combating DKD. Another review article
describes new therapeutic targets such as DPP-4, notch
signaling, and sirtuins in DKD (Zoja et al.).

NEW CELLULAR MECHANISMS IN DKD

In recent years research by our group (Yale University, United States;
Kanazawa Medical University, Japan) has focused on mesenchymal
metabolic shifts that play a critical role in renal fibrosis (Li et al.,
2020a; Srivastava et al., 2021a). Abrogation of both defective central
metabolism and mesenchymal metabolic shifts through the use of
small chemicals (glycolysis inhibitors and fatty acid oxidation
activators) is effective in improving kidney structure and function
(Kang et al., 2015; Srivastava et al., 2018). Glucocorticoid receptors
(GR) are essential for endothelial cell homeostasis and regulate
defective metabolism in endothelial cells. Endothelial GR regulates
renal fibrogenesis by targeting Wnt signaling, defective fatty acid
oxidation and associatedmesenchymal activation in diabetic kidneys
(Srivastava et al., 2021b). In this issue, the authors discuss new
cellular mechanisms and cell signaling in the regulation of DKD
pathogenesis. In this section, we describe the significance of
mitochondrial control for the health and metabolism of the
kidneys. Mitochondrial SIRT3 regulates cell-to-cell differentiation
programs in kidney endothelial cells and its deficiency influences
cellular trans-differentiation processes in neighboring cells,
suggesting that SIRT3 is crucial for cellular homeostasis in diverse
cell types in the kidney (Srivastava et al.). Sol et al., describe the
importance of glomerular endothelial cells in sclerotic glomerular
diseases such as focal segmental glomerulosclerosis and diabetic
nephropathy (Sol et al.). Another article describes the differences
in molecular and cellular mechanisms of ROCK1 and ROCK2 in
DKD and discusses how targeting ROCK1 and ROCK2 have shown
beneficial effects in treating other microvascular complications such
as neuropathy and retinopathy (Matoba et al.). Sheng et al., describe
the functional role of epidermal growth factor receptor (EGFR) in the
development of DKD and discuss the therapeutic potential of EGFR
inhibitors in the treatment of DKD (Sheng et al.). In brief, authors
describe that the persistent activation of EGFR causes hemodynamic

alterations, metabolic disturbances, inflammatory responses and
parenchymal cellular dysfunction (Sheng et al.). Furthermore, an
article describes the critical roles of FOXO1 in the regulation of
cellular homeostasis and post-translational modifications (Wang
et al.). The authors discuss how FOXO1 dysregulation contributes
to the development of DKD and how improvement in FOXO1
dysregulation is associated with reversal of DKD phenotypes. Hence,
FOXO1 is a potential therapeutic target in DKD (Wang et al.).

NON-CODING RNAS IN DKD

MiR-29 and miR-let-7 family clusters are the key antifibrotic
microRNAs which are regulated by cross-talk mechanisms in
endothelial cells, and this cross-talk regulation protects against
endothelial-to-mesenchymal transition (Srivastava et al., 2016).
Also, crosstalk regulation inhibits pro-fibrotic mechanisms (i.e.
DPP-4 level and TGFβ signaling) and regulates health and disease
processes of diverse type of kidneys cells. miR-29 andmiR-let-7 family
clusters require further exploration in diabetic nephropathy (Srivastava
et al., 2019). In this issue, research led by Shi et al., adds further useful
information about interactions between long-noncoding RNAs and
microRNAs in endothelial cells (Shi et al.). Such interactions are
physiologically important in renal health and disease processes
under diabetic conditions, in which expression of LncRNA-H19
is higher and concomitantly inhibits the anti-mesenchymal and
protective effect of miR-29a, resulting in more fibrosis. Under non-
diabetic conditions, miR-29a binds to LncRNA-H19 and inhibits its
profibrotic properties, resulting in less fibrosis. Moreover, lncRNAs-
H19 function as sponges formiR-29a to regulate the expression of its
target proteins. Another review describes new therapeutic strategies
and the role of anti-fibrotic and pro-fibrotic microRNAs in DKD
(Sakuma et al.). The authors discuss the antifibrotic roles of miR-29
and miR-let-7s and the pro-fibrotic roles of miR-21 and miR-214 in
multiple dimensions of DKD. Further, Gu et al., add the functional
importance of non-coding RNAs and discuss their potential as
biomarkers in DKD (Gu et al.). Further research is needed to
translate their potential to the clinical setting.

CONCLUSION

Diabetic kidney fibrosis is an important research topic for both
clinicians and research scientists. In this special issue, we have
discussed recent therapeutic advancements and new drug targets
for combating kidney fibrosis and vasculopathy in diabetic
nephropathy. We hope this special issue provides useful
information for clinicians and basic science researchers to
catalyze novel therapeutic approaches and future research
directions.
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Dexmedetomidine Enhances
Autophagy via a2-AR/AMPK/mTOR
Pathway to Inhibit the Activation of
NLRP3 Inflammasome and
Subsequently Alleviates
Lipopolysaccharide-Induced Acute
Kidney Injury
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Haotian Yang and Honggang Fan*

Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast
Agricultural University, Harbin, China

Background: Acute kidney injury (AKI) is a severe complication of sepsis; however, no
effective drugs have been found. Activation of the nucleotide-binding domain-like receptor
protein 3 (NLRP3) inflammasome is a major pathogenic mechanism of AKI induced by
lipopolysaccharide (LPS). Autophagy, a process of intracellular degradation related to
renal homeostasis, effectively restricts inflammatory responses. Herein, we explored the
potential protective mechanisms of dexmedetomidine (DEX), which has confirmed anti-
inflammatory effects, on LPS-induced AKI.

Methods: AKI was induced in rats by injecting 10 mg/kg of LPS intraperitoneally (i.p.).
Wistar rats received intraperitoneal injections of DEX (30 µg/kg) 30 min before an
intraperitoneal injection of LPS. Atipamezole (ATI) (250 µg/kg) and 3-methyladenine (3-
MA) (15 mg/kg) were intraperitoneally injected 30 min before the DEX injection.

Results: DEX significantly attenuated renal injury. Furthermore, DEX decreased activation
of the NLRP3 inflammasome and expression of interleukins 1b and 18. In addition,
autophagy-related protein and gene analysis indicated that DEX could significantly
enhance autophagy. Finally, we verified the pharmacological effects of DEX on the 5′-
adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of
rapamycin (mTOR) pathway. Atip and 3-MA significantly reversed the protective effects
of DEX.

Conclusions: Our results suggest that the protective effects of DEX were mediated by
enhanced autophagy via the a2-adrenoreceptor/AMPK/mTOR pathway, which decreased
in.org June 2020 | Volume 11 | Article 79017
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activation of the NLRP3 inflammasome. Above all, we verified the renal protective effects of
DEX and offer a new treatment strategy for AKI.
Keywords: acute kidney injury, dexmedetomidine, autophagy, NLRP3 inflammasome, a2-AR/AMPK/
mTOR pathway
INTRODUCTION

Sepsis, a clinical syndrome that occurs in response to infection, is
characterized by systemic hyperinflammation, dysregulation of
the immune response, and multiple organ failure (Zarjou and
Agarwal, 2011; Binkowska et al., 2015). Acute kidney injury
(AKI) is one of the main effects observed with multiple organ
dysfunction in patients suffering from sepsis; indeed, sepsis is
responsible for 50% of all cases of AKI (Bagshaw et al., 2009;
Plotnikov et al., 2018). The pathogenesis of severe AKI involves
microcirculatory dysfunction, inflammation, and bio-energetic
adaptive responses. In particular, inflammation plays an
important role in the pathogenesis of AKI (Murugan et al.,
2010; Zarbock et al., 2014). Because of its heterogeneous
pathological processes, currently the only viable solution for
AKI is renal replacement therapy (Gatward et al., 2008).
However, the high price of renal replacement therapy and
scarcity of kidney sources makes AKI a heavy burden to
healthcare systems. At present, no drugs have been approved
by the United States Food and Drug Administration for the
treatment of AKI (Chen et al., 2019), and no optimal treatments
are available for AKI resulting from sepsis (Wu et al., 2015).
Thus, the mechanisms and treatment of AKI still need
further elucidation.

Lipopolysaccharide (LPS) present within the cell wall of
Gram-negative bacteria is one of the main causes of sepsis
(Remick et al., 2000; Bhargava et al., 2013). As such, injection
of LPS is widely used in animal studies to establish AKI models
(Doi et al., 2009). LPS, a notable source of sepsis, plays an
important role in the pathogenesis of AKI by causing excessive
inflammatory responses and subsequent escalation of oxidative
stress, renal hypoperfusion, and severe kidney injury (Chen et al.,
2018). LPS can combine with toll-like receptor 4 (TLR4) to
induce an intracellular response by recruiting transcription
factors such as nuclear factor kB (NF-kB) in the nucleus,
followed by secretion of chemokines and cytokines that
regulate inflammatory processes and immune responses
(Heinbockel et al., 2018). LPS is a typical member of
pathogen-associated molecular patterns (PAMPs). The NLRP3
inflammasome functions as an innate sensor of several PAMPs
and damage-associated molecular patterns (DAMPs), and acts
an imperative mediator of inflammatory responses in various
models of AKI (Shen et al., 2016). Previous studies reported a
close relationship between the NLRP3 inflammasome and
inflammatory responses during exacerbation of AKI (Kim
et al., 2013; Wen et al., 2018). NLRP3 inflammasome
activation is associated with caspase activation recruitment
domain (ASC) and caspase-1, and promotes caspase-1 cleavage
(Schroder and Tschopp, 2010). Activation of the NLRP3
in.org 28
inflammasome has been shown to regulate the maturation and
excretion of inflammatory cytokines, especially interleukin 1b
(IL-1b) and IL-18, leading to an inflammatory response (Sun
et al., 2013). In addition, recent studies demonstrated a
relationship between activation of the NLRP3 inflammasome
and mitochondrial function (Deng et al. , 2019). As
mitochondrial membranes are involved in NLRP3 activation,
the proximity of NLRP3 to mitochondria is a vital indicator of
kidney injury (Lei et al., 2012). Some previous studies reported
moderate renal-protective effects in NLRP3-knockout mice (Kim
et al., 2013; Kim et al., 2018b). Therefore, the NLRP3
inflammasome is an important therapeutic target for
preventing inflammatory responses associated with AKI.

Dexmedetomidine (DEX) is a selective a2-adrenoreceptor
(a2-AR) agonist with sedative, analgesic, and anti-anxiety
effects (Shen et al., 2017). In addition, several animal studies
have noted antioxidant, anti-apoptosis, and anti-inflammatory
effects of DEX, although some of the molecular pathways remain
unclear (Kutanis et al., 2016; Wang et al., 2019). Many studies
have demonstrated that DEX can decrease endotoxin-induced
upregulation of inflammatory molecules and attenuate renal
function associated with AKI (Lai et al., 2009; Liang et al.,
2017; Qiu et al., 2018). In addition, recent studies have shown
that DEX can decrease expression of the NLRP3 inflammasome
and provide protective effects against renal injury (Kim et al.,
2018a; Yin et al., 2018). However, the mechanism by which DEX
downregulates the NLRP3 inflammasome to reduce
inflammation has not been clearly identified.

Autophagy has been recognized as essential for maintaining
cellular homeostasis and stress responses (Lenoir et al., 2016).
Autophagy serves as a degradation system by which intracellular
pathogens, damaged or long-lived proteins, and dysfunctional
organelles are encased into autophagosomes and eliminated in
lysosomes (Marino and Lopez-Otin, 2004; Wang et al., 2018a).
Several studies have shown that autophagy can block activation
of the NLRP3 inflammasome, subsequently inhibiting IL-1b and
IL-18 (Shi et al., 2012b; Hong et al., 2019). Autophagy, which
plays a protective role in the pathological processes of renal
tubular injury, has been widely studied. The mechanistic target of
the rapamycin (mTOR) pathway has been acknowledged as a key
inhibitor of autophagy in response to a variety of intracellular
disorders. As an upstream negative regulator of mTOR, 5′
adenosine monophosphate-activated protein kinase (AMPK)
also plays a vital role in anti-inflammatory processes (White
et al., 2015). However, it is unclear whether the mechanism by
which DEX protects the kidney is related to autophagy. Hence,
this potential relationship remains to be explored.

Our findings, which provide evidence that DEX has renal
protective effects, explore the underlying mechanism by which
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DEX enhances autophagy in response to AKI induced by sepsis.
The results may provide a novel therapeutic strategy for AKI.
MATERIAL AND METHODS

Animals and Treatment
Thirty-six adult male Wistar rats were obtained from the Second
Affiliated Hospital of Harbin Medical University (Harbin,
China). Rats weighed 180-220g and were housed in a room
that had a 12h light and dark cycle (lights on from 6:00-18:00)
with temperature 20 ± 2°C and humidity 45%-55% for one week
to adapt to the environment. Rats were divided randomly groups
(3 per cage) and were fed ad libitum with standard food and fresh
tap water. All experimental procedures in this study met the
requirements of the Animal Experimental Committee of
Northeast Agricultural University and complied with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

The Wistar rats were randomly divided into six groups (n=6
per group):

1. CON group was injected intraperitoneally with saline.
2. CON+DEX group was injected intraperitoneally with DEX

(30 µg/kg, American Pfizer).
3. LPS group was injected intraperitoneally with LPS (10 mg/kg,

L2630-100MG, Sigma-Aldrich, USA) for 4h to establish the
animal model of sepsis-induced AKI as described previously
(Feng et al., 2019).

4. LPS+DEX group was injected intraperitoneally with DEX (30
µg/kg) 30 min before treatment with LPS (10 mg/kg).

5. LPS+DEX+ATI group was injected intraperitoneally with
Atipamezole (ATI) (250 mg/kg, American Pfizer), an a2-
receptor inhibitor, 30 min before treatment with DEX (30 mg/
kg), and injected intraperitoneally with DEX 30 min before
treatment with LPS (10 mg/kg).

6. LPS+DEX+3-MA group was injected intraperitoneally with
3-MA (15 mg/kg) 30 min before treatment with DEX (30 mg/
kg), and injected intraperitoneally with DEX 30 min before
treatment with LPS (10 mg/kg).

All rats initially received inhalation anesthesia with 1.5%
isoflurane (Yipin Pharmaceutical, Co., Ltd., Hebei, China) and
were sacrificed after 4h. Then, we collected blood, urine, and
kidney samples.

Biochemical Indexes Analysis
The blood samples were collected quickly by heart puncture and
kept at room temperature for 30 min. The serum was obtained by
centrifugation at 3500 rpm for 10 min at 4°C from blood
samples. The collected serum was measured for serum
creatinine (Scr) and blood urea nitrogen (BUN) using a
UniCel DxC800 Synchron (Beckman, USA). Urine samples
were collected by bladder puncture for the analysis of kidney
injury molecule-1 (KIM-1) using an ELISA kit (R&D Sytstems,
Minneapolis, MN).
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Histopathological Analysis
For analysis, kidneys were fixed in 4% paraformaldehyde,
embedded in paraffin, and cut into 5mm thickness sections.
The sections were stained with hematoxylin and eosin stain.
Images of stained tissues were visualized and captured using a
light microscopy (BX-FM; Olympus Corp, Tokyo, Japan). The
kidney histological scores were quantified by ten renal cortex
regions from every section (400x magnification). The
percentages of tubules that showed tubular dilatation and
vacuolization, interstitial edema, brush border defect, and
inflammatory cell infiltration were scored as follows: 0 = none,
1 = 0 - 20%, 2 = 20 - 50%, 3 = 50 - 70%, 4 = more than 70%
(Brooks et al., 2009). And observers used a double-blinded
approach to evaluate scores.

Immunohistochemistry Analysis
The 3mm thick paraffin-embedded kidney sections were
dewaxed, and then dehydrated using graded concentrations of
alcohol. To inhibit endogenous peroxidase, the sections were
incubated with 3% H2O2. The sections were microwaved in citric
acid for 15 min, and then treated with goat serum for 15 min at
room temperature. Afterwards, the sections were incubated in
blocking solution with primary antibody at 4°C overnight. After
washing with PBS 3 times, the secondary antibody was added
and immunostaining was performed using a DAB horseradish
peroxidase color development kit (Beyotime, China), and then
sections were counterstained with hematoxylin and made
transparent with xylene. Finally, sections were observed with
the PD37 type microscope (Olympus,Japan). Under 400 ×
magnification, pictures were taken in 5 random fields. Primary
antibodies were used at the following dilutions: IL-1b diluted
1:100 (WL02257, Wanlei, Shenyang, China); IL-18 diluted 1:100
(WL01127, Wanlei, Shenyang, China).

ELISA Assay
The levels of IL-1b (H002) and IL-18 (H0015) in serum were
detected with an ELISA kit according to the manufacturers’
instructions (Nanjing Biotechnoloy Co., Ltd., Nanjing, China).

Real-Time Polymerase Chain Reaction
(RT-PCR) Analysis
Total RNA was isolated from the kidney tissue with Trizol
reagent (Invitrogen, Carlsbad, CA, American) according to the
manufacturer’s instructions, and reverse transcribed into cDNA
using the PrimeScript RT reagent kit (DRR037A; Takara, Dalian,
China). Then, quantitative real-time PCR detection of RNA
copies were performed on a Light Cycler® 480 II Detection
System (Roche) using IQ SYBR Supermix reagent (Bio-Red, San
Diego, CA). The relative expression levels were normalized to
GAPDH and analyzed by the 2-DDCt method. The primers for the
detection of target mRNA are listed in Table 1.

Western Blot
Frozen kidney tissues were cut into small pieces and lysed with
RIPA lysis buffer (Beyotime Biotechnology, Shanghai, China).
Phenylmethanesul fonyl fluoride (PMSF) (Beyot ime
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Biotechnology, Shanghai, China) was added, and the tissue was
homogenized through a Tissue Grinding instrument (Shanghai
Jingxin Industrial Development Co., Ltd., Shanghai, China), and
then centrifuged at 3000 rpm for 10 min at 4°C to collect the
supernatant. Protein concentrations were quantified by a BCA
Protein Assay kit (Beyotime Biotechnology, Shanghai, China).
Equal amounts of protein sample were separated by standard
Tris-glycine SDS-PAGE gel electrophoresis, and then transferred
to polyvinylidene difluoride (PVDF) membranes. After blocking
with 5% skimmed milk for 2h at room temperature, the PVDF
membranes were incubated with primary antibodies at 4°C
overnight. Primary antibodies and dilutions were as follows:
AMPKa (WL02254, Wanlei, Shenyang, China) diluted 1:500; p-
AMPKa2(Ser173) (bs-5575R, Bioss, Beijing, China) diluted
1:1000; mTOR (A2245,ABclonal,Wuhan,China) diluted 1:1000;
p-mTOR (Ser2448) (AP0094, ABclonal, Wuhan, China) diluted
1:1000; LC3 (A5202, Bimake, Houston, American) diluted 1:1000;
Beclin (D40C5, Cell Signaling Teghnology, American) diluted
1:1000; p62 (WL02385, Wanlei, Shenyang, China) diluted 1:500;
NLRP3 (WL02635, Wanlei, Shenyang, China) diluted 1:1500, IL-
1b (WL02385, Wanlei, Shenyang, China) diluted 1:500; IL-18
(WL01127, Wanlei, Shenyang, China) diluted 1:1000; caspase-1
(WL02996a, Wanlei, Shenyang, China) diluted 1:750; cleaved-
caspase-1 (WL03450, Wanlei, Shenyang, China); ASC (A11433,
ABclonal, Wuhan, China); GAPDH (WL01114, Wanlei,
Shenyang, China). After washing five times with Tris-buffered
saline containing Tween (TBST), the membranes were incubated
with 1: 20000 horseradish peroxidase-conjugated goat anti-rabbit
IgG secondary antibody (ZB-2301, ZSGB-BIO, Beijing, China) or
anti-mouse IgG secondary antibody (ZB-2305, ZSGB-BIO,
Beijing, China) at room temperature for 2h and then washed
with TBST, followed by development using ECL reagent
(WLA003, Wanlei, Shenyang, China), captured by the
Amersham Imaher 600 software (GE, American), and analyzed
using Image J software.

Transmission Electron Microscopy
The number of autolysosome and ultrastructural changes were
detected by transmission electron microscopy. Kidney tissues
were cut into about 1 mm × 1 mm × 1 mm pieces and placed in
4% glutaraldehyde at 4°C for 12h. The samples were post-fixed in
1% osmic acid for 90 min and washed by 0.1M PBS 3 times for 15
min each. After that, the samples were dehydrated in a graded
series of ethanol (50%, 70%, 90%, 100%) and embedded in epoxy
resin. The ultrathin sections were prepared and then stained with
uranyl acetate and lead citrate. The sections were observed with
transmission electron microscopy (Hitachi HT7700,
Tokyo, Japan).
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Immunofluorescence Staining
The 3mm thick paraffin sections were deparaffined, rehydrated,
and prepared for immunofluorescence assays according to a
standard protocol. The sections were incubated with primary
antibodies as follows: anti-NLRP3 (WL02635, Wanlei, Shenyang,
China) diluted 1:200 and anti-TOM20 (A19403, ABclonal,
Wuhan, China) diluted 1:100 overnight at 4°C. After being
washed with PBS 3 times, the sections were incubated with
secondary antibody. The sections were washed with PBS 3 times
again and then sealed with coverslips. Fluorescence images were
acquired with a Nikon Eclipse Ni inverted microscope (TE2000;
Nikon, Tokyo, Japan).

Statistical Analysis
Data were expressed as mean ± SD (standard deviation). All
statistical analyses were performed using the PASW statistics 18
software (SPASS, IL, USA). Comparisons among multiple groups
with measurement data obeying normal distribution were
conducted using one-way analysis of variance (ANOVA), and
comparisons between two groups were made using the least
square method (LSD). Graphs were made using GraphPad
Prism5 (San Diego, California). p < 0.05 was considered
statistically significant. Statistical differences were considered to
be extremely significant when p < 0.01.
RESULTS

DEX Improved Renal Function in
Rats With Sepsis
To investigate whether DEX improved the kidney function of
rats with sepsis, we assessed levels of renal function indicators:
blood urea nitrogen (BUN, Figure 1D), creatinine (CRE, Figure
1E), and kidney injury molecule-1 (KIM-1, Figure 1F). All three
indicators were significantly increased in the LPS group
compared with the control (CON) group. However, treatment
with DEX significantly decreased levels of all three markers,
indicating that DEX improved the renal function of rats with
sepsis. In addition, treatment with the a2-AR inhibitor ATI or
autophagy inhibitor 3-MA abolished the protection elicited by
DEX against sepsis-induced renal dysfunction. The observed
insignificant difference between CON and CON+DEX groups
suggested that DEX had no effect on normal rats.

DEX Ameliorated Pathology in
Rats With Sepsis
To determine the impact of DEX on renal tissue injury, we
detected the pathological changes in the kidney by microscopy
(Figures 1B, C). Normal kidney structures were observed in the
CON group. After LPS injection, kidney tissues displayed renal
tubular epithelial cell vacuolar degeneration, renal tubular cavity
expansion, hemorrhage, and infiltration of intertubular
inflammatory cells. However, DEX ameliorated this
pathological damage. Furthermore, ATI and 3-MA reversed
the effects of DEX.
TABLE 1 | Primer sequence in this study.

Genes Sequence (5′ - 3′)

p62 (F) CCCGTCTACAGGTGAACTCC
(R) CTGGGAGAGGGACTCAATCA

Beclin1 (F) GTTGCCGTTATACTGT
(R) TTTCCACCTCTTCTTTGA
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DEX Ameliorated Inflammatory Response
by Reducing NLRP3 Inflammasome and
Inflammatory Cytokines in Rats With Sepsis
To determine whether sepsis was successfully established, we
examined changes in serum levels of inflammatory factors (Figures
2I, J). Enzyme-linked immunosorbent assay results revealed
significantly upregulated serums levels of IL-1b and IL-18 level in
response to LPS, while DEX obviously ameliorated these changes.
However, ATI and 3-MA reversed the effect of DEX. By further
evaluating the inflammatory response of renal tissue (Figures 2A–H),
we found that LPS significantly increased expression of IL-1b, IL-18,
NLRP3, ASC, caspase-1, and cleaved-caspase-1, which were all
downregulated by DEX. Moreover, ATI and 3-MA could eliminate
Frontiers in Pharmacology | www.frontiersin.org 511
the effects of DEX. Immunohistochemical analysis to confirm the
localization of inflammatory cytokines in the kidney tissue indicated
the presence of IL-18 and IL-1b near the renal tubule, as well as
significant increases in LPS, LPS+DEX+ATI, and LPS+DEX+3-MA
groups. However, DEX could reverse these changes. Moreover,
according to calculated IOD values, immunohistochemical results
were consistent with western blot results (Figures 3B–E). To evaluate
the localization of NLRP3 and mitochondria, NLRP3 and the
mitochondrial membrane protein TOM20 were stained for co-
immunofluorescence microscopy. The results showed that LPS
increased NLRP3 expression, whereas DEX decreased NLRP3
expression, and ATI and 3-MA reversed the effect of DEX.
Moreover, NLRP3 clearly localized with mitochondria (Figure 3A).
A

B C D

E F

FIGURE 1 | DEX improved renal damage induced by LPS-induced AKI. (A) Sepsis-induced AKI is established by intraperitoneally injecting LPS (10mg/kg) into rats.
The activation of NLRP3 inflammasome caused inflammatory responses that led to renal injury. DEX enhances autophagy through the a2-AR/AMPK/mTOR pathway
to inhibit inflammation and protect the kidney. (B) Represented images of H&E staining (× 400) in the renal cortex. Red arrow indicates hemorrhage, yellow arrow
indicates vacuolar degeneration, and black arrow indicates infiltration of intertubular inflammatory cells. Scale bars = 20mm. (C) The histopathological score of kidney
damage. (D) The level of serum BUN in rats. (E) The level of serum Cre in rats. (F) The level of urine KIM-1 in rats. Data are expressed as mean ± SD (n = 6). ##p <
0.01 compared with CON group. $$p < 0.01 compared with CON+LPS group. **p < 0.01 compared with LPS+DEX group. CON: control; DEX: dexmedetomidine;
LPS: lipopolysaccharide; ATI: atipamezole; 3-MA: autophagy inhibitor.
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FIGURE 2 | DEX ameliorates inflammatory responses in kidney tissue and serum induced by LPS. (A) Protein levels of NLRP3, IL-1b, and IL-18. (B) Protein levels of
ASC, caspase-1, cleaved-caspase-1. (C–E) The protein expression of NLRP3, IL-1b, and IL-18 were normalized to the level of GAPDH protein. (F–H) The protein
expression of ASC, caspase-1, cleaved-caspase-1 were normalized to the level of GAPDH protein. (I) The content of IL-1b in serum. (J) The content of IL-18 in
serum. Data are expressed as mean ± SD (n=6). ##p < 0.01 compared with CON group. $$p < 0.01 compared with CON+LPS group. *p < 0.05, **p < 0.01
compared with LPS+DEX group. CON: control; DEX: dexmedetomidine; LPS: lipopolysaccharide; ATI: atipamezole; 3-MA: autophagy inhibitor.
A B

C

D

E 

FIGURE 3 | (A) The positive expression of NLRP3 in kidney tissue was observed by immunofluorescence staining under a laser scanning confocal microscope. The
NLRP3 cells were marked in red, the mitochondrial membranes were stained with TOM20 in green, and the nuclear was stain with DPAI in blue. Scale bars = 50
mm. (B) Immunohistochemistry analysis of IL-1b in kidney tissue. (C) Quantitative analysis of IL-1b in kidney tissue. (D) Immunohistochemistry analysis of IL-18 in
kidney tissue. (E) Quantitative analysis of IL-18 in kidney tissue. Data are expressed as mean ± SD (n=6). ##p < 0.01 compared with CON group. $$p < 0.01
compared with CON+LPS group. **p < 0.01 compared with LPS+DEX group. CON: control; DEX: dexmedetomidine; LPS: lipopolysaccharide; ATI: atipamezole; 3-
MA: autophagy inhibitor.
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DEX Ameliorate LPS-Induced
NLRP3 Inflammasome Activation
by Regulating Autophagy
To confirm the role of autophagy in DEX-regulated NLRP3
activation, we examined the autophagy-related proteins
microtubule-associated protein light chain 3 (LC3), beclin-1, and
p62. Our results showed that LPS decreased the expression of LC3-
II and beclin-1, but increased expression of p62. With DEX
intervention, the LC3-II/LC3-I ratio and expression of beclin-1
were significantly increased, while expression of p62 was decreased.
However, ATI and 3-MA could suppress the effects of DEX, as they
reduced the LC3-II/LC3-I ratio and beclin-1 expression, and
increased p62 expression (Figures 4A–D). Immunohistochemical
analysis of LC3, beclin-1, and p62 indicated expression levels
consistent with western blot results. Moreover, autophagy was
Frontiers in Pharmacology | www.frontiersin.org 713
observed to occur near the renal tubule (Figure 4G).
Ultrastructural observations of the kidney tissue indicated that
LPS caused a large number of pathological changes, such as
shrunken nuclei, mitochondrial disruption, and fuzzy
mitochondrial cristae. DEX ameliorated these pathological
changes and increased the number of autolysosomes compared
with the LPS group. Using the autophagy inhibitor 3-MA, we
observed obvious decreases in the number of autolysosomes, which
were replaced by intracellular damage. Intervention with ATI
produced the same effects as 3-MA (Figure 4H). Upon
measuring transcription levels, we found that LPS significantly
decreased LC3 and beclin-1 mRNA expression. After DEX
treatment, LC3 and beclin-1 mRNA expression were obviously
upregulated. However, both 3-MA and ATI could suppress the
effect of DEX (Figures 4E, F).
A B C E F

G 

H

FIGURE 4 | DEX enhanced autophagy. (A) Protein levels of p62, Beclin1, LC3. (B–D) The protein expression of p62, Beclin1, LC3 were normalized to the level of
GAPDH protein. (E) mRNA expression of Beclin1. (F) mRNA expression of LC3. (G) Immunohistochemistry analysis and quantitative analysis of p62, Beclin1, LC3 in
kidney tissue. (H) Represented ultrastructure by transmission electron microscopy in kidney tissue. Red arrow indicated autolysosome and blue arrow indicated
lysosome. Scale bars = 2 mm. Data are expressed as mean ± SD (n=6). ##p < 0.01 compared with CON group. $$p < 0.01 compared with CON+LPS group. *p <
0.05, **p < 0.01 compared with LPS+DEX group. CON: control; DEX: dexmedetomidine; LPS: lipopolysaccharide; ATI: atipamezole; 3-MA: autophagy inhibitor.
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DEX Ameliorate LPS-Induced NLRP3
Inflammasome Activation by Enhancing
Autophagy via AMPK/mTOR Pathway
To verify the correlation between the AMPK/mTOR pathway and
the pharmacological effects of DEX, we examined expression of
AMPK, phosphorylated AMPK (p-AMPK), mTOR, and p-mTOR
(Figures 5A–C). Our western blot results showed that after
treatment with LPS, expression of p-AMPK tended to decrease
while expression of p-mTOR increased. However, DEX reversed
these effects of LPS, and ATI and 3-MA could block the effects
of DEX.
DISCUSSION

AKI complicated by sepsis is a clinical syndrome associated with
high mortality and morbidity. As a lack of optimal treatments is
responsible for these results, effective treatments are urgently
needed. In the present study, we first verified the establishment of
our AKI model and the protective effects of DEX in the kidney.
Next, we examined the inflammatory response induced by
activation of the NLRP3 inflammasome. We then confirmed
that NLRP3 inflammasome activation and inflammatory
cytokines could be inhibited by DEX-enhanced autophagy.
Finally, we determined that DEX enhanced autophagy via the
a2-AR/AMPK/mTOR pathway.

AKI induced by sepsis is closely associated with excessive
inflammatory responses and severe renal impairment. Indeed,
the kidney is one of the earliest and most frequently affected
organs during sepsis (Bagshaw et al., 2008; Jin et al., 2020).
Therefore, early intervention can prevent further exacerbation of
AKI and more serious damage caused by sepsis. According to
previous studies, an early stage of AKI was established 4 h after
intraperitoneal injection (Tunctan et al., 2018; Feng et al., 2019).
Histopathological and biochemical analyses are classical
techniques to evaluate kidney function. With LPS intervention,
we observed infiltration of intertubular inflammatory cells,
vacuolar degeneration of the tubular lining epithelium, tubular
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dilatation, and hemorrhaging. Biochemical indicators also
reflected renal dysfunction, including significantly increased
levels of BUN, CRE, and KIM-1. KIM-1 reportedly regulates
renal function recovery and tubular degeneration, and thus
serves as an indicator of tubular injury (Ichimura et al., 2008).
Our results show that AKI can be initiated by LPS stimulation.
However, pretreatment with DEX prevented the occurrence of
disorders both pathologically and biochemically. Similar to the
results of a previous study (Feng et al., 2019), our findings
demonstrate that DEX exerted a renal protective capacity
against AKI induced by LPS. However, potential underlying
mechanisms still need to be explored.

LPS-induced inflammatory responses are the cause of severe
renal dysfunction (Gomez et al., 2014). As a starting point for
treatment, inhibition of inflammatory responses may be an
effective strategy for sepsis-induced AKI. A previous report
indicates that LPS can increase NLRP3 activation in AKI
animal models (Chunzhi et al., 2016). Recently, more extensive
studies demonstrated that activation of the NLRP3
inflammasome mediates maturation and secretion of IL-1b and
IL-18, a process that prominently contributes to AKI (Shen et al.,
2016; Sogawa et al., 2018). As an important proinflammatory
factor, IL-1b not only stimulates the kidney to produce
aggressive inflammatory responses, but can cause severe renal
re-absorption disorders (Wang et al., 2015; Schett et al., 2016; Liu
et al., 2019a). As a marker, IL-18 is more than 90% sensitive and
specific to diagnosed AKI, and high expression of IL-18 can
eventually lead to tubular damage (Parikh et al., 2004; Shi et al.,
2012a). Our results showed that LPS can promote NLRP3
inflammasome activation, as well as IL-1b and IL-18
expression. Furthermore, serum levels of IL-1b and IL-18
indicated the presence of a widespread inflammatory response.
A previous study confirmed that damage associated with LPS-
induced AKI occurred in renal tubular epithelial cells (Li et al.,
2019; Lu et al., 2019), consistent with our immunohistochemistry
results. Thus, stimulation with LPS can induce activation of the
NLRP3 inflammasome and promote an excessive inflammatory
response in the kidney. Other previous studies indicated that
mitochondrial dysfunction also plays a vital role in NLRP3
A B C

FIGURE 5 | Dex enhanced autophagy via AMPK/mTOR pathway. (A) Protein levels of AMPK, p-AMPK, mTOR and p-mTOR. (B) The protein expression of p-AMPK
was normalized to the level of AMPK protein. (C) The protein expression of p-mTOR was normalized to the level of mTOR protein. Data are expressed as mean ±
SD (n=6). ##p < 0.01 compared with CON group. $$p < 0.01 compared with CON+LPS group. *p < 0.05, **p < 0.01 compared with LPS+DEX group. CON: control;
DEX: dexmedetomidine; LPS: lipopolysaccharide; ATI: atipamezole; 3-MA: autophagy inhibitor.
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inflammasome activation. Both mitochondrial reactive oxygen
species and membrane proteins are involved in activation of the
NLRP3 inflammasome (Kim et al., 2018b; Chung et al., 2019). In
our study, we observed that NLRP3 localized with TOM20, a
mitochondrial protein, as well as ultrastructural damage in
mitochondria. These results suggest a close relationship
between NLRP3 and mitochondria. However, the process of
NLRP3 inflammasome activation needs further exploration.
Regardless, DEX pretreatment could inhibit activation of the
NLRP3 inflammasome and largely alleviate the inflammatory
response induced by LPS.

Autophagy, a highly dynamic process of intracellular
degradation, is closely related to the elimination of damaged
proteins and dysfunctional organelles (Marino and Lopez-Otin,
2004). Accumulating evidence indicates that NLRP3
inflammasome activation is inhibited by enhanced autophagy
(Wong et al., 2018; Torp et al., 2019), which can also reduce
inflammatory cytokines associated with LPS-induced AKI (Zhao
et al., 2019). LC3 protein is imperative for initiating the
formation of autophagosomal membranes. LC3-II arises from
a combination of LC3-I and phosphatidyl ethanolamine upon
initiation of autophagy (Li et al., 2020). The ratio of LC3-II/LC3-
I expression, indicating the conversion of LC3-I to LC3-II, is a
crucial indicator of autophagy (Chen et al., 2010). In addition,
beclin-1 is essential for regulating autolysosome formation
(Deretic et al., 2013). Expression of p62 protein, an autophagy
adapter protein that binds to ubiquitinated protein aggregates
and LC3-II (Guo et al., 2020), is contrary to that of LC3 and
beclin-1. Surprisingly, the autophagy response to LPS in our
study differed from previous studies. The low autophagy level
presented in our study was consistent with Radovan Vasko’s
study (Vasko et al., 2013). However, after LPS intervention, this
lack of autophagy enhanced NLRP3 inflammasome activation
and inflammatory cytokine expression; perhaps this dosage of
LPS destroys autophagy. Although the reason for this
discrepancy in results is unclear, it may be caused by
differences in experimental models. Autophagy-related genes
LC3 and beclin-1 were decreased after LPS intervention; thus,
the effect of LPS on autophagy at a transcriptional level was
confirmed. LPS pretreatment could obviously suppress
autophagy and induce intracellular injury. However, DEX
significantly restored autophagy in our study, consistent with
the results of Oh et al. (2019). According to these results, we
confirmed that DEX can restore the lack of autophagy induced
by LPS.

It is difficult to determine whether the observed reductions in
injury elicited by DEX were related to its role in increasing
autophagy. To solve this puzzle, we selected the autophagy
inhibitor 3-MA to verify this relationship. As a class-III
phosphoinositide 3 kinase inhibitor, 3-MA is widely used to
inhibit autophagy, frequently at a dosage of 15 mg/kg (Wu et al.,
2015; Bao et al., 2018; Zhao et al., 2019). Under the influence of
3-MA, autophagy was significantly decreased, whereas renal
injury and expression of inflammatory cytokines, such as
NLRP3, IL-1b, and IL-18, were increased. Hence, autophagy
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can alleviate LPS-induced renal injury by downregulating the
inflammatory response elicited by NLRP3 inflammasome
activation. The dosage of atipamezole (250 µg/kg), a complete
a2-AR antagonist, was based on previous studies in which DEX
protected the kidney (Si et al., 2013; Li et al., 2018; Qiu et al.,
2018). In the present study, ATI was used to confirm that DEX
exerts its pharmacological role through the a2-AR. However, we
were still perplexed with regard to the potential mechanism by
which DEX upregulates autophagy.

According to previous studies, mTOR is one of the most
important negative regulators of autophagy. In addition, AMPK
can reportedly upregulate autophagy by suppressing mTOR
phosphorylation. The AMPK/mTOR signaling pathway has
emerged as a crucial regulator of autophagy (Kim et al., 2011;
Kim et al., 2016). AMPK activation generally plays a protective
role in various renal injury models (Allouch and Munusamy,
2017; Bao et al., 2019; Liu et al., 2019b). Recently, DEX has been
confirmed to exert protective effects by activating AMPK and
suppressing inflammatory responses (Wang et al., 2018b). Our
results indicate that DEX pretreatment can upregulate AMPK
phosphorylation and suppress mTOR phosphorylation. Above
all, these results indicate that DEX can enhance autophagy
through the AMPK/mTOR pathway in acute kidney injury
induced by LPS.

In summary, our results suggest an effective role of DEX in
protecting against LPS-induced AKI via inhibited inflammation.
This study also provides evidence that the inflammatory
response induced by NLRP3 inflammasome activation can be
significantly reduced by autophagy. Finally, we confirmed that
DEX enhances autophagy via the a2-AR/AMPK/mTOR pathway
to inhibit activation of the NLRP3 inflammasome and
subsequently alleviates LPS-induced AKI.
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Diabetic Kidney Disease (DKD) is the leading cause of end stage renal disease (ESRD)
worldwide. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are now widely
used in the treatment of patients with type 2 diabetes (T2D). A series of clinical and
experimental studies demonstrated that GLP-1RAs have beneficial effects on DKD,
independent of their glucose-lowering abilities, which are mediated by natriuresis, anti-
inflammatory and anti-oxidative stress properties. Furthermore, GLP-1RAs have been
shown to suppress renal fibrosis. Recent clinical trials have demonstrated that GLP-
1RAs have beneficial effects on renal outcomes, especially in patients with T2D who
are at high risk for CVD. These findings suggest that GLP-1RAs hold great promise in
preventing the onset and progression of DKD. However, GLP-1RAs have only been
shown to reduce albuminuria, and their ability to reduce progression to ESRD remains
to be elucidated. In this review article, we highlight the current understanding of the
clinical efficacy and the mechanisms underlying the effects of GLP-1RAs in DKD.

Keywords: diabetic kidney disease, diabetic nephropathy, GLP-1 receptor agonists, liraglutide,
semaglutide, dulaglutide
INTRODUCTION

Diabetic kidney disease (DKD) is a global concern because it causes end stage renal disease (ESRD) and
affects mortality in diabetic patients. The inhibition of the onset and progression of DKD is an urgent
issue, and the development of therapeutic approaches against DKD is required. Furthermore, DKD is
an established risk factor for cardiovascular disease (CVD) (Rawshani et al., 2018). Thus, anti-diabetic
agents that can attenuate both DKD and CVD have been awaited. A recent meta-analysis demonstrated
that SGLT2 inhibitors and glucagon-like 1 receptor agonists (GLP-1RAs) have favorable effects on the
cardiorenal outcomes in type 2 diabetes (T2D) (Giugliano et al., 2019; Kristensen et al., 2019). GLP-
1RAs improve glucose metabolism by increasing glucose-dependent insulin secretion and suppress the
release of glucagon. They have also been shown to have beneficial effects on cardiovascular (CV) risk
factors by improving obesity, hypertension, and the lipid profile (Drucker, 2018). Recent CV outcome
trials utilizing GLP-1RAs have also investigated renal outcomes. In addition, the elucidation of basic
mechanisms underlying the renoprotective effect of GLP-1RAs is progressing. In this review article, we
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discuss the current understanding of the renoprotective effects of
GLP-1RAs from clinical and mechanistic standpoints.
THERAPEUTIC TARGETS IN DIABETIC
KIDNEY DISEASE

DKD is a risk factor for both ESRD and CVD. Intensive glycemic
control is effective for preventing the onset and progression of the
early-middle stage of DKD. However, its usefulness for progressed
DKD and established CVD remains unclear. Recent clinical trials
demonstrated that SGLT2 inhibitors and GLP-1RAs bring
beneficial effects on the cardiorenal outcomes of T2D subjects
who are at high risk for CVD. T2D patients with severe renal
impairment are not eligible for SGLT2 inhibitors, and GLP-1RAs
could be an important therapeutic option for these patients. DKD
is developed by glucose-dependent and -independent mechanisms,
including oxidative stress and inflammation. GLP-1RAs have been
shown to have beneficial effects on these factors.
GLP-1RAS AND RENAL OUTCOMES

Accumulating clinical evidence demonstrates that GLP-1 RAs
have beneficial effects on renal outcomes. The results of major
trials are summarized in Table 1.
Frontiers in Pharmacology | www.frontiersin.org 220
Liraglutide
In an observational study, 52 weeks of liraglutide treatment was
shown to increase the glomerular filtration rate (GFR) (5.4 ml/
min/1.73 m2) and reduce albuminuria by 50% in overweight T2D
patients with stage 3 CKD (De Lucas et al., 2017). A small size
randomized controlled trial (RCT) demonstrated that treatment
with liraglutide (1.8 mg) for 12 weeks resulted in a reduction of
albuminuria by 32% in T2D patients (Von Scholten et al., 2017).
In the Satiety and Clinical Adiposity–Liraglutide Evidence
(SCALE) Diabetes trial, a total of 846 overweight and obese
patients with T2D were randomly assigned to receive 3.0 or 1.8
mg of liraglutide or placebo for 56 weeks. At the end of the study
period, the reductions in the albumin-to-creatine ratios (UACR)
of the liraglutide (3.0 mg), liraglutide (1.8 mg), and placebo
groups were 18.36, 10.79, 2.34%, respectively (Davies et al.,
2015). In the LIRA-RENAL trial, 279 T2D subjects with
moderate renal impairment [estimated glomerular filtration
rate (eGFR) 30–59 ml/min/1.73 m2] were randomly assigned
to receive liraglutide (1.8 mg) or placebo for 26 weeks. However,
liraglutide treatment failed to show significant improvement of
the UACR and eGFR trajectory in comparison to placebo
(Davies et al., 2016).

The Liraglutide Effect and Action in Diabetes: Evaluation of
Cardiovascular Outcome Results (LEADER) study assessed the
CV outcome of liraglutide (1.8 mg) in comparison to placebo
(Marso et al., 2016b). A total of 9340 participants with a high CV
TABLE 1 | Clinical effects of GLP-1RAs on DKD.

Trial Agents, Follow-up
Duration

Subjects Renal Outcomes Results

LEADER
(n=9,340)

Liraglutide (1.8 mg) vs.
placebo, 3.84 years

T2D with high CV risk New-onset macroalbuminuria, doubling of the serum creatinine level,
ESRD, renal death

HR 0.78 (95% CI: 0.67-0.92)

SUSTAIN-
6
(n=3,297)

Semaglutide (0.5 mg, 1.0
mg) vs. placebo, 104
weeks

T2D
Age >50 with
established CVD or
CKD stage 3-5
Age >60 with CV risk
factors

New or worsening of nephropathy (persistent macroalbuminuria,
doubling of the serum creatinine level and CCr < 45 mL/min/1.73 m2,
RRT)

HR 0.64 (95% CI: 0.46-0.88)

REWIND
(n=9,901)

Dulaglutide (1.5 mg) vs.
placebo, 5.4 years

T2D with a previous CV
event or CV risk factors

New onset of macroalbuminuria, sustained eGFR decline (≥30%) or
RRT

HR 0.85 (95% CI: 0.77-0.93)

AWARD-
7
(n=576)

Dulaglutide (0.75 mg, 1.5
mg) vs. placebo, 52 weeks

T2D with moderate to
severe CKD (stage 3-4)

Changes in eGFR decline and UACR from baseline eGFR decline: -1.1 (1.5 mg),
-1.5 (0.75 mg), -2.9
(glargine)
UACR: no significant
differences among groups

ELIXA
(n=6068)

Lixisenatide (10-20 mg) vs.
placebo, 108 weeks

T2D with recent acute
coronary syndrome

Percent change in UACR and eGFR from baseline eGFR decline: no significant
differences among groups
UACR:
-1.69% (95% CI: -11.69% to
8.30%) in patients with
normoalbuminuria,

-21.10% (95% CI: -42.25%
to 0.04%) in patients with
microalbuminuria,

-39.18% (95% CI: -68.53%
to -9.84%) in patients with
macroalbuminuria
June 20
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risk, who were ≥50 years of age, with HbA1c ≥7% were randomly
assigned to receive placebo or liraglutide (1.8 mg). At baseline,
20.7% of the patients had an eGFR of 30–59 ml/min/1.73 m2 and
2.4% had an eGFR of <30 ml/min/1.73 m2. Microalbuminuria
and macroalbuminuria were present in 26.3 and 10.5% of the
participants, respectively. The definitions used for the renal
outcomes in the LEADER study were a composite of new-
onset persistent macroalbuminuria, persistent doubling of
serum creatinine, ESRD, or death due to renal disease (Mann
et al., 2017). Over a median follow-up of 3.8 years, liraglutide
treatment resulted in less renal outcomes in comparison to
placebo [HR 0.78 (95% CI: 0.67–0.92, p=0.03)] (Mann et al.,
2017). This observation was largely driven by a reduction in new-
onset macroalbuminuria in the liraglutide group in comparison
to the placebo group [HR 0.74 (95% CI: 0.60–0.91, p=0.004)]. No
significant differences in the doubling of the serum creatinine,
initiation of renal replacement therapy (RRT), or renal death
were observed between the liraglutide and placebo groups (Mann
et al., 2017). In a post-hoc analysis of the LEADER trial,
liraglutide was shown to reduce the risk of major adverse CV
events and all-cause mortality in comparison to placebo in
patients with chronic kidney disease (CKD), defined as eGFR <
60 ml/min/1.73 m2 and albuminuria (UACR >30 mg/g) (Mann
et al., 2018).

Semaglutide
The SUSTAIN-6 (trial to evaluate cardiovascular and other long-
term outcomes with semaglutide in subjects with type 2 diabetes)
was a double-blind trial in which T2D patients were randomized
to receive either 0.5 or 1.0 mg of once-weekly subcutaneous
semaglutide or placebo (Marso et al., 2016a). At baseline, 25.2%
of the participants had an eGFR of 30–59 ml/min/1.73 m2 and
2.9% had an eGFR of <30 ml/min/1.73 m2. The composite renal
outcome of this study was new or worsening nephropathy,
defined as persistent macroalbuminuria, persistent doubling of
the serum creatinine level and creatinine clearance <45 ml/min/
1.73 m2 or the need for RRT. After a median follow-up of 2 years,
the incidence of new or worsening nephropathy in the
semaglutide group was lower than that in the placebo group
[HR 0.64 (95% CI: 0.46–0.88, p=0.05)]. This result was largely
driven by a reduction in new onset macroalbuminuria. No
significant changes were observed in ESRD or renal death
(Marso et al., 2016a).

The PIONEER-6 trial primarily evaluated the cardiovascular
safety of oral semaglutide (14 mg) in comparison to placebo
(Husain et al., 2019). A total of 3,183 participants of ≥50 years
of age with established CVD or CKD, or ≥60 years of age with
CV risk factors were only observed for a median of 15.9 months.
At baseline, 26.9% of participants had an eGFR of <60 ml/min/
1.73 m2. There was no significant reported difference in the
eGFR decline from baseline to the end of treatment or in the
rate of renal death (Husain et al., 2019). The PIONEER-5 trial
showed that semaglutide use in T2D patients with renal
impairment (eGFR 30–59 ml/min/1.73 m2) was safe and
effective (Mosenzon et al., 2019a). Further study is needed to
elucidate whether the renoprotective effects of semaglutide are
consistent in those individuals.
Frontiers in Pharmacology | www.frontiersin.org 321
Currently, the ongoing FLOW is assessing whether or not
semaglutide can inhibit worsening of CKD in patients with T2D
(https://clinicaltrials.gov/ct2/show/NCT03819153). Renal
impairment defined as either an eGFR 50–75 ml/min/1.73 m2

and UACR 300–5,000 mg/g or an eGFR 25–50 ml/min/1.73 m2

and UACR 100–5,000 mg/g are included in this study. An
estimated 3,160 participants are to receive once-weekly
subcutaneous semaglutide (starting with 0.25 mg and the dose
will be increased to 0.5 mg at 4 weeks and 1 mg at 8 weeks) for up
to 5 years. The primary endpoint is the time to the first
occurrence of a composite primary outcome event, defined as a
persistent eGFR decline (≥50% from baseline), reaching ESRD,
renal death, or CV death. This study will elucidate the effects of
semaglutide in detail.

Dulaglutide
The AWARD-7 study assessed the efficacy and safety of
dulaglutide in T2D patients with moderate-to-severe CKD
(Tuttle et al., 2018). The baseline cystatin C–based eGFR
(eGFRcys) and creatinine-based eGFR (eGFRcre) values of the
participants were 35.3 ml/min/1.73 m2 and 36.0 ml/min/1.73 m2,
respectively. A total of 577 patients were randomly assigned
(1:1:1) to receive once-weekly dulaglutide (1.5 mg), once-weekly
dulaglutide (0.75 mg), or daily insulin glargine as basal therapy,
all in combination with insulin lispro, for 52 weeks. The renal
outcomes were changes in the eGFR and UACR. At 52 weeks, the
eGFR decline was −1.1 in the dulaglutide (1.5 mg) group, −1.5 in
the dulaglutide (0.75 mg) group, and −2.9 in the glargine group.
However, the UACR reduction was not significantly different
(Tuttle et al., 2018).

The REWIND study evaluated the cardiovascular safety of
dulaglutide (1.5 mg) in comparison to placebo (Gerstein et al.,
2019b). In total, 9,901 participants of ≥ 50 years of age with T2D
and a history or a high risk of CVD were observed for a median
of 5.4 years. The composite renal outcome (the first occurrence
of new macroalbuminuria, a sustained decline in eGFR of ≥30%
from baseline, or RRT) developed less frequently in participants
using dulaglutide in comparison to those using placebo [HR 0.85
(95% CI: 0.77–0.93), p=0.0004]. This result was largely driven by
a reduction of albuminuria [HR 0.77 (95% CI: 0.68–0.87), p <
0.001]. The rates of a sustained decline in eGFR [HR 0.89 (95%
CI: 0.78–1.01), p=0.066] and the need for RRT showed a
downward trend but were not statistically significant [HR 0.75
(95% CI: 0.39–1.44), p=0.39] (Gerstein et al., 2019a).

Exenatide
The EXSCEL (Exenatide Study of Cardiovascular Event
Lowering) trial evaluated the CV safety of exenatide (2 mg
weekly). In total, 14,752 participants with T2D (HbA1c 6.5–
10.0%) with or without a history of CVD were observed for a
median of 3.2 years (Holman et al., 2017). At baseline, 21.6%
of the participants had an eGFR of <60 ml/min/1.73 m2.
Exenatide treatment did not change the eGFR significantly.
Macroalbuminuria occurred less (2.2%) in exenatide group
compared to placebo group (2.5%) [HR 0.87 (95% CI: 0.70–
1.07)]. Neither renal composite 1 (40% eGFR decline, RRT, or
renal death) nor composite 2 (composite 1 variables plus
June 2020 | Volume 11 | Article 967
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macroalbuminuria) was reduced by exenatide in unadjusted
analyses; however, renal composite 2 was reduced after
adjustment [HR 0.85 (95% CI: 0.74–0.98)] (Bethel et al., 2020).
In a post hoc analysis of a 52-week randomized trial, exenatide
treatment did not alter the renal function (creatinine clearance or
eGFR) or the onset/progression of albuminuria in comparison to
titrated insulin glargine in overweight T2D patients (Muskiet
et al., 2019). Finally, a pooled analysis of RCTs and open-label
phase III studies showed that once-weekly exenatide reduced
albuminuria 26% (95% CI%: −39.5 to −10%) compared with
comparators (Van Der Aart-Van Der Beek et al., 2020).
Furthermore, the change in the HbA1c value from baseline did
not affect the result, suggesting that once-weekly exenatide
reduced albuminuria independent of the glucose-lowering
effect (Van Der Aart-Van Der Beek et al., 2020).

Lixisenatide
In the ELIXA (Evaluation of Lixisenatide in Acute Coronary
Syndrome) study, T2D patients with a recent coronary artery
event were randomly assigned (1:1) to a lixisenatide (10–20 mg)
group or placebo group (Pfeffer et al., 2015). Baseline UACR data
were available for 5,978 (99%) of the 6,068 patients who were
included in the study. Among them, 19% of the participants had
microalbuminuria, and 7% had macroalbuminuria. After 108
weeks, changes in UACR from baseline with lixisenatide were
−1.69% [(95% CI: −11.69 to 8.30), p=0.7398] in patients with
normoalbuminuria, −21.10% [(95% CI: −42.25 to 0.04),
p=0.0502] in patients with microalbuminuria, and −39.18%
[(95% CI: −68·53 to −9·84), p=0.0070] in patients with
macroalbuminuria. No significant differences in eGFR decline
were observed between the treatment groups (Muskiet
et al., 2018).

Albiglutide
Harmony outcomes was a double-blind trial that included a total
of 9,463 T2D participants of ≥40 years of age and a history of
CVD, who were allocated to an albiglutide (30–50 mg weekly)
group or placebo group (Hernandez et al., 2018). After a mean
follow-up period of 1.6 years, no significant difference in eGFR
decline was observed between the two groups (Hernandez
et al., 2018).
RENOPROTECTION OF GLP-1RAS IS
LARGELY DEPENDENT ON REDUCTION
OF ALBUMINURIA

As described above, GLP-1RAs have no clinically important
effect on eGFR and hard renal endpoints. In a meta-analysis of
60 studies involving 60,077 T2D patients, GLP-1RAs
marginally reduced the UACR in comparison to placebo and
other antidiabetic agents, but resulted in no clinically relevant
changes in eGFR (Avgerinos et al., 2019). Consistently, a recent
meta-analysis that included LEADER (liraglutide), SUSTAIN-6
(semaglutide), REWIND (dulaglutide), EXSCEL (exenatide),
ELIXA (lixisenatide), Harmony outcomes (albiglutide), and
Frontiers in Pharmacology | www.frontiersin.org 422
PIONEER-6 (oral semaglutide), demonstrated that treatment
with GLP-1 RAs reduced the composite kidney outcome
(development of new-onset macroalbuminuria, decline in
eGFR or increase in creatinine, ESRD, or renal death by 17%
[HR0.83 (95% CI: 0.78–0.89, p < 0·0001)], mainly driven by a
reduction in albuminuria (Kristensen et al., 2019).
RENOPROTECTIVE MECHANISMS OF
GLP-1RAS

Experimental studies to elucidate the beneficial effects on DKD
have been extensively reported. The inhibition of oxidative stress,
inflammation, fibrosis, and induction of natriuresis have been
mainly implicated as mechanisms underlying the attenuation of
DKD by GLP-1RAs (Figure 1).

GLP-1 Receptors in the Kidney
The distribution of GLP-1R in the kidney is controversial. GLP-
1R has been shown to be expressed in the renal cortex as well as
the proximal tubules (Schlatter et al., 2007; Carraro-Lacroix et al.,
2009). However, several investigations reported a lack of GLP-1R
FIGURE 1 | Mechanisms of the renoprotective effects of GLP-1RAs. GLP-
1RAs have been shown to activate PKA and increase the production of cyclic
adenosine monophosphate (cAMP). As a consequence, nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and NF-kB activity are inhibited,
resulting in the attenuation of oxidative stress and inflammation. These
favorable effects prevent podocyte loss as well as mesangial and endothelial
dysfunction.. GLP-1RAs inactivate NHE3 and promote atrial natriuretic
peptide (ANP) secretion, thereby inducing natriuresis. Furthermore, GLP-1RAs
inhibit tubular injury and subsequent tubulointerstitial fibrosis.
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in tubules (Pyke et al., 2014; Lee et al., 2015; Ronn et al., 2017).
Studies using monoclonal antibodies against GLP-1R revealed
that it is mainly present in the vasculature of the kidney (Pyke
et al., 2014; Jensen et al., 2015; Ronn et al., 2017). To date, the
presence of GLP-1R in the renal vasculature has been confirmed
but not in the tubules (Hviid and Sorensen, 2020).

Oxidative Stress/Inflammation
GLP-1RAs have been shown to prevent renal oxidative stress by
inhibiting nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase through the activation of PKA and the
production of cyclic adenosine monophosphate (cAMP).
Recombinant human GLP-1 inhibits protein kinase C (PKC)-
b, but increases protein kinase A (PKA), which reduces oxidative
stress in both glomeruli and tubules (Yin et al., 2019). Consistent
with this observation, the combination of olmesartan and
exenatide has been shown to attenuate the renal NADPH
oxidase 4 (Nox4) expression in insulin-resistant Otsuka Long-
Evans Tokushima Fatty (OLETF) rats (Rodriguez et al., 2020).
Hendarto et. al. revealed that liraglutide attenuates oxidative
stress and albuminuria in streptozotocin (STZ)-diabetic rats via
the PKA-mediated inhibition of renal NADPH oxidases
(Hendarto et al., 2012). Liljedahl et al. performed label-free
shotgun mass spectrometry (MS) and demonstrated that
liraglutide increased the abundance of structurally involved
proteins as well as proteins involved in oxidative stress
responses in the kidney of STZ-induced diabetic mice
(Liljedahl et al., 2019). Moreover, it is reported that exendin-4
inhibits mesangial fibrotic responses (Li et al., 2012; Xu et al.,
2014). Exendin-4 has been shown to reduce advanced glycation
end product (AGE)-induced interleukin (IL)-6 and TNF-a
production, the expression of receptor for AGE (RAGE), and
cell death in mesangial cells (Chang et al., 2017). The
transcription factor nuclear factor erythroid 2-related factor 2
(Nrf2) and Kelch-like ECH-associated protein1 (Keap1)
signaling pathways play an important role in preventing
oxidative stress (Wang et al., 2014). Nrf2 activator bardoxolone
methyl is known to have renoprotective effects (Ito et al., 2020).
Interestingly, exendin-4 has been shown to activate the Nrf2
signaling pathway in vascular smooth muscle cells (Zhou et al.,
2016) and retinal pigment epithelial cells (Cui et al., 2019). A
further study to investigate whether a similar mechanism exists
in kidney under diabetic conditions would be intriguing.

NF-kB plays a central role in the inflammatory pathway in
the development of DKD (Kawanami et al., 2016). The
hyperglycemia-induced downregulation of GLP-1R is involved
in NF-kB activation and the subsequent inflammatory response
in mesangial cells (Kang et al., 2019). Liraglutide has been shown
to increase renal endothelial nitric oxide synthase (eNOS) levels
by downregulating NF-kB in STZ-induced diabetic rats (Zhou
et al., 2014). Furthermore, liraglutide inhibits the expression
levels of TNF-a-mediated NF-kB activation in podocytes (Ye
et al., 2019). Kodera et. al. reported that exendin-4 attenuates
albuminuria and glomerulosclerosis independent of the glucose-
lowering effect in STZ-induced diabetic rats by inhibiting
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oxidative stress and NF-kB activation. From a mechanistic
standpoint, these observations are mediated by GLP-1R in
monocytes/macrophages and glomerular endothelial cells
(Kodera et al., 2011). Ye et al. showed that liraglutide
attenuated the morphology and structure damage of podocytes
in obesity-related glomerulopathy model mice (Ye et al., 2019).
Mechanistically, they found that liraglutide inhibited the renal
TNF-a expression and NF-kB as well as the MAPK pathway
activation in these mice (Ye et al., 2019). Similarly, liraglutide has
been shown to reduce renal lipid accumulation and improve the
mitochondrial function by activating the Sirt1/AMPK/PGC1a
pathways in an obesity-induced rat CKD model (Wang et al.,
2018). In addition to the MAPK pathway, the JAK/STAT
signaling pathway is also involved in liraglutide-induced
renoprotection. Zitman-Gal et al. revealed that liraglutide
attenuated the phosphorylation of JAK2 and STAT3 in AGE-
stimulated endothelial cells and the kidney of db/db mice
(Zitman-Gal et al., 2019). Furthermore, it has been reported
that the administration of exenatide attenuates the renal
inflammation index, including reducing the TNF-a, IL-6,
hsCRP, and CCL5 levels, in STZ-induced diabetic rats
by increasing the superoxide dismutase and decreasing
malondialdehyde levels (Wang et al., 2019). Taken together, the
prevention of oxidative stress and inflammation is a key
mechanism for the renoprotective effects of GLP-1RAs.

Natriuresis
Acute infusion of GLP-1 has been shown to stimulate diuresis
and natriuresis in both experimental (Crajoinas et al., 2011;
Jensen et al., 2015) and human studies (Gutzwiller et al., 2004;
Skov et al., 2013; Muskiet et al., 2016). These observations seem
to be associated with the inhibition of Na+/H+ exchanger 3
(NHE3) in the proximal tubules. NHE3 plays an important role
in reabsorbing filtered Na+ in the proximal tubules (Schultheis
et al., 1998). Therefore, inactivation of NHE3 can result in
natriuresis. GLP-1 RAs have been shown to induce
phosphorylation and inactivation of NHE3 (Carraro-Lacroix
et al., 2009; Crajoinas et al., 2011; Farah et al., 2016; Muskiet
et al., 2017). The long-term administration of lixisenatide has
been shown to decrease NHE3 activity in overweight T2D
patients. In this study, 35 participants were randomly
allocated to a lixisenatide (20 mg) group or once-daily insulin
glulisine treatment group. After 8 weeks of follow-up, the
administration of lixisenatide increased the phosphorylation
of NHE3, which reduced its activity in urinary extracellular
vesicles in comparison to once-daily insulin glulisine treatment
(Tonneijck et al., 2019). However, it remains unclear whether
these natriuretic responses are direct effects of GLP-1RA
because a lack of GLP-1R in the proximal tubules has been
reported (Pyke et al., 2014; Lee et al., 2015; Ronn et al., 2017).
Furthermore, cardiomyocyte GLP-1R plays an important role
in natriuresis. It has been shown that liraglutide promotes
natriuresis by atrial natriuretic peptide (ANP) secretion from
cardiomyocytes in an Epac2-depdenent manner (Kim
et al., 2013).
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Fibrosis
GLP-1RAs have been shown to attenuate renal fibrosis. For
instance, exendin-4 has been shown to ameliorate the high
glucose-induced fibronectin (FN) and type I collagen (Col1)
expression in tubular epithelial cells by inhibiting the secretion of
miR-192, an microRNA (miRNA) that is regulated by p53 and
plays a role in renal fibrosis (Jia et al., 2018). Consistent with this
observation, liraglutide has been shown to attenuate unilateral
ureteral obstruction (UUO)-induced tubulointerstitial fibrosis by
suppressing TGF-b and its downstream signaling pathways,
including Smad3 and ERK1/2 (Li et al., 2018). These protective
effects of GLP-1RAs for renal fibrosis are also mediated by
attenuating the epithelial-to-mesenchymal transition (EMT) of
tubular cells (Li et al., 2018; Yin et al., 2018).

The Endothelial Function
DKD is associated with endothelial dysfunction (Chen et al.,
2020). Endothelial GLP-1R has been shown to be involved in
endothelial dysfunction in a mouse angiotensin II-induced
hypertension model (Helmstadter et al., 2020). Liraglutide was
found to increase eNOS phosphorylation and nitric oxide (NO)
production via AMPK-dependent pathways in endothelial cells
(Li et al., 2016; Honda et al., 2018; Han et al., 2019). Lixisenatide
has also been shown to prevent the free fatty acid-induced
reduction of eNOS phosphorylation in endothelial cells (Zhao
et al., 2019). Sukumaran et al. showed that liraglutide improves
the renal endothelial dysfunction in obese Zucker rats on a high-
salt diet by increasing the renal eNOS expression (Sukumaran
et al., 2019). They also found that liraglutide increases the NO-
mediated vasodilation of small intrarenal arteries using X-ray
microangiography (Sukumaran et al., 2019). Furthermore,
exendin-4 has been shown to attenuate lipotoxicity-induced
glomerular endothelial cell dysfunction in diabetic ApoE-
deficient mice by increasing the ABC transporter A1-mediated
cholesterol efflux (Yin et al., 2016). Taken together, these findings
highlight the improvement of the glomerular endothelial
dysfunction as an important renoprotective effect of GLP-1RA.

Cleavage Products of GLP-1
Moellmann et al. reported that cleavage products derived from
GLP-1 reduced tubulointerstitial renal damage, lowered the
expression of tubular injury markers, and attenuated the renal
accumulation of macrophages and T cells (Moellmann et al.,
2018). These findings suggest that GLP-1R-independent
renoprotective effects are mediated by GLP-1 cleavage
products. Since distribution of GLP-1R in the kidney remains
controversial, the renoprotective effects of GLP-1RAs may be
partially explained by this mechanism.

Glycemic Control
Although the glucose-independent mechanisms are emphasized,
glycemic control by GLP-1RAs is considered to be involved in its
renoprotective effects. In LEADER, the use of liraglutide was
associated with a 0.4% HbA1c reduction compared with the
placebo (Marso et al., 2016b; Zinman et al., 2018). As a reduction
of 0.5% in HbA1c is a clinically important difference (Zinman et al.,
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2018), a greater reduction by liraglutide may contribute to the
renoprotective effects. Furthermore, liraglutide use was associated
with a reduction in weight of 2.3 kg. In SUSTAIN-6, semaglutide
use vs. placebo was associated with respective reductions in HbA1c
of −0.66% (0.5 mg) vs. −1.05% (1.0 mg) and body weight of −2.9 kg
(0.5 mg) vs. −4.4 kg (1.0 mg) (Kaul, 2018). In REWIND,
dulaglutide use reduced the HbA1c value by −0.61% and body
weight by −1.46 kg compared with placebo (Gerstein et al., 2019b).
In these trails, GLP-1RAs exerted renoprotection, irrespective of
the baseline HbA1c (Kristensen et al., 2019).
LIMITATIONS OF RENOPROTECTION BY
GLP-1RAS

A series of experimental studies revealed that GLP-1RAs can exert
renoprotective effects independent of their glucose-lowering
activities; however, clinical evidence at present is insufficient to
support these observations. For instance, there are no established
methods for assessing the reduction in oxidative stress and
inflammation by GLP-1RAs. It is difficult to evaluate the extent
to which glucose-independent mechanisms are involved in
renoprotection by GLP-1RAs. In clinical settings, glucose-
lowering, weight loss, natriuresis, and blood pressure reduction
may account for the renoprotective effects of GLP-1RAs. As
described above, GLP-1RAs attenuate albuminuria and
marginally reduce eGFR decline. However, whether or not
albuminuria is a clinically relevant renal outcome remains
unclear. Long-term clinical trials will be needed to address this
question. The additive effects of combination treatment of GLP-
1RAs and SGLT2 inhibitors on DKD are uncertain. In DELIGHT,
the combination of saxagliptin and dapagliflozin showed
potentially additive but marginal albuminuria-lowering effects in
T2D subjects (Pollock et al., 2019). A meta-analysis showed that
GLP-1RA and SGLT2 inhibitor combination therapy was
associated with a greater reduction in HbA1c (−0.74%), body
weight (−1.61 kg), and systolic blood pressure (−3.32mmHg) than
SGLT2 inhibitor monotherapy (Castellana et al., 2019), suggesting
that this combination may induce additive renoprotective effects.
Further studies will be required to address this issue.
CONCLUSION AND PERSPECTIVES

GLP-1RAs are widely used in the treatment of T2D. The treatment
of DKD has been largely dependent on the management of
hyperglycemia and hypertension. Thus, novel therapeutic
approaches that exert renoprotective effects independently of
these factors have been awaited. A series of clinical trials and
experimental studies support the beneficial effects of GLP-1RAs on
DKD. Lessons from clinical trials demonstrate these effects are
mainly driven by reductions in albuminuria. In contrast, the
beneficial effects of SGLT2 inhibitors on albuminuria and eGFR
decline in DKD were demonstrated by EMPA-REG OUTCOME
(Wanner et al., 2016), CANagliflozin cardioVascular Assessment
Study (CANVAS) (Perkovic et al., 2018), DECLARE-TIMI58
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(Mosenzon et al., 2019b), and Canagliflozin and Renal Events in
Diabetes with Established Nephropathy Clinical Evaluation
(CREDENCE) (Perkovic et al., 2019). It remains unclear why
these differences were observed. The effects of SGLT2s inhibitors
on hemodynamics and glomerular hyperfiltration seem to be
robust whereas those of GLP-1RAs have not been established. In
addition, the different distribution of SGLT2 and GLP-1R may be
involved. Further studies are required to clarify the differences in
their effects on the kidney and how to use them appropriately in
clinical practice. Nevertheless, GLP-1RAs are a promising
therapeutic option for DKD.
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Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase
that was originally identified as RhoA interacting protein. A diverse array of cellular functions,
including migration, proliferation, and phenotypic modulation, are orchestrated by ROCK
through a mechanism involving cytoskeletal rearrangement. Mammalian cells express two
ROCK isoforms: ROCK1 (Rho-kinase b/ROKb) and ROCK2 (Rho-kinase a/ROKa). While
both isoforms have structural similarities and are widely expressed across multiple tissues,
investigations in gene knockout animals and cell-based studies have revealed distinct
functions of ROCK1 and ROCK2. With respect to the kidney, inhibiting ROCK activity has
proven effective for the preventing diabetic kidney disease (DKD) in both type 1 and type 2
diabetic rodent models. However, despite significant progress in the understanding of the
renal ROCK biology over the past decade, the pathogenic roles of the ROCK isoforms is
only beginning to be elucidated. Recent studies have demonstrated the involvement of
renal ROCK1 in mitochondrial dynamics and cellular transdifferentiation, whereas ROCK2
activation leads to inflammation, fibrosis, and cell death in the diabetic kidney. This review
provides a conceptual framework for dissecting the molecular underpinnings of ROCK-
driven renal injury, focusing on the differences between ROCK1 and ROCK2.

Keywords: notch, hypoxia, inflammation, Rho (Rho GTPase), ROCK1/ROCK2, diabetic kidney disease (DKD)
INTRODUCTION

The World Health Organization estimates that, each year, around 1.2 million people worldwide die
from end-stage renal disease (ESRD). Artificial kidneys and miniaturized dialysis save millions of
lives, however dialysis requires cost up to US$91,000 per patient per year in the United States (End
chronic kidney disease neglect, 2020), and fewer than half of those on dialysis survive for more than
5 years from the onset of ESRD. Diabetic kidney disease (DKD) in particular has had a devastating
impact on the increasing frequency of ESRD.

One major breakthrough in the management of DKD came in the past two decades, when
inhibitors of the renin-angiotensin system (RAS) were proven to attenuate the progressive impairment
of the renal function. While cardiovascular outcome trials with sodium glucose co-transporter 2
(SGLT2) inhibitors demonstrated these agents’ renoprotective actions (Zinman et al., 2015; Kosiborod
et al., 2017; Neal et al., 2017), the details are undoubtedly much more complex, with key concerns that
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current standards of care do not elicit complete remission. Given
the limited drugs available to suppress DKD progression, there has
been an ongoing effort to identify factors inducing renal injury and
to develop effective therapeutic strategies.

Rho-associated protein kinase (ROCK) belongs to the family
of serine/threonine kinases and is a major downstream effector of
the small GTP-binding protein RhoA. ROCK signaling is
involved in the regulation of a plethora of cellular functions.
Due to its centrality in most cellular events, robust temporospatial
and context-dependent regulation of ROCK is needed for cell
homeostasis. In the kidney, over-activation of the ROCK pathway
is clearly harmful; it promotes glomerular fibrosis and podocyte
loss in the setting of a variety of diseases including but not limited
to diabetes (Matoba et al., 2010; Meyer-Schwesinger et al., 2012;
Matoba et al., 2013; Matoba et al., 2017). In addition, elevated
ROCK activity results in the increase of oxidative stress, sodium
retention, and vascular tone (Bussemaker et al., 2009; Calo et al.,
2016; Calo et al., 2017). The beneficial effects of ROCK inhibition
have been described in rodent models of DKD (Gojo et al., 2007;
Kolavennu et al., 2008).

Two mammalian ROCK isoforms, ROCK1 (also known as
Rho-kinase b/ROKb) and ROCK2 (also referred to as Rho-kinase
a/ROKa), have been identified (Nakagawa et al., 1996). The
ROCK1 gene is located on chromosome 18 and consists of 1354
amino acids, while the ROCK2 gene is located on chromosome 2
and consists of 1388 amino acids. While these isoforms share 65%
overall identity in amino acid sequence, ROCK1 and ROCK2 are
differentially regulated, with distinct functions.

This review focuses on the pathophysiological functions of
ROCK1 and ROCK2, and discusses the therapeutic effects of
ROCK isoform inhibition in DKD.
THE STRUCTURE AND MOLECULAR
FUNCTION OF ROCK ISOFORMS

Among protein kinase neighbors, ROCKs are closely associated
with myotonic dystrophy kinase-related Cdc42-binding kinase
(MRCK) and citron kinase. These kinases have the same domain
structure, which consists of an N-terminal kinase domain, a
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central coiled-coil region, and various functional motifs at their
respective C-terminal (Figure 1). In ROCKs, these functional
motifs contain Rho-binding domain (RBD) and pleckstrin
homology domain (PHD) that is split into two by an internal
cysteine-rich C1 domain (CRD). Under natural conditions, PHD
blunts ROCK activity by sequestering kinase interface (Wen
et al., 2008). Supporting of this is the fact that deletion of the C-
terminal region including the PHD results in constitutive
activation in vitro (Wen et al., 2008). However, when the RBD
binds to GTP-bound active RhoA, RhoB, or RhoC, or PHD is
removed, ROCK is constitutively activated. Despite the high
sequence homology in their kinase domains, different machinery
is involved in the activation process, with ROCK1 activated
through the cleavage of the C-terminal PHD by caspase-3 and
ROCK2 activation mediated by granzyme B-regulated cleavage.
In addition, the inactivation process differs between these two
isoforms: ROCK1 is negatively controlled by Rad GTP-binding
protein, whereas ROCK2 is inhibited by Gem GTP-binding
protein (Ward et al., 2002).

While ROCK1 is predominantly distributed in non-neural
tissues including the gastrointestinal tract and lung, ROCK2 is
found in the brain, kidney, and bladder (Nakagawa et al., 1996;
Iizuka et al., 2012), indicating distinct actions of each isoform in
these tissues. At the cellular level, ROCK1 has been detected in
the cell membrane (Glyn et al., 2003), actin filaments, and
lysosomes (Iizuka et al., 2012); however, the subcellular
distribution of ROCK1 has not been fully clarified. ROCK2
activates p300 acetyltransferase to mediate gene transcription
in vitro, which might explain why ROCK2 is predominantly
localized to the nuclei (Tanaka et al., 2006). Consistently,
ROCK2 is detected in euchromatin, where transcriptional
events take place. ROCK1 and ROCK2 thus have different
tissue and cellular distributions, which may affect their functions.

Findings obtained from global knockout of ROCK1 or
ROCK2 have expanded our understanding regarding the
function of each isoform. Mice harboring systemic ROCK1
deletion display impaired eye closure and an abnormal
umbilical ring (Shimizu et al., 2005), whereas ROCK2
deficiency leads to intrauterine growth retardation (Thumkeo
et al., 2003). While these data, coupled with other findings,
FIGURE 1 | Structure of ROCK isoforms. ROCK1 and ROCK2 are known as ROKb and ROKa respectively. Both isoforms consist of three major domains: a kinase
domain in the N-terminal domain, a coiled-coil domain that contains a Rho-binding domain (RBD), and a putative pleckstrin homology domain (PHD) at its C-terminal end.
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suggest divergent physiological and pathological functions of
ROCK isoforms, the specificity of those substrates has not been
fully characterized (Hartmann et al., 2015).
MECHANISTIC INSIGHTS CONCERNING
ROCK ISOFORM INHIBITION IN DKD

Renal ROCK signaling is activated in rodent models of diabetes,
regardless of the diabetes type (Gojo et al., 2007; Matoba et al.,
2013). The ROCK-mediated molecular basis of DKD progression
has been shaped by researchers using pharmacological inhibitors
of ROCK (Y27632 and fasudil). Both of these agents ameliorate
ROCK activity by competitively combining the ATP sites of
the ROCK catalytic domain. While these studies have expanded
ROCK research in the field of renal biology, these compounds
inhibit both ROCK1 and ROCK2 with equal potency and have
non-specific targets, such as protein kinase C, A, and mitogen-
activated protein kinases at higher doses (Liao et al., 2007). Some
of these disadvantages have been overcome by gene silencing
approach, such as with small interfering RNA (siRNA) and
systemic or conditional knockout. The distinct actions of each
ROCK isoform in DKD are summarized in Figure 2.
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ROCK1-MEDIATED ALBUMIN
TRANSPORT, MITOCHONDRIAL
DYNAMICS, TRANSDIFFERENTIATION
IN DKD

The upregulation of the ROCK1 isoform is detected in the
glomerular endothelium and mesangium of db/db mice (Peng
et al., 2016) as well as in the distal tubules of streptozotocin
(STZ)-induced diabetic rats (Wu et al., 2013). In cell-based
experiments, tubular ROCK1 is activated by the CXC
chemokine ligand 16 (Liang et al., 2018), a cytokine produced
by diabetic kidney (Ye et al., 2017), to drive production of pro-
inflammatory cytokines including tumor necrosis factor a (TNF-
a), interleukin 1b, and caspase-3 activation and apoptosis.

From a transcriptional standpoint, we previously showed that
siRNA-mediated gene ablation of ROCK1 was sufficient to
induce a reduction in hypoxia-inducible factor 1a (HIF-1a)
under diabetic conditions (Matoba et al., 2013). In that study,
the HIF-1a expression was also suppressed by ROCK2
inhibition, suggesting that both ROCK1 and ROCK2 are
requisite for glomerular HIF-1a generation and downstream
fibrotic reactions in mesangial cells. The specific action of
mesangial ROCK1 has not yet been clarified.
FIGURE 2 | Distinct roles of ROCK isoforms in diabetic kidney disease. Both ROCK1 and ROCK2 contribute to the pathogenesis of DKD via different mechanisms.
ROCK1 activation induces podocyte ROS production, EndMT, and blocks albumin endocytosis in tubular epithelial cells. Little is known about the role of ROCK1 on
the mesangial biology, but ROCK2 elevation induces as the progression of mesangial expansion, Notch activation in podocytes, and endothelial inflammation. ROS,
Reactive oxygen species; EndMT, Endothelial-to-mesenchymal transition.
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A series of elegant and comprehensive investigations from the
Danesh laboratory identified ROCK1-mediated molecular events
in DKD using gain- and loss-of-function studies in mice (Wang
W. et al., 2012). Intriguingly, ROCK1-deficient mice showed
attenuation of albuminuria and histological abnormalities in
these models. Conversely, podocyte-specific ROCK1 knockin
confers a phenotype that has many of the features of DKD.
Mechanistically, they described an unexpected direct action of
ROCK1 for regulating mitochondrial fission through
phosphorylation and the recruitment of dynamin-related
protein-1 (Drp1). The results of that study implicate ROCK1
as a critical regulator of the mitochondrial dynamics in diabetes
and suggest that ROCK1 may be a relevant therapeutic target for
the generation of oxidative stress in podocytes.

The permselectivity of the glomerular filtration barrier limits
the passage of albumin into the Bowman’s capsule, resulting in
the loss of transport selectivity and culminating in albuminuria, as
is common among individuals in DKD. Glomerular endothelium,
a key component of the filtration barrier, is converted into the
mesenchymal phenotype in cases of diabetes, a process termed
endothelial-to-mesenchymal transition (EndMT). Peng et al.
investigated the contribution of ROCK1 to EndMT using
ROCK1-overexpressing glomerular endothelial cells (Peng et al.,
2016). The authors performed quantitative polymerase chain
reaction (qPCR) and Western blotting and observed the
increased expression of mesenchymal markers (e.g. a-SMA and
Snail), together with the loss of endothelial junctional molecules,
particularly VE-cadherin. Collectively, they reported that the
activation of ROCK1 triggers EndMT, resulting in the loss of
cellular attachment to each other and vascular hyper-
permeability. These data provide critical insights into the
heretofore unclear functions of ROCK1 in the signaling
pathway that mediates the damage to glomerular tight junctions
and albuminuria in DKD.

Zhou et al. investigated the function of ROCK1 in STZ-
induced DKD models (Zhou et al., 2011). To determine the
pathological contribution of tubular ROCK1, the authors
analyzed the phenotype of diabetic ROCK1-deficient mice.
They found that genetic ablation of ROCK1 prevented the
development of albuminuria, and this effect was associated
with protection against the loss of megalin and cubulin,
members of the low-density lipoprotein receptor family that
mediate albumin endocytosis in proximal tubular epithelial
cells (Zhai et al., 2000). That study provided novel insights into
the role of ROCK1 in albumin reabsorption in tubules.
Interestingly, benidipine, a calcium channel blocker, has been
suggested to inhibit proteinuria by suppressing ROCK1 and the
transdifferentiation of renal tubular epithelium without affecting
the glucose metabolism or blood pressure (Wu et al., 2013).

The inhibition of both ROCK isoforms by Y27632 or fasudil is
effective for preventing tubulointestinal fibrosis in unilateral
ureteral obstruction (UUO) models (Nagatoya et al., 2002;
Baba et al., 2015); however, the systemic deletion of ROCK1
did not protect against the obstructive kidney damage (Fu et al.,
2006). There was no recovery of transforming growth factor b
(TGF-b)/SMAD signaling or structural derangement in the
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kidney of ROCK1-deficient mice. As such, we may reasonably
suggest that targeting ROCK1 alone may not be adequate for
attenuating tubular fibrosis, at least in UUO models, and the
pathological contribution of ROCK1 to tubules may differ
between DKD and other renal disease.

Whether or not ROCK1 exerts other functions in DKD is not
completely understood. Genome-wide screening approaches will
be required to define ROCK1 targets and the precise mechanisms
of action. Such analyses will also provide promising
opportunities for the development of ROCK1 inhibitors and
their translation into clinical medicine.
ROCK2-INDUCED FIBROSIS, NOTCH
ACTIVATION, AND INFLAMMATION IN
DKD

Initial insights linking ROCK2 to diseases were gleaned from
studies implicating ROCK2 as a regulator of, among others,
immunity, inflammation, and fibrosis (Yang et al., 2018; Stam
et al., 2019; Ricker et al., 2020). With regard to the kidney,
we provided the first evidence indicating ROCK2 to be a core
component of signaling circuitry that governs DKD progression.
Nagai et al. demonstrated the upregulation of ROCK2 in the
renal cortex of type 2 diabetic db/db mice (Nagai et al., 2019). In
that study, ROCK2 inhibitors were evaluated for their efficacy
against glomerular expansion and albuminuria in vivo. As a
result, the preventive effects of these histological and functional
abnormalities were confirmed. The authors also performed a loss
of function analysis and revealed that gene deletion of ROCK2,
but not ROCK1, decreased the fibrogenic response, concomitant
with the suppression of phosphorylation of JNK and Erk, which
in turn blocks the nuclear translocation of nuclear factor kB (NF-
kB). Hence, ROCK2 inhibition appears to be a promising
pharmacological intervention against DKD.

The podocyte slit diaphragm proteins nephrin and podocin
are critical component forming the filtration barrier. In the
context of diabetes, these components are damaged, mainly by
the activation of Notch signaling pathways (Mathieson, 2011;
Loeffler and Wolf, 2014). After the binding of Notch receptors to
Notch ligands, such as Jagged-like and Delta-like, the C-terminal
Notch intracellular domain (NICD) is cleaved from the cell
membrane by g-secretase and translocates into the nucleus,
where the formation of recombination signal binding protein
for immunoglobulin kJ region (Rbpj) and mastermind-like
(MAML) proteins occurs in order to induce the expression of
gene sets important for the development of the kidney
(Malashicheva et al., 2020). The Notch pathway is reactivated
in renal tissue obtained from diabetic mice to regulate the
expression of Notch ligands (Niranjan et al., 2008). High-
glucose conditions, TGF-b, or vascular endothelial growth
factor (VEGF) are postulated to be the molecular basis for
the upregulation of Notch signaling (Bonegio and Susztak,
2012). Of note, ROCK2-deficient podocytes are characterized
by a significant reduction in TGF-b-induced Notch ligand
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expression (Matoba et al., 2017). In contrast, the induction of
Notch ligand was not inhibited by ROCK1 gene deletion. These
findings indicate the isoform-specific role of ROCK2 in
podocytes and provide critical insights into potential strategies
against albuminuria seen in DKD. Studies aimed at revealing the
interdependency between ROCK2 and Notch modules through
the generation of conditional knockout models are thus expected
to be beneficial.

There is growing appreciation for the influence of vascular
inflammation on regulating the progression of diabetic renal
damage (Matoba et al., 2019). In addition to its effect in
mesangial cells and podocytes, ROCK2 also plays important
roles in endothelial cells. Takeda et al. conducted a series of
studies to unravel the mechanisms by which ROCK2 activates
vascular inflammation (Takeda et al., 2019). The qPCR array
analysis of the mRNA expression profiles in ROCK2-null
endothelium revealed differentially expressed genes related to
vascular inflammation. Since chemokines and E-selectin
production were downregulated in the endothelium, the
authors examined monocyte migration and cell to cell
adhesion, and found that these activities were abolished
compared with those in endothelium with normal levels of
ROCK2. These observations will need to be considered when
establishing the contribution of ROCK2 to DKD, and when
administering ROCK2 inhibitors to patients.

The impressive journey of ROCK2 inhibitors started with the
development of KD-25 (formally SLx-2119), which is an orally
available and selective inhibitor with a half maximal inhibitory
concentration (IC50) and an inhibitory constant (Ki) of 60 nM
and 41 nM, respectively (Boerma et al., 2008). Since this drug is
Frontiers in Pharmacology | www.frontiersin.org 532
used in clinical trials for patients with graft versus host disease
(GVHD) and psoriasis (Yiu andWarren, 2016; MacDonald et al.,
2017) (Table 1), ROCK2 inhibitors may could be used to treat
DKD. The success of ROCK2 inhibitor clinical trials will
hopefully inspire researchers to redouble their efforts to
determine the molecular profiles responsible for ROCK2-
regulated events in DKD.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Cardiovascular events are pertinent to morbidity and mortality
in patients with DKD. Therefore, elucidation of molecular
circuitry that governs atherogenic changes remains a major
area of research. Recently, critical roles of ROCK isoforms in
vascular disease have been evaluated by researchers. James Liao
from Chicago and Hiroaki Shimokawa from Sendai are leaders in
this field. Liao et al. identified macrophage ROCK1 as an
essential element in the development of atherosclerosis
through the modulation of foam cell formation and
macrophage chemotaxis (Wang et al., 2008). ROCK2 also
influences foam cell formation by inhibiting peroxisome
proliferator-activated receptor-g-mediated reverse cholesterol
transport in inflammatory cells (Zhou et al., 2012). In vascular
smooth muscle cells, ROCK2 controls migration and
proliferation activities (Shimizu et al., 2013). In addition,
Shimizu et al. focused on the pathologic role of ROCK2 in
heart disease and showed that ROCK2 regulates hypertrophy of
cardiomyocyte and cell death through interaction with serum
TABLE 1 | Clinical trials of ROCK inhibitors.

Disease Interventions Target Phase Status Identifier Primary outcome

Psoriasis KD025 (SLx-2119)
KD025 (SLx-2119)
KD025 (SLx-2119)

ROCK2
ROCK2
ROCK2

2
2
2

Completed
Completed
Completed

NCT02106195
NCT02317627
NCT02852967

Safety and tolerability
Safety and tolerability
Number of subjects with a 75% decrease
in PASI

GVHD KD025 (SLx-2119) ROCK2 2 Active, not
recruiting

NCT03640481 Overall response rate

Systemic sclerosis KD025 (SLx-2119) ROCK2 2 Recruiting NCT03919799 CRISS response
Fasudil ROCK1/2 3 Completed NCT00498615 Skin temperature

Autoimmune disease/Fibrosis KD025 (SLx-2119) ROCK2 1 Completed NCT03907540 Absolute bioavailability
KD025 (SLx-2119) ROCK2 1 Completed NCT03530995 PK profile

Hepatic Impairment KD025 (SLx-2119) ROCK2 1 Recruiting NCT04166942 PK profile
Chronic kidney disease SAR407899A ROCK1/2 1 Completed NCT01485900 Number of patients reporting adverse

events
Atherosclerosis Fasudil ROCK1/2 2 Completed NCT03404843 Blood flow responses

Fasudil ROCK1/2 2 Completed NCT00120718 Vascular reactivity
Diabetic macular edema Fasudil ROCK1/2 3 Completed NCT01823081 Best corrected visual acuity
Retinopathy of prematurity Fasudil ROCK1/2 2/3 Recruiting NCT04191954 Retinal vascularization
Glaucoma Netarsudil (AR-11324) ROCK1/2 1 Recruiting NCT04234932 Peripapillary capillary perfusion density
Fuchs’ endothelial corneal
dystrophy

Ripasudil (K-115) ROCK1/2 4 Recruiting NCT03249337 Corneal clearing

Ripasudil (K-115) ROCK1/2 2 Recruiting NCT03813056 Time to corneal clearance
Amyotrophic lateral sclerosis Fasudil ROCK1/2 2 Recruiting NCT03792490 Safety and tolerability
Erectile dysfunction SAR407899 ROCK1/2 2 Completed NCT00914277 Duration of penile rigidity during sexual

stimulation
Septe
PASI, Psoriasis Area and Severity Index Score; CRISS, Combined Response Index in Diffuse Cutaneous Systemic Sclerosis (CRISS); GVHD, graft-versus-host-disease;
PK, pharmacokinetics.
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response factor and ERK (Shimizu and Liao, 2016). These
important findings coupled with the work of others have led to
an increasing appreciation for ROCK2 as a critical molecule for
not only renal disease but also cardiovascular disease.

As discussed above, published data have added to a
burgeoning body of evidence that ROCKs are critical
therapeutic targets against DKD and its related cardiovascular
events. However, some caveats must be considered before this
concept is accepted. First, the development of ROCK1-specific
inhibitors and prospective intervention studies using ROCK1 or
ROCK2 inhibitors are required in order to justify targeting
ROCK isoforms to treat DKD. Second, whether an isoform-
specific approach or pan ROCK inhibition would provide a
better therapeutic outcome has yet to be clarified. The
comparison of circulating and tissue levels of ROCK1 and
ROCK2 between DKD patients and healthy subjects would
facilitate our understanding the contribution of each isoform
to the pathogenesis of DKD. These studies will also help identify
useful targets of DKD therapy, which may vary by clinical stage,
and allow for the earlier recognition of patients with diabetes
who are at risk of DKD. Third, an open and thorough discussion
of the risks while balancing potential clinical benefits of ROCK
isoform inhibition is warranted. RhoA activation as well as RhoA
inhibition results in podocyte damage (Wang L. et al., 2012),
indicating that there is likely a narrow therapeutic window for
ROCK isoform activity. This information will provide important
insights to consider before commencing with ROCK isoform-
selective inhibition in patients. In addition, given the impairment
of insulin signaling in skeletal muscle observed in ROCK1
knockout mice (Lee et al., 2009), drugs with limited access to
the kidney may be beneficial for patients with diabetes. However,
it should be noted that the feasibility of ROCK inhibition has
already been established with fasudil, a pan ROCK inhibitor, in
patients with stroke (Shibuya et al., 2005). Moreover, clinical data
of statins, which inhibit both ROCK1 and ROCK2 through the
regulation of RhoA prenylation, demonstrate this medication to
be well tolerated and safe during long-term treatment (Ford
et al., 2016). Considering these findings alongside cogent
Frontiers in Pharmacology | www.frontiersin.org 633
evidence that ROCK is critical in versatile pathological aspects
of diabetes, targeting ROCK1 and/or ROCK2 is expected to have
therapeutic value for not only DKD but also other microvascular
complications (i.e. retinopathy, neuropathy) (Yokota et al., 2007;
Kanazawa et al., 2013). A deeper understanding of both the
divergent and redundant roles of each isoform is therefore
considered to be important for the development of effective
therapeutic strategies, and for improving the prognosis of
patients with diabetes.
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Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of
glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS)
and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct
contact with cells and factors circulating in the blood. Disturbances in these circulating
factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS
and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory
phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and
endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent
relationship with podocytes and mesangial cells, which involves bidirectional cross-talk
via intercellular signaling. Given that GEnC behavior directly influences podocyte function,
it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria,
subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC
dysfunction is sufficient to cause podocyte injury, proteinuria and activation of
mesangial cells. Aberrant gene expression patterns largely contribute to GEnC
dysfunction and epigenetic changes seem to be involved in causing aberrant
transcription. This review summarizes literature that uncovers the importance of cross-
talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the
development of FSGS and DN, and the potential use of GEnCs as efficacious cellular
target to pharmacologically halt development and progression of DN and FSGS.

Keywords: Kidney glomerulus (MeSH: D007678), Glycocalyx (MeSH: D019276), Endothelial cells (MeSH: D042783),
Podocytes (MeSH: D050199), Proteinuria (MeSH: D011507), Diabetic Nephropathy (MeSH: D003928), Focal
Segmental Glomerulosclerosis (MeSH: D005923)
THE KIDNEY AND THE GLOMERULUS

The kidneys have a vital role in fluid homeostasis and osmoregulation. Additionally, the kidneys
are important for control of blood pressure and mineral metabolism. By filtering blood in the
glomeruli, the kidneys produce about 150 liter glomerular filtrate per day of which 99% is
reabsorbed in the tubules, to eventually generate approximately 1 liter of urine per day. By blood
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filtration and tubular excretion, waste products such as urea,
minerals and toxic substances, are excreted from the body.

The glomerulus is a network of capillary loops, known as the
glomerular tuft, and is enclosed by the Bowman’s capsule. Blood
flows into the glomerulus via the afferent arteriole and leaves the
glomerulus via the efferent arteriole (Scott and Quaggin, 2015).
The glomerulus is assembled by four different cell types: parietal
epithelial cells, glomerular endothelial cells (GEnCs), podocytes
(visceral epithelial cells), and mesangial cells (Figures 1A, B).
Parietal epithelial cells line the Bowman’s capsule, where the pre-
urine is collected and forwarded to the proximal tubule. GEnCs
cover the luminal surface of glomerular capillaries and are the
cells of the glomerulus in direct contact with the blood. GEnCs
are characterized by transcellular pores (i.e., fenestrae), essential
for blood filtration. At the adluminal side, GEnCs are covered
with the endothelial glycocalyx, filling the fenestrae (Satchell,
2013; Scott and Quaggin, 2015; Hegermann et al., 2016) (Figure
1C). The endothelial glycocalyx is a gel-like layer consisting of
glycoproteins, proteoglycans with bound glycosaminoglycans
(GAGs) (Reitsma et al., 2007; Slater et al., 2012; Garsen et al.,
2014; Dane et al., 2015) and plasma proteins loosely adherent
within the meshwork of the glycocalyx. The endothelial
glycocalyx prevents leakage of circulating plasma proteins by
size and steric hindrance and electrostatic repulsion (Ryan and
Karnovsky, 1976; Singh et al., 2007; Patrakka and Tryggvason,
2010; Friden et al., 2011; Dane et al., 2013), and inhibits adhesion
and extravasation of inflammatory cells.
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The endothelial glycocalyx serves as the primary sensor of
wall shear stress through the initiation of signal transduction in
GEnCs (Tarbell and Ebong, 2008). Wall shear stress, the
hydrodynamic frictional force created from blood flow,
transmits through the endothelial glycocalyx into the GEnC,
leading to signal transduction that subsequently regulates the
expression of Krüppel Like Factor 2 (KLF2), KLF4 and the
transcription of eNOS and the production of nitric oxide (NO)
which are crucial to maintain GEnC function (Dekker et al.,
2006; Weinbaum et al., 2007; Ohnesorge et al., 2010; Slater et al.,
2012; Dogne et al., 2018). In addition, GEnCs also function as a
sink for factors essential for the regulation of the vascular tone
and cross-talk with other glomerular cell types, such as
vasoactive factors (endothelin-1 (ET-1), and NO) (Feliers et al.,
2005; Dhaun et al., 2012).

Podocytes are specialized perivascular epithelial cells with
elaborate projections called foot processes that are intimately
wrapped around the exterior of glomerular capillaries (Figures
1B, C). The foot processes leave slits between them, called slit
diaphragms, which are instrumental for proper blood filtration.
GEnCs and podocytes share a common extracellular matrix,
referred to as the glomerular basement membrane (GBM), which
separates the GEnCs from the podocytes. Together, the GEnCs
and the endothelial glycocalyx, the GBM, and the podocytes
constitute the glomerular filtration barrier (GFB). The GFB is
responsible for size-selective and charge-dependent filtration of
the blood. Small and positively charged molecules such as urea,
A

B

C

FIGURE 1 | The kidney, glomerulus, and the glomerular filtration barrier. Each kidney consists of about 1 million nephrons. Each nephron consists of a glomerulus
and a tubular compartment (A). The glomerulus is assembled by four different cell types, namely parietal epithelial cells, glomerular endothelial cells (GEnC),
podocytes (visceral epithelial cells), and mesangial cells (B). GEnC and podocytes share a common extracellular matrix, the glomerular basement membrane (GBM).
GEnC and their fenestrae are covered by the endothelial glycocalyx. Podocytes contain foot processes with slit diaphragms that are wrapped around the exterior of
glomerular capillaries. Together, the GEnC and the endothelial glycocalyx, GBM and podocytes comprise the glomerular filtration barrier to filter the blood and
remaining essential plasma proteins in the circulation (C). RBC, Red Blood Cell; GBM, Glomerular Basement Membrane; GEnC, Glomerular Endothelial Cell.
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glucose, amino acids, and minerals can pass the GFB freely,
whereas circulating cells and large and negatively charged
proteins, including albumin, cannot pass the GFB. Mesangial
cells are located in between the capillaries and form the
mesangium together with their extracellular matrix (ECM).
The mesangium provides structural stability to the glomerular
vasculature and modulates capillary blood flow (Scott and
Quaggin, 2015). The functionality and integrity of the GFB
depends on proper function of GEnCs, podocytes and
mesangial cells. Dysfunction of any of the cellular or
extracellular components of the GFB culminates in a decreased
filtration and eventually glomerulosclerosis (Haraldsson and
Nystrom, 2012; Fu et al., 2015).
CROSS-TALK BETWEEN GLOMERULAR
CELLS IS ESSENTIAL FOR GLOMERULAR
INTEGRITY

There is a growing understanding of the interdependent
relationship between GEnCs, podocytes and mesangial cells,
which involves bidirectional cross-talk at a molecular level. To
exemplify the importance of cross-talk between glomerular cells,
the signaling of Vascular Endothelial Growth Factor A
(VEGFA), Endothelin-1 (ET-1), and endothelial Nitric Oxide
Synthase (eNOS) between GEnCs and podocytes are described.
These molecules together form the VEGFA-eNOS/NO-ET-1 axis
between GEnCs and podocytes.

VEGFA-eNOS/NO-ET-1 Axis
VEGFA is synthesized by podocytes and binds to its receptors
VEGFR1 and VEGFR2 expressed on GEnCs (Eremina et al.,
2008). Under physiological conditions, VEGFA induces eNOS
activation in GEnCs and a subsequent increase in NO
production. The increase of NO may negatively regulates the
amount of VEGFA produced by podocytes (Mooyaart et al.,
2011). Via this crosstalk, the glomerular cells ensure that
sufficient VEGFA is produced to maintain viability of GEnCs,
without VEGFA levels rising to a level that induces sprouting
angiogenesis by GEnCs. In addition to NO, VEGFA also
regulates ET-1 production by GEnCs, since VEGFA blockage
in podocytes induces ET-1 release from GEnCs (Collino et al.,
2008). GEnCs are considered the principal source of ET-1 within
the glomeruli (Herman et al., 1998). ET-1 exerts its effect via
ET-1 receptors (ETR) A and ETRB. Low levels of ET-1 induce an
increase in NO, whereas high levels of ET-1 inhibit NO
production (Watschinger et al., 1995; Dong et al., 2005; Sud
and Black, 2009). ET-1 release from GEnCs associates with
cytoskeleton redistribution with a decrease of nephrin in
podocytes (Lenoir et al., 2014; Yuan et al., 2019). NO, in its
turn, inhibits ET-1 expression (Khimji and Rockey, 2010) and
exerts protective effects in podocytes (Sun et al., 2013). An
illustration of cross-talk between GEnCs and podocytes in the
VEGFA-eNOS/NO-ET-1 axis is provided in Figure 2. Next to
the effect of ET-1 on podocytes, ET-1 also exerts effects on
mesangial cells. ETRA signaling is associated with inflammation,
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contraction and proliferation of mesangial cells (Barton and
Sorokin, 2015), and fibrosis. ETRB signaling has a reciprocal
effect and is associated with vasorelaxation via eNOS-derived
NO release (Barton and Yanagisawa, 2008).
GLOMERULAR SCLEROTIC DISEASES:
HISTOPATHOLOGY OF FSGS AND DN

DN is a long-term complication of both type 1 and type 2 diabetes
mellitus and develops in 20%–40% of all diabetes mellitus patients
(Rossing et al., 2018). DN, together with Focal Segmental
Glomerulosclerosis (FSGS), is the most important cause of
chronic kidney disease (CKD). Two types of FSGS exist:
primary (or idiopathic) FSGS and secondary FSGS. In primary
FSGS, which comprises 80% of all FSGS cases, the etiology is
unknown. Secondary FSGS is induced by a preexisting pathologic
condition, e.g., hypertension (Jefferson and Shankland, 2014), a
viral infection, such as human immunodeficiency virus, drug-
induced, or induced by genetic mutations (Lim et al., 2016). In
case of primary or mutation-induced FSGS, mutations in genes
encoding proteins expressed in podocytes, which are mostly
related to slit diaphragm structure, the actin cytoskeleton, or
foot processes, such as nephrin (NPHS1), podocin (NPHS2),
actinin a4 (ACTN4), and TRPC6 are commonly observed (Lim
et al., 2016). No mutations are known in GEnC-specific genes that
would cause FSGS.

FSGS and overt diabetic nephropathy (DN) both are
characterized by scarring (sclerosis) of the glomerular tuft, i.e.,
glomerulosclerosis (Figure 3). Glomerulosclerosis causes
obliteration of the glomerular capillaries eventually (Fioretto and
Mauer, 2007; De Vriese et al., 2018). In FSGS, only a fraction of the
glomeruli (i.e., focal) is affected in a segmental manner, i.e., part of
FIGURE 2 | Glomerular cross-talk between GEnC and podocytes via the
VEGFA-eNOS/NO-ET-1 axis. VEGFA, Vascular Endothelial Growth Factor A;
VEGFR1/2, VEGF Receptor 1 and 2; eNOS, endothelial Nitric Oxide
Synthase; NO, Nitric Oxide; ET-1, Endothelin-1; ETRA/B, ET-1 Receptor A
and B. Stimulating and inhibitory effects are indicated with arrows and blunt
lines, respectively.
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a glomerulus is affected. Sclerosis in FSGS is characterized by
deposition of extracellular matrix (ECM) at the capillary loops.
DN is the specific histopathology associated with reduced renal
function in patients suffering from diabetic kidney disease
(Yamanouchi et al., 2020). Overt DN comprises diffuse and
sometimes nodular glomerulosclerosis in many glomeruli,
caused by mesangial cell proliferation and mesangial sclerosis,
and develops primarily in patients with proteinuria. Of note,
nonproteinuric diabetic kidney disease also exists and which is
characterized byminor histopathological changes without DN and
with better prognosis compared with proteinuric diabetic kidney
disease (Yamanouchi et al., 2020). So, particularly FSGS but also
DN are accompanied by proteinuria (macroalbuminuria: >300
mg/gr creatinine), as well as by glomerular hypertension and
hyperfiltration, and activation of glomerular inflammatory
pathways (Fioretto and Mauer, 2007; Reidy and Kaskel, 2007).
At the ultrastructural level, damage to podocytes and GEnCs is
observed. Podocyte injury is observed as extensive effacement of
the foot processes, ultimately leading to detachment of podocytes
from the GBM (podocyte loss). GEnC dysfunction is characterized
morphologically as a reduction of the endothelial glycocalyx, loss
of fenestrae, widening of the subendothelial space, and swelling of
the cytoplasm (Weil et al., 2012; Eleftheriadis et al., 2013; Morita
et al., 2015; Taneda et al., 2015; Boels et al., 2016). In many
patients, DN and FSGS progresses into end-stage renal disease
(ESRD). Therapy resistance and the failure to adequately treat
proteinuria, a glomerular inflammatory phenotype and
hypertension are the main reasons for progression towards
ESRD (Kiffel et al., 2011; Collins et al., 2013). Renal replacement
therapy (dialysis or kidney transplantation), is the only effective
treatment to postpone premature death in ESRD patients (Collins
et al., 2014).
GENC DYSFUNCTION IN DN AND FSGS

GEnC dysfunction is important in the pathogenesis of
glomerular sclerotic diseases, including FSGS and overt DN.
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GEnCs, covered by a thick glycocalyx, form the first cellular
barrier in direct contact with all circulating factors. Changes in
these circulating factors, such as high glucose levels and advanced
glycation end-products, can induce GEnC dysfunction (Singh
et al., 2011; Singh et al., 2013; Peng et al., 2016). In FSGS, the
development of mesangial matrix expansion and sclerosis by
parietal epithelial cells appears to be secondary to podocyte
injury, whereas in DN mesangial matrix expansion is the key
morphologic finding (Najafian et al., 2015). It is likely that GEnC
dysfunction precedes and possibly also contributes to podocyte
damage andmesangial expansion. In the past decade, evidence has
been provided that also GEnC dysfunction is present and plays an
important role in FSGS and DN development. GEnC dysfunction
occurs in the early stages of FSGS and DN, and is sufficient to
cause podocyte injury, proteinuria and activation of mesangial
cells, as will be discussed in detail below. An interdependent
relationship between GEnCs, podocytes and mesangial cells
exists, which involves bidirectional cross-talk with intercellular
signaling. Disturbed molecular cross-talk involving for example
endothelial nitric oxide synthase (eNOS) may result in reduced
GEnC-derived NO exposure to podocytes and can induce
podocyte damage, and eventually compromise glomerular
integrity (Yuen et al., 2012). Therapies aiming to prevent
endothelial injury have shown to reduce DN in animal models.
For example ETRA blockers have shown to restore the endothelial
glycocalyx and to reduce albuminuria in diabetic mice (Boels et al.,
2016). In diabetic patients, the ETRA blocker atrasentan reduced
urinary albumin to creatinine ratios (Lin et al., 2018).
Furthermore, renal elevation of cGMP, a key messenger for NO
signaling, resulted in a reduction of glomerulosclerosis in rats with
DN (Boustany-Kari et al., 2016). Given that GEnCs are the first
cells exposed to changes in circulating factors and that GEnC
behavior directly influences podocyte function, it is conceivable
that GEnC dysfunction may culminate in podocyte damage and
mesangial activation. It is, however, elusive which molecular
mechanisms underlie GEnC dysfunction and the subsequent
altered cross-talk with podocytes and mesangial cells. To
develop new treatment options in order to halt the progression
A B

FIGURE 3 | Glomerulosclerosis in DN (A) and FSGS (B). Light microscopy photomicrographs of a glomerulus showing DN with characteristic nodular mesangial
expansion (Kimmelstiel-Wilson lesions) (Periodic acid–Schiff staining) (A), and of a glomerulus with mild FSGS (methenamine-silver staining) (B). Nuclei are stained in blue.
Both glomeruli presenting glomerulosclerosis with increased glomerular extracellular matrix deposition and obliteration of capillaries. Scale bars represent 50 µm.
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of glomerular sclerotic disease, a deeper understanding of the
pathogenetic mechanisms underlying GEnC dysfunction and the
disturbed cross-talk is required. Hereunder, it is described that
GEnC dysfunction comprises multiple facets and is a pivotal and
early factor in the development of glomerulosclerosis and is at the
basis of developing proteinuria, podocyte dysfunction and
mesangial expansion in FSGS and DN.

Compromised Endothelial Glycocalyx in
DN and FSGS
Healthy GEnCs are covered with an endothelial glycocalyx. The
endothelial glycocalyx consists of glycoproteins, glycolipids and
proteoglycans with bound GAGs. Proteoglycans with bound
GAGs, of which heparan sulphate and hyaluronan constitute
up to 90%, are the main contributors to the function and
structure of the endothelial glycocalyx (Reitsma et al., 2007;
Slater et al., 2012; Garsen et al., 2014; Dane et al., 2015). In DN
and FSGS, the endothelial glycocalyx is reduced, characterized by
a loss of essential GAGs, including heparan sulphate and
hyaluronan, and reduced thickness (Nieuwdorp et al., 2006a;
Kuwabara et al., 2010; Satoh et al., 2010; van den Berg et al.,
2019). Environmental factors, such as elevated levels of glucose,
oxidative stress, or inflammatory stimuli, can modulate the
endothelial glycocalyx (Singh et al., 2011; Singh et al., 2013;
Kolarova et al., 2014). Inflammatory mediators like cytokines
and chemokines cause degradation of the endothelial glycocalyx.
Under physiological conditions, adhesion molecules on
endothelial are covered by the endothelial glycocalyx, and only
become accessible to leukocytes upon degradation of the
glycocalyx (Kolarova et al., 2014). In vivo, intravenous
administration of the bacterial heparan sulphate-degrading
enzyme heparinase enhances leukocyte adherence to
endothelial cells (Constantinescu et al., 2003). High glucose
and oxidative stress cause a reduction of heparan sulphate in
the endothelial glycocalyx on GEnCs in vitro (Singh et al., 2011;
Singh et al., 2013). Furthermore, high glucose reduces GAG
biosynthesis in GEnCs (Singh et al., 2011). Reduction of heparan
sulphate culminates in increased passage of albumin across a
GEnC monolayer (Singh et al., 2011; Singh et al., 2013). In line
with these in vitro data, a reduced endothelial glycocalyx
instantly causes proteinuria in vivo (Gil et al., 2012).
Preservation of the endothelial glycocalyx by the genetic
deletion of the heparan sulphate-degrading enzyme heparanase
prevents proteinuria and kidney failure in experimental DN and
glomerulonephritis (Gil et al., 2012; Garsen et al., 2016a). Loss of
endothelial hyaluronan and thereby the endothelial glycocalyx
induced by an endothelial-specific deletion of the hyaluronan
synthesis enzyme hyaluronan synthase 2 (HAS2) (van den Berg
et al., 2019) or by treatment with the hyaluronan-degrading
enzyme hyaluronidase (Meuwese et al., 2010) also induces
proteinuria (Meuwese et al., 2010; van den Berg et al., 2019)
and progressive glomerulopathy (van den Berg et al., 2019),
phenocopying the events in DN. In addition to the induction of
leukocyte adherence and proteinuria, degradation of the
endothelial glycocalyx also compromises GEnC signaling via
the loss of mechanosensing. Fluid shear stress induces the
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production of NO in endothelial cells via activation of eNOS
(Boo et al., 2002). Fluid shear stress-induced NO production is
almost completely inhibited upon enzymatic removal of heparan
sulphate in the endothelial glycocalyx (Florian et al., 2003), due
to loss of eNOS activation. Impaired eNOS activation has
negative effects on both GEnCs and podocytes in vivo as this
results in GEnC dysfunction and disturbed cross-talk with
podocytes (Yuen et al., 2012). A reduced endothelial glycocalyx
on GEnCs, in response to noxious stimuli, clearly induces
glomerular inflammation, proteinuria, and disturbs GEnC
signaling. Loss of the endothelial glycocalyx coincides with
coagulation activation (Nieuwdorp et al., 2006b) and could
possibly also be linked with complement activation (Boels
et al., 2013), which is described elsewhere (Nieuwdorp et al.,
2006b; Boels et al., 2013) and will not further be addressed here.

Compromised Barrier Function by
Endothelial Cell-Selective Adhesion
Molecule (ESAM)
The barrier function of GEnCs in FSGS or DN is mainly
compromised by a reduction of the endothelial glycocalyx but
additional factors that contribute to an increased permeability
have been described as well. The altered expression of endothelial
cell-selective adhesion molecule (ESAM) has been implied in the
loss of the endothelial cell barrier in DN. ESAM is a surface
protein laterally expressed on GEnCs that is part of the
endothelial tight junctions, and mediates the interaction
between endothelial cells. ESAM expression is reduced in the
early course of DN (4 weeks) and is associated with increased
vascular permeability in vitro. In vivo, genetic ablation of ESAM
causes proteinuria, a decrease in GEnC fenestrations and an
increased space between GEnCs through expanded tight
junctions, while no structural changes are observed in
podocytes, the GBM and mesangium (Hara et al., 2009).
Therefore, these observations provide evidence that solely
GEnC dysfunction (induced by ESAM deficiency) already leads
to glomerular paracellular albumin leakage with preserved
podocyte structure (Hara et al., 2009).

Pro-Inflammatory Phenotype
GEnC dysfunction also contributes to glomerulosclerosis via
obtaining a pro-inflammatory phenotype without having direct
effects on podocytes and mesangial cells. Inflammatory pathways
are involved in the pathogenesis of DN and FSGS (Navarro-
Gonzalez et al., 2011; Wada and Makino, 2013; Moreno et al.,
2018; Wilkening et al., 2020). Inflammation-related molecules and
pathways (but without pronounced inflammation) may promote
fibrotic and proliferative responses of mesangial cells, culminating
in glomerulosclerosis (Furuta et al., 1993; Fogo, 2007). GEnC
activation plays an important role in glomerular leukocyte
infiltration as GEnC activation enables leukocyte rolling,
adhesion, arrest and transmigration across the endothelial cell
lining (Ley et al., 2007). Upon GEnC activation, the expression of
chemokines and adhesion molecules on the cell surface of GEnCs,
such as E-selectin (Hirata et al., 1998), intercellular adhesion
molecule 1 (ICAM-1) and monocyte chemoattractant protein 1
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(MCP-1), are increased (Rao et al., 2017). The high glucose-induced
toxic metabolites advanced glycation end-products (AGEs), induce
the expression of ICAM-1 and MCP-1 in a Rho-kinase dependent
manner. AGE-induced activation of Rho-kinase could be a result of
activation of the receptor for AGEs (RAGE) (Hirose et al., 2010).
Also ET-1 can activate Rho-kinase in endothelial cells (Gien et al.,
2013). Blockage of Rho-kinase in DNmice reduces the expression of
ICAM-1 and MCP-1, and ablates concomitant glomerular
infiltration of macrophages and glomerulosclerosis. Since
macrophages also display Rho-kinase, an endothelial-specific
inducible Rho-kinase gene targeting approach would be needed to
confirm the role of endothelial Rho-kinase in the increased
expression of ICAM-1 and MCP-1 in DN. This implies that
AGEs-induced expression of adhesion molecules on GEnCs plays
a key role in the development of diabetic glomerulosclerosis (Rao
et al., 2017). Indeed, inhibition of AGEs reduces glomerulosclerosis
in diabetic mice (Wilkinson-Berka et al., 2002; Forbes et al., 2003).
In addition to the increased expression of adhesion molecules,
GEnCs show a reduced expression of endothelial-specific
molecule-1 (ESM-1), already in very early stages of DN. Under
physiological conditions, GEnCs constitutively express ESM-1 that
functions as an anti-inflammatory molecule and inhibits migration
and rolling of leukocytes. Four weeks after the induction of diabetes,
before the development of histological glomerular changes
indicative of DN, ESM-1 expression was decreased in glomeruli
of DN-susceptible mice compared to glomeruli of DN-resistant
mice. These observations demonstrate that in early stages of DN,
GEnCs display a pro-inflammatory phenotype which precedes
glomerular damage (Zheng et al., 2017).

Mitochondrial Damage
In DN and FSGS, GEnCs display oxidative mitochondrial DNA
lesions and mitochondrial oxidative stress, which is associated
with loss of GEnC fenestrations (Daehn et al., 2014; Qi et al.,
2017) and a loss of the endothelial glycocalyx (Ebefors et al.,
2019). Mitochondrial oxidative stress in GEnCs was mediated by
release of ET-1 by podocytes and the subsequent paracrine
ETRA activation in GEnCs (Daehn et al., 2014; Ebefors et al.,
2019). ET-1 induced an increase in heparanase mRNA
expression in GEnCs in vitro, which could explain the loss of
the endothelial glycocalyx upon release of ET-1 by podocytes in
vivo (Ebefors et al., 2019). Mitochondrial oxidative stress was
only observed in GEnCs and not in podocytes in streptozotocin
(STZ)-induced DN (Qi et al., 2017). Interestingly, mitochondrial
damage in GEnCs preceded podocyte loss, proteinuria, and
glomerulosclerosis in adriamycin-induced FSGS and STZ-
induced DN (Daehn et al., 2014; Qi et al., 2017). Scavenging of
mitochondrial superoxide by systemic administration of the
mitochondria-targeted potent antioxidant mitoTEMPO
prevented GEnC mitochondrial oxidative stress (Daehn et al.,
2014; Qi et al., 2017), the loss of fenestrations (Qi et al., 2017) and
the loss of the endothelial glycocalyx (Ebefors et al., 2019).
Attenuation of GEnC mitochondrial stress results in
ameliorated podocyte loss, demonstrating that mitochondrial
damage in GEnCs and the resulting production of
mitochondrial superoxide are important triggers for podocyte
loss (Daehn et al., 2014; Nagasu et al., 2016; Qi et al., 2017).
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eNOS Inactivation
eNOS inactivation, due to impaired dimerization and
phosphorylation, has been suggested to play an important role
in experimental DN (Cheng et al., 2012). In mice, resistant for
adriamycin-induced glomerulopathy, administration of
adriamycin induced massive proteinuria and severe
glomerulosclerosis upon eNOS deficiency. This observation
shows that loss of eNOS increases the susceptibility for the
development of adriamycin-induced nephropathy. GEnC
dysfunction, observed as loss of CD31 and apoptosis, appeared
3 days after adriamycin administration. Notably, podocyte
damage (i.e., loss of synaptopodin expression and apoptosis),
occurred only after 7 days, demonstrating that GEnC
dysfunction preceded podocyte damage in this model (Sun
et al., 2013). Part of these in vivo results could be explained by
adriamycin’s ability to induce inflammatory effects (Abou El
Hassan et al., 2003). In line with these findings it has been shown
that eNOS prevents heparanase expression and the development
of proteinuria in adriamycin-induced experimental FSGS
(Garsen et al., 2016b). In vitro, conditioned medium from
eNOS-overexpressing microvascular endothelial cells protected
podocytes from TNF-a-induced synaptopodin loss, suggesting
that “healthy” GEnCs protect podocytes from an inflammatory
insult in a paracrine manner by secreting protective mediators.
Which mediators are secreted by GEnCs and how these
mediators affect podocytes is not known (Sun et al., 2013).
Disturbed Crosstalk in the VEGFA-eNOS/
NO-ET-1
Disturbances in paracrine signaling of VEGFA, eNOS/NO, and
ET-1 between podocytes to GEnCs are critical and may
compromise glomerular integrity. Either increased or decreased
VEGFA expression, decreased eNOS signaling and increased ET-
1 signaling are all implicated in glomerular pathology. In mice,
gain of VEGFA in podocytes and lack of eNOS causes the
development of proteinuria and nodular glomerulosclerosis
(Veron et al., 2014). Podocyte-specific deletion of VEGFA
causes GEnC damage, observed as swelling of GEnCs, necrosis
and culminating in capillary obliteration (Eremina et al., 2008)
and loss of fenestrae (Eremina et al., 2003). Additionally,
podocyte-specific deletion of VEGFA also causes a loss of
GEnCs in diabetic mice (Sivaskandarajah et al., 2012). Whole-
body deletion of VEGFR2 results in a loss of viable GEnCs (Sison
et al., 2010). Also podocyte-specific VEGFA overexpression
results in loss of GEnCs and collapse of capillary loops
(Eremina et al., 2003) and causes advanced DN with
endothelial swelling (Veron et al., 2011), suggesting the
existence of a delicate balance between the protective and
deleterious effects of VEGFA, depending on the strength of
signaling. Deletion of eNOS causes GEnC dysfunction and
subsequently podocyte damage (Yuen et al. , 2012).
Administration of NO to cultured podocytes increases the
production of cyclic guanosine monophosphate (cGMP),
which controls the cytoskeletal structure of podocytes and
limits podocyte retraction (Sharma et al., 1992). Deletion of
eNOS and decreased availability of NO probably causes
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decreased cGMP production and subsequent podocyte retraction
and foot process effacement. Maintenance of endothelial eNOS
levels by the essential eNOS cofactor tetrahydrobiopterin
ameliorates DN (Kidokoro et al., 2013). Furthermore,
treatment with sepiapterin, a stable precursor of the eNOS
cofactor tetrahydrobiopterin or L-arginine, the nitric oxide
precursor induces a correction of eNOS dimerization and
phosphorylation and decreases albuminuria (Cheng et al.,
2012). In a recent paper, it was shown that ET-1 induces
heparanase expression in podocytes, which was associated with
a reduced glomerular endothelial glycocalyx in experimental
diabetes and which could be prevented in a podocyte-specific
ETR deficient mouse model nephropathy (Garsen et al., 2016c).
The mechanisms underlying the trafficking of podocyte-derived
VEGFA and heparanase against the filtration direction remain to
be identified, but may involve heparan sulfate present in
the GBM.

These studies demonstrate that the VEGFA-eNOS/NO-ET-1
signaling pathway is important for intraglomerular cross-talk
between podocytes and GEnCs, and the strength and direction of
signaling is critical for glomerular health. Disturbed cross-talk
causes glomerular damage. GEnCs are the first cells in contact
with all circulating factors in the blood. It is therefore likely that
GEnC dysfunction, culminating in altered secretion of signaling
molecules, occurs prior to, and is in fact (partly) responsible for
podocyte damage and activation of mesangial cells. GEnC
dysfunction might therefore be a leading initiating factor in the
development of both FSGS and DN.

Other Aberrant Molecular Signaling and
Expression Patterns
LRG1 and Enhancement of TGF-b/ALK1 Signaling
Recently, transcriptome profiling of GEnCs obtained from
diabetic mice showed increased gene expression of leucine-rich
a-2-glycoprotein (LRG1) in early stages of DN (Fu et al., 2018).
LRG1 is a protein present in the glomeruli and is predominantly
expressed by GEnCs. LRG1 is involved in angiogenesis and the
pathogenesis of DN by enhancement of endothelial Tumor
Growth Factor b (TGF-b)/activin receptor-like kinase 1
(ALK1) signaling. TGF-b signaling has previously been found
to be involved in the pathogenesis of DN by promoting cell
hypertrophy, ECM accumulation in the mesangium, and
increasing glomerular permeability (Chang et al., 2016). Global
genetic ablation of LRG1 led to a reduction of oxidative damage
and glomerular angiogenesis in diabetic mice. Concomitantly,
podocyte foot process effacement, podocyte loss, proteinuria, and
glomerulosclerosis were attenuated. These results exemplify that
alterations in GEnC gene expression and molecular pathways in
early disease mediate podocyte damage and glomerulopathy
(Hong et al., 2019). How increased LRG1 expression and TGF-
b signaling in GEnCs specifically relate to podocyte damage was
not addressed in these studies.

GEnC-Derived Exosomes
As a consequence of high glucose concentration, GEnCs show an
increased secretion of exosomes containing TGF-b1 mRNA. In
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vitro, these exosomes induced mesangial cells to proliferate and
produce ECM (Wu et al., 2016) and caused the induction of
epithelial-mesenchymal-transition in podocytes (Wu et al.,
2017). Injection of exosomes, derived from high glucose-
treated GEnCs in vitro, caused glomerulosclerosis in mice (Wu
et al., 2016). These studies together suggest that high glucose-
induced GEnC dysfunction increases the production of GEnC
exosomes, which induce phenotypic changes in mesangial cells
and podocytes in vitro, and culminate in glomerulosclerosis in
vivo (Wu et al., 2016).

Hypoxia-Induced Dysregulation of GEnCs
DN is associated with renal cortical hypoxia (O’Neill et al., 2015).
Hypoxia and concomitant dysregulation of hypoxia-regulated
transcriptional mechanisms in GEnCs are associated with the
pathogenetic mechanisms involved in both FSGS and DN
development. Endothelial PAS domain-containing protein 1
(EPAS1) is an isoform of hypoxia inducible factor (HIF), also
known as HIF-2a. Endothelial-specific deletion of EPAS1
induced the loss of GEnC fenestrations and enhanced
endothelial swelling in experimental hypertension-induced
secondary FSGS. Additionally, GEnC dysfunction was
associated with podocyte foot process effacement and
worsening of proteinuria and glomerulosclerosis. In the
presence of hypertension and EPAS1, podocyte lesions were
not observed, demonstrating that aberrant EPAS1-mediated
endothelial signaling associates with podocyte damage and
exacerbates FSGS (Luque et al., 2017). Potential mechanisms
for aforementioned results include a direct effect of EPAS1 on
endothelial-dependent vasoreactivity and modulation of
glomerular pressure resulting in hyperfiltration, as mechanical
stress is thought to contribute to FSGS. Hyperfiltration results in
glomerular hypertrophy, culminating in loss of podocytes and
aggravation of mechanical stress and glomerular damage.
Furthermore, EPAS1 was previously shown to associate with
the assembly of intercellular adherens junctions and enhanced
endothelial barrier integrity (Gong et al., 2015). The involvement
of dysregulation of hypoxia-associated mechanisms in GEnCs in
the pathogenetic pathways leading to glomerular disease is
further substantiated by a study showing that endothelial-
specific knockout of hypoxia inducible factor 1a (HIF1a)
prevents the development of proteinuria and collagen
deposition in hypertensive FSGS (Luo et al., 2015). These and
the previous mentioned results show that HIF1a is detrimental,
whereas EPAS1/HIF2a confers protection in glomerular disease.
An explanation could be that the target genes of HIF1a and
HIF2a differ in a context-dependent manner (Dengler et al.,
2014). Collectively, the aforementioned studies show that
disturbed hypoxia-driven signaling in GEnCs contributes to
the pathogenesis of glomerular damage in FSGS and DN.

GEnC Plasticity: Endothelial-to-
Mesenchymal Transition
GEnC dysfunction can induce the process of endothelial-to-
mesenchymal transition (EndMT). Whether EndMT is an
initiating event in glomerulosclerosis, and to which extent
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EndMT contributes to glomerulosclerosis is not known. EndMT is
a process in which endothelial cells show an abrogated endothelial
phenotype (such as loss of the expression of endothelial cell
markers CD31 and VE-cadherin) and loss of endothelial
characteristics such as an increased vascular permeability. Loss
of endothelial marker expression coincides with an increase of
mesenchymal marker expression such as a-smooth muscle actin
(aSMA) and fibroblast specific protein 1 (FSP-1), and the
production of ECM proteins (Dejana et al., 2017). In general,
endothelial cells are suggested to contribute to the number of
activated fibroblasts via EndMT. EndMT most probably
contributes to fibrosis and is observed in cardiac and cancer-
related fibrosis (Zeisberg et al., 2007), fibro-proliferative vascular
disease (Moonen et al., 2015), but also in experimental kidney
disease as shown in streptozotocin (STZ)-induced DN, unilateral
ureteral obstruction, and a mouse model for Alport’s syndrome
(Zeisberg et al., 2008). In these models, ~30%–50% of the activated
fibroblasts co-express the endothelial cell marker CD31 and
mesenchymal markers, such as aSMA and FSP-1 (Zeisberg
et al., 2008). In lineage tracing experiments in STZ-induced
diabetic mice, interstitial endothelial cells acquired a more
mesenchymal-like phenotype by expressing aSMA, already early
in development of renal interstitial fibrosis (Li et al., 2009). Also in
glomeruli of DN patients, EndMT is observed as demonstrated by
co-expression of endothelial and mesenchymal markers (Peng
et al., 2016; Liu et al., 2018). High glucose conditions and advanced
oxidation protein products will stimulate GEnCs to undergo
EndMT (Liang et al., 2016; Peng et al., 2016; Shang et al., 2017).
Together, aforementioned observations provide evidence that
GEnCs can acquire a mesenchymal-like phenotype and may
contribute to glomerular fibrosis in DN. The process of EndMT
is shown to be controlled by autophagy in endothelial cells
(Patschan et al., 2016; Wang et al., 2017). In diabetic mice,
deletion of autophagy in endothelial cells induced by the
endothelial-specific genetic deletion of Autophagy-Related Gene
5 (ATG5) caused endothelial cell lesions, podocyte foot process
broadening and effacement, and an increase of microalbuminuria.
These results exemplify the tight intercellular cross-talk between
GEnC and podocytes, in which GEnC dysfunction (induced by
ATG5 deficiency) leads to podocyte injury (Lenoir et al., 2015).
EPIGENETIC MODIFICATIONS: A
POTENTIAL MECHANISM INVOLVED IN
GENC DYSFUNCTION

The above mentioned facets of GEnC dysfunction in FSGS and
DN associate with altered gene and protein expression. A
quiescent endothelial phenotype is harbored by tight regulation
of the endothelial transcriptome, i.e., the full array of mRNA
transcripts produced (Brooks et al., 2002; Passerini et al., 2004;
Gimbrone and Garcia-Cardena, 2013). Epigenetic mechanisms
are involved in this regulation of the transcriptome of cells
(Eccleston et al., 2013). Epigenetic modifications can cause
changes in gene expression, without changing the DNA
Frontiers in Pharmacology | www.frontiersin.org 843
sequence (Gibney and Nolan, 2010) and are self-perpetuating,
dynamic, and reversible in response to the environment
(Beckerman et al., 2014). Many factors can influence epigenetic
profiles, including hyperglycemia, hypoxia, and inflammation
(Lu et al., 2017). Epigenetic modifications can either be
beneficial, or hamper GEnC function by changing the
transcriptome, resulting in GEnC dysfunction and potentially
disturbed cross-talk and pathogenesis of FSGS and DN.

Epigeneticmodifications includeDNAmethylation and histone
modifications. In general, DNAmethylation is associatedwith gene
repression by changing the biophysical characteristics of the DNA
to bind transcription factors. DNA methylation can also inhibit
gene expression viamethyl binding proteins, which in turn recruit
transcriptional co-repressors. DNA methylation at genes can
modulate transcriptional elongation and alternative splicing
(Gibney and Nolan, 2010; Lu et al., 2017).

In addition to DNA methylation, epigenetic mechanisms also
include modifications of histones. The best-characterized histone
modifications involve methylation, acetylation, and
phosphorylation. Histone modifications stably alter the
conformation of chromatin, and thereby either enhance or
inhibit gene transcriptional activity depending on the type of
modification and the position of the modified residue within the
histone (Kouzarides, 2007; Berger et al., 2009). DN is associated
with aberrant DNA methylation in proximal tubules and
peripheral blood cells (Maghbooli et al., 2014), and DNA
methylation is recently shown to be present in GEnCs (Fu
et al., 2018). Histone modifications have previously been
shown to be involved in the pathogenesis of DN and FSGS
(Sun et al., 2017; Majumder et al., 2018), but not much is known
about altered histone modification patterns in GEnCs in DN or
FSGS. Recently, transcriptome profiling of GEnCs obtained from
diabetic mice with early DN, showed that many of the genes with
decreased expression were involved in epigenetic regulation,
suggesting altered epigenetic regulation in GEnCs in early
stages of DN (Fu et al., 2018). Lysine-specific demethylase 6A
(KDM6a), also known as Ubiquitously Transcribed
Tetratricopeptide Repeat X Chromosome (UTX) was one of
the genes found to be downregulated. KDM6a is a histone
demethylase that specifically demethylates lysine 27 of histone
3. Methylation of lysine 27 of histone 3 (H3K27me3), mediated
by the methyltransferase Enhancer of Zeste Homolog 2 (EZH2),
is associated with gene repression (Tan et al., 2014). The role of
EZH2 and H3K27me3 in GEnCs in DN and FSGS is yet
unknown. In podocytes, H3K27me3 was previously shown to
be decreased in DN, which associated with the extent of
podocyte damage due to activation of Notch signaling and
loss of quiescence (Majumder et al., 2018). Previous studies
showed that EZH2 plays a role in endothelial homeostasis and
is a modulator of a number of endothelial cell functions, such
as endothelial-leukocytes interactions and angiogenesis (Dreger
et al., 2012; Maleszewska et al., 2016). This is indicative for a role
of altered epigenetic modifications in GEnCs resulting in aberrant
and pathologic gene expression contributing to the pathogenesis of
DN. Alteration of epigenetic modifications is shown to be
beneficial. For example, inhibition of the demethylases Jumonji
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C domain–containing demethylases (JMJD3) and UTX attenuated
podocyte injury in diabetic mice (Majumder et al., 2018). Also in
an unilateral ureteric obstruction mouse model, inhibition of
EZH2 and H3K27me3 attenuated renal fibrosis (Zhou et al.,
2016). Our current knowledge about the contribution of an
altered epigenetic landscape to GEnC dysfunction and disturbed
cross-talk in DN and FSGS is limited. Therefore, expanding our
knowledge on the potential causative role of epigenetic
modifications in GEnCs is highly needed. Herewith, specific
mediators involved in epigenetic pathways involved in GEnC
dysfunction and disturbed cross-talk can be considered potential
targets for future therapies in the pathogenesis of DN and FSGS.
SUMMARY AND FUTURE PERSPECTIVES

As outlined above, podocytes and mesangial cells have
previously received a lot of attention in research on the
pathogenesis of FSGS and DN. However, the studies
summarized in this review show that GEnC dysfunction
occurs in the early stages of FSGS and DN, and contributes to
podocyte damage and mesangial activation, eventually
culminating in glomerulosclerosis. Several of the studies
described here show that GEnC dysfunction precedes
podocyte damage, and is sufficient to develop proteinuria.
This provides a new insight on the role of GEnCs in the early
phase in development of FSGS and DN. GEnC dysfunction is
characterized by a compromised endothelial glycocalyx, an
inflammatory phenotype, mitochondrial damage and oxidative
stress, aberrant signaling and EndMT, resulting in proteinuria,
podocyte damage or loss, mesangial activation, and ultimately
Frontiers in Pharmacology | www.frontiersin.org 944
glomerulosclerosis (Figure 4). The glomerular endothelium
poses a potential efficacious cellular target to pharmacologically
halt disease development and progression in DN and FSGS.
Aberrant gene expression patterns largely contribute to GEnC
dysfunction and altered epigenetic mechanisms seem involved in
this aberrant transcriptome. To expand our understanding of the
cross-talk between GEnCs and other glomerular cells in health and
disease, isolated systems could be useful, such as co-cultured cells
and organoids. Co-culture systems of differentiated GEnCs and
podocytes (Li et al., 2016) and organoids (Hale et al., 2018) with
subsequent endothelial genetic and epigenetic characterization
and manipulation could be instrumental for understanding the
pathways involved in GEnC-podocyte cross-talk. Until now, the
knowledge of the epigenetic mechanisms involved in GEnC
dysfunction in DN and FSGS is scarce and needs to be expanded.

Transcriptome profiling of GEnCs in DN and FSGS is of
utmost importance to identify aberrantly expressed genes and
associated regulatory pathways. Epigenomic databases, such as
encyclopedia of DNA elements (ENCODE), in which chromatin
modifications on both DNA and histone proteins are mapped in
various cell lines (Consortium, 2012), could reveal potential
epigenetic modifications responsible for aberrant expression
patterns. Cell-specific delivery is needed to therapeutically
intervene in the epigenetic mechanisms involved in GEnC
dysfunction to avoid off-target cell effects. The identification of
epigenetic mechanisms involved in GEnC dysfunction can
effectively be studied with CRISPR-Cas9 technology in vitro
(Adli, 2018). However, cell-specific delivery of CRISPR-Cas is
still a huge challenge (Adli, 2018). The delivery of nucleotides,
such as siRNAs therefore is an approach with great potential for
intervention in GEnCs. As epigenetic modifications are regulated
FIGURE 4 | Proposed mechanism on the role of GEnC in the development of glomerular sclerotic diseases. Harmful environmental conditions, such as
hyperglycemia and hypoxia cause GEnC dysfunction. GEnC dysfunction is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype,
mitochondrial damage and oxidative stress, aberrant signaling and EndMT, resulting in proteinuria, podocyte damage or loss, mesangial activation, and ultimately
glomerulosclerosis.
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by epigenetic enzymes, intervening in the expression of
epigenetic enzymes can influence the amount of epigenetic
modifications. Endothelial cell-specific delivery of siRNA is
feasible and this strategy has previously been used to successfully
deliver siRNA to inflamed endothelial cells, including specifically
GEnCs, and to decrease the expression of the target gene of interest
(Kowalski et al., 2014; Choi et al., 2017).
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Potential Targeting of Renal Fibrosis in
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Diabetic kidney disease (DKD) is a major health problem and one of the leading causes of
end-stage renal disease worldwide. Despite recent advances, there exists an urgent need
for the development of new treatments for DKD. DKD is characterized by the excessive
synthesis and deposition of extracellular matrix proteins in glomeruli and the
tubulointerstitium, ultimately leading to glomerulosclerosis as well as interstitial fibrosis.
Renal fibrosis is the final common pathway at the histological level leading to an end-stage
renal failure. In fact, activation of the nuclear factor erythroid 2-related factor 2 pathway by
bardoxolone methyl and inhibition of transforming growth factor beta signaling by
pirfenidone have been assumed to be effective therapeutic targets for DKD, and
various basic and clinical studies are currently ongoing. MicroRNAs (miRNAs) are
endogenously produced small RNA molecules of 18–22 nucleotides in length, which
act as posttranscriptional repressors of gene expression. Studies have demonstrated that
several miRNAs contribute to renal fibrosis. In this review, we outline the potential of using
miRNAs as an antifibrosis treatment strategy and discuss their clinical application in DKD.

Keywords: diabetic kidney disease, microRNA, renal fibrosis, end-stage renal disease, antifibrosis treatment

INTRODUCTION

The International Diabetes Federation reported 425 million subjects with diabetes worldwide in
2017. This number is predicted to reach 629 million by the year 2045. Diabetic kidney disease (DKD)
is a major complication of diabetes and also one of the leading causes of end-stage renal disease
(ESRD). Approximately 30–40% of patients with diabetes will eventually develop DKD. Although the
exact mechanism underlying the development of DKD remains unknown, several causes in addition
to hyperglycemia are known to contribute to its development, including genetic, environmental, and
hemodynamic factors (such as hypertension, aging, arteriosclerosis, dyslipidemia, and proteinuria)
(Brook, 2006; Gohda et al., 2019).

The complex pathophysiology of DKD is caused by changes in renal hemodynamics, increased
oxidative stress as a result of glucose metabolic disorders, inflammatory processes, and enhanced
activity of the renin-angiotensin-aldosterone system. However, the final common pathway of all
these processes at the histological level is renal fibrosis, which inevitably results in ESRD.

Activated fibroblasts play a major role in the accumulation of extracellular matrix (ECM) under
pathological conditions, subsequently leading to renal fibrosis. The origin of these activated
fibroblasts has been extensively studied and understood to be derived from the differentiation
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and proliferation of resident fibroblasts, recruited from the bone
marrow, and via epithelial-to-mesenchymal transition (EMT)
and endothelial-to mesenchymal transition (EndMT). EMT
and EndMT are the processes by which renal tubular epithelial
cells and glomerular endothelial cells lose certain specific
characteristics while acquiring other phenotypic properties of
mesenchymal and fibroblast-like cells (Carew et al., 2012; LeBleu
et al., 2013).

In recent years, activation of the nuclear factor erythroid 2-
related factor 2 pathway by bardoxolone methyl and inhibition of
transforming growth factor beta (TGF-β) signaling by pirfenidone
have been envisioned as therapeutic targets for DKD, with a
number of clinical trials being currently underway (Chin et al.,
2018; Isaka, 2018).

MiRNAs, which are small noncoding RNA molecules (18–22
nucleotides), are transcribed from genomic DNA as primary
miRNA (pri-miRNA) transcripts. These molecules are
subsequently processed by the microprocessor complex which
consists of Drosha, a nuclear RNase III, and DGCR8 (DiGeorge
syndrome critical region gene 8), to yield the precursor miRNA
(pre-miRNA) molecule in the form of a hairpin-loop structure
(Hagiwara et al., 2013). Pre-miRNAs are then exported from the
nucleus to the cytoplasm via exportin 5 where they are further
processed in the cytoplasm by the ribonuclease Dicer, leading to
the removal of the terminal loop to generate a mature 22-bp
miRNA duplex. Finally, one of the duplex strands is loaded into the
RNA-induced silencing complex (RISC) while the other strand is
degraded. The RISC-miRNA complex recognizes the 3′-UTR of

the target mRNA through partially complementary nucleotide
sequences, ultimately resulting in the degradation of the target
mRNA (Figure 1) (Knight and Bass, 2001; Lee et al., 2002;
Nagalakshmi et al., 2011). In addition to 3′-UTRs, there are
some miRNAs that bind to 5′-UTRs or coding regions of
mRNAs and induce gene repression (Patel and Noureddine,
2012). A single miRNA can potentially modulate the expression
of several genes by targeting one ormore genes in various signaling
pathways and therefore impact multiple biological pathways and
cell function, contributing to disease (Gomez et al., 2016; Cao et al.,
2019). Studies have also demonstrated the nuclear accumulation of
miRNAs and roles in gene regulation by binding to promotor
regions and chromatin remodeling effects (Kim et al., 2008; Place
et al., 2008; Younger and Corey, 2011; Huang et al., 2012).

More recently, single nucleotide polymorphisms (SNPs) in
miRNAs and their connection to diabetes have also received
much attention. The SNPs have been shown to impact on every
aspect of miRNA biology, from transcription and biogenesis to
altered targeting of miRNA to their binding sites. More
specifically, some miRNA SNPs have been associated with type
1, type 2, and gestational diabetes, as well as diabetic
complications (Gong et al., 2012; Li and Lei, 2015; Moszyńska
et al., 2017; Zhuang and Wang, 2017; Chen et al., 2019; Zhang
et al., 2019); however the impact of miRNA-related SNPs in DKD
is beyond the scope of this review.

It is postulated that the interplays between metabolic and
hemodynamic pathways such as hypertension, the renin-
angiotensin-aldosterone system, and vasoactive hormones

FIGURE 1 | The biogenesis and function of MicroRNAs (miRNA) and the repression of gene expression. Biosynthesis of miRNAs begins in the nucleus and RNA
polymerase II-dependent transcription produces capped polyadenylated transcripts known as primary miRNAs (pri-miRNAs). Pri-miRNA is processed by the RNase III
endonuclease, Drosha, into a stem-loop structure known as the precursor miRNA (pre-miRNA). Pre-miRNA is transported from the nucleus to the cytosol by Exportin 5
and further processed by the second RNase III, Dicer, to generate miRNA duplexes. Posttranscriptional gene silencing occurs when the mature miRNA is then
loaded into the miRNA-induced silencing complex and binds to the 3′ UTR of target mRNAs with either complete or partial complementarity.
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plays an important role in the development and progression
of DKD (Cooper, 2001). We have previously reviewed the
role of miRNA associated with the metabolic and
hemodynamic pathways contributing to the progression of
DKD (Hagiwara et al., 2013). In recent years, several miRNAs
contributing to renal fibrosis and EMT have been reported
and it is thought that targeting these could lead to novel

antifibrotic therapeutic treatments in DKD (Reidy et al.,
2014; Lin et al., 2018). We have provided a list of
validated mature miRNAs and their targets relevant to
DKD in Table 1. In this review, we focus on the role of
miRNAs contributing to renal fibrosis in the context of DKD.
Some of these miRNAs related to fibrosis are summarized in
Figure 2 and are outlined below.

Antifibrotic MicroRNAs in Diabetic Kidney
Disease
Several miRNAs associated with DKD are considered to be
negative regulators of fibrotic pathways.

【let-7】
Let-7, one of the first miRNAs to be discovered, was in
Caenorhabditis elegans as an essential developmental gene
(Tolonen et al., 2014). Since then, the let-7 family of miRNAs
was found to be highly conserved in many species, playing a
key role as inhibitory factors regulating stem cell
reprogramming. This family also regulates the deposition
of the ECM in breast, pancreatic, and oral cancer cells
(Chang et al., 2011; Dangi-Garimella et al., 2011; Thornton
et al., 2012). Moreover, the let-7 family has also been
described as negative regulators of renal fibrosis. Renal let-
7 expression levels were found to be decreased in a mouse
unilateral ureteral obstruction (UUO) model, where
upregulation of TGF-β expression is normally observed.
Let-7b decreases ECM protein expression through a
mechanism that involves the TGF-β mothers against
decapentaplegic homolog (Smad) 3 pathway. This is
probably due to the direct inhibition of let-7 on the TGF-β
receptor-mediated signaling, as demonstrated in rat proximal
tubular epithelial cells (NRK52E) (Brennan et al., 2013;
Tolonen et al., 2014; Wang et al., 2014).

EndMT is also thought to be an important driver of renal
fibrosis. The let-7 family has anti-EndMT effects, and
interestingly, the fibroblast growth factor (FGF) receptor is
involved in EndMT through the regulation of let-7 expression
(Chang et al., 2011). The antifibrotic peptide N-acetyl-seryl-
aspartyl-lysyl-proline (AcSDKP) is one of the endogenous
substrates of angiotensin-converting enzyme (ACE) and

FIGURE 2 | Role of MicroRNAs (miRNAs) in the development and
progression of diabetic kidney disease. MiR-21 and miR-214 are classified as
fibrotic genes. In contrast, let-7, miR-29, and miR-200 families are classified
as antifibrotic genes.

TABLE 1 | Validated mature miRNAs relevant to DKD

miRNA Target gene

Antifibrotic hsa-let-7b-5p HMGA2, IGF2BP2, TGFBR1, JAG1, THBS1
hsa-miR-29a-3p COL4A1, COL4A2, HDAC4, LAMC2
hsa-miR-29b-3p SP1, HDAC4, TGFB1, IL6, LAMC2
hsa-miR-200a-3p ZEB1, ZEB2, KEAP1, TGFB2
hsa-miR-200b-3p ZEB1, ZEB2
hsa-miR-200c-3p ZEB1, ZEB2,

Profibrotic mmu-miR-29c-3p Spry1
hsa-miR-21-5p BCL2, CDC25A, PPARA, PDCD4, PTEN, SMAD7, TGFBR2,

TIMP3
hsa-miR-214-3p PTEN

DKD, diabetic kidney disease; miRNAs, MicroRNAs. Source: from miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php). Validated mRNA target genes relevant to fibrosis in DKD
are shown in bold face and are discussed in this review.
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hydrolyzed by it. Kanasaki et al. (Nagai et al., 2014) showed that
dual treatment with ACE inhibitor (ACEi) and AcSDKP
improved renal fibrosis by inhibiting EndMT more than ACEi
treatment alone in diabetic CD-1 mice. The antifibrotic and
anti-EndMT actions of AcSDKP have been associated with the
upregulation of let-7 levels and reduced TGF-β signaling in
these mice (Nagai et al., 2014; Nitta et al., 2016; Srivastava
et al., 2020). Let-7 downregulated high mobility group A2
(HMGA2) which is involved in EMT in human pancreatic
cancer cells. HMGA2 is a chromatin factor that is mainly
expressed in undifferentiated tissues and mesenchymal tumors
(Watanabe et al., 2009; Lamouille et al., 2014). Let-7 was
significantly downregulated and HMGA2 was markedly
upregulated in the tissue samples of DKD mice and renal
mesangial cells (MCs) cultured under high glucose conditions
(Wang et al., 2019). Let-7 also modulates the TGF-β pathway
that is a potent driver of EMT in renal tubular epithelial cells
(Wang et al., 2012a). Crosstalk between antifibrotic miRNA, in
particular miR-29, and Let-7 is also important in endothelial
cells homeostasis via a complex set of interactions involving
FGF receptor phosphorylation and TGF-β receptor activation.
This crosstalk is enhanced via the antifibrotic peptide
AcSDKP, whose renoprotective action appears to be via
maintenance of the cross-regulation between miR-29 and
let-7 (Srivastava et al., 2019). Indeed, there is extensive
crosstalk between many miRNAs and the pathways they
regulate since each miRNA can target multiple genes, often
in related pathways. The studying of individual miRNAs and
isolated targets is often difficult because of this regulatory
overlap.

【miR-29】
The human miR-29 family consists of hsa-miR-29a, 29b-1,
29b-2, and 29c. MiR-29b-1 and miR-29b-2 share the identical
sequence and are both referred to as miR-29b. The miR-29
family shares a common seed sequence and is generally
expected to act on the same target genes. The miR-29
family has been demonstrated to exert antifibrotic effects in
various organs, such as the heart and kidney (van Rooij et al.,
2008; Maurer et al., 2010; Cushing et al., 2011; Roderburg et al.,
2011; Xiao et al., 2012). Its other effects include the promotion
of apoptosis and the regulation of cell differentiation (Kriegel
et al., 2012).

Podocyte dysfunction is one of the detrimental features of
DKD. The depletion of nephrin integrity may be associated
with the development of diabetic podocytopathy. Lin et al.
(2014) demonstrated that the levels of the podocyte injury
marker desmin were increased, whereas the number of Wilms’
tumor-1-positive cells and the expression of nephrin were
decreased in the glomeruli of streptozotocin- (STZ-)
induced diabetic mice. Interestingly, the glomerular
expression level of miR-29a, but not of miR-29b and miR-
29c, was decreased in diabetic mice. When compared with
diabetic wild-type mice, glomerular hyperfiltration and
urinary protein levels in diabetic miR-29a-transgenic mice
were significantly reduced, although blood glucose levels
remained unaltered. Furthermore, miR-29a overexpression

reduced nephrin loss and improved podocyte integrity
probably through a mechanism involving reduction of
histone deacetylase 4 levels and ubiquitination in these
mice. Du et al. (2010) reported that miR-29a was
downregulated by high glucose or TGF-β in human
proximal tubule (HK-2) cells and that downregulated miR-
29a increased the production of collagen IV protein by directly
targeting the 3′UTR of col4α1 and col4α2.

Renal expression of miR-29 family members was decreased
with the progression of renal fibrosis in mice with UUO.
However, Smad3-deficient mice with UUO were protected
against renal fibrosis and increased renal miR-29
expression. Overexpression of miR-29b inhibited TGF-
β-mediated induction of collagens I and III in tubular
epithelial cells, whereas knockdown of miR-29b enhanced
the expression of these genes, identifying miR-29b as a
downstream inhibitor of TGF-β-/Smad3-mediated fibrosis
(Qin et al., 2011).

Although the miR-29 family is generally considered to be
protective against renal fibrosis, the data for miR-29c are
discordant. Long et al. (2011) identified that Sprouty
homolog 1 (Spry1), which plays a vital role in kidney
development and remodeling, was targeted by miR-29c.
Spry1 is considered to be a negative regulator of Rho
kinase through the noncanonical Wnt signaling pathway.
Several studies have reported that the inhibition of Rho
kinase reduced albuminuria and mesangial matrix
accumulation in experimental diabetes. High glucose
downregulated Spry1 protein expression through the
upregulation of miR-29c in podocytes, leading to
apoptosis. Consistent with these observations, specific
inhibition of miR-29c significantly reduced the high
glucose-mediated induction of apoptosis in podocytes. In
addition, miR-29c knockdown db/db mice exhibited
decreased albuminuria through the inhibition of apoptosis,
mesangial matrix accumulation, and increased fibronectin
protein expression in glomeruli.

【miR-200】
The miR-200 family consists of five species (-200a, -200b, -200c,
-429, and -141) encoded by two separate genomic loci on
chromosome 1 (Bracken et al., 2015). The mechanism through
which the miR-200 family protects against renal fibrosis may
involve prevention of tubular epithelial-to-EMT in proximal
tubule epithelial cells (pTECs). Several studies have focused on
the role of miR-200 and tubular EMT (Korpal et al., 2008; Oba
et al., 2010; Wang et al., 2011; Patel and Noureddine, 2012; Xiong
et al., 2012).

MiR-200a and miR-141 levels were found to be
downregulated very early in the kidney of UUO mice. TGF-
β mediated downregulation of the miR-200 family members is
dependent on Smad signaling in pTECs. The protection
against EMT by the miR-200 family is achieved by the
direct targeting the zinc finger E-box-binding homeobox
(ZEB) 1 and ZEB2 genes, which are transcriptional
repressors of E-cadherin (Xiong et al., 2012). In contrast,
the miR-200 family was upregulated in the UUO model,
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with the induction of miR-200b being the most pronounced.
Intravenous administration of miR-200b precursor improved
renal fibrosis in UUO and increased the expression of both
ZEB-1 and ZEB-2 (Oba et al., 2010).

Profibrotic MiRNA in Diabetic Kidney
Disease
【miR-21】
MiR-21 has been widely investigated because several of its targets
that are relevant to DKD and especially related to TGF-β were
found to induce the activation of phosphoinositide 3-kinase-
(PI3K-) AKT signaling (Godwin et al., 2010; Zhong et al., 2011).
Moreover, it has been reported that TGF-β upregulated miR-21
expression in the liver, heart, lung, and kidney in mice and was
involved in TGF-β-induced fibrosis in these tissues (Zavadil et al.,
2007; Davis et al., 2008; Zhong et al., 2011; Loboda et al., 2016).
TGF-β stimulation upregulated the expression of miR-21 in
pTECs. Interestingly, Smad3, but not Smad2, was involved in
the induction of miR-21 in response to TGF-β. Furthermore, mice
deficient in Smad3 were found to be protected against the
upregulation of miR-21 and renal fibrosis in the UUO model.
Indeed, miR-21 expression and renal fibrosis were promoted in
Smad2-knockout UUO mice. Gene transfer of a miR-21-
knockdown plasmid was found to cease the progression of
renal fibrosis in the UUO model. These results demonstrated
that Smad3 signaling promoted the expression of miR-21 in the
UUO mice (Zhong et al., 2011).

Dey et al. (2012) showed that phosphatase and tensin homolog
(PTEN) acts as a target gene of miR-21 in human glomerular
MCs. Upregulation of miR-21 by TGF-β stimulation
downregulated the expression of PTEN, resulting in the
activation of AKT and mammalian target of rapamycin
complex 1, which regulated MC hypertrophy (Mahimainathan
et al., 2006; Kato et al., 2009; Dey et al., 2012).

McClelland et al. (2015) reported that upregulation of miR-21
in the kidney was positively associated with the severity of fibrosis
and renal dysfunction in patients with DKD. Using rat pTECs,
they demonstrated that TGF-β promoted renal fibrosis by
inducing miR-21 which in turn targets Smad7 and PTEN, the
negative regulators of Smad3 and PI3K, respectively.

In diabetic KK-Ay mice, the expression of miR-21 was
observed predominantly in cortical glomerular and renal
proximal tubular cells. The expression of miR-21 was
positively correlated with the urine albumin–creatinine ratio,
as well as TIMP1, collagen IV, and fibronectin protein levels,
and negatively correlated with the creatinine clearance ratio and
MMP-9 protein levels (Wang et al., 2013).

Cell division cycle 25a (Cdc25a) and cyclin-dependent kinase
6 (Cdk6) were identified as targets of miR-21 in mouse MCs.
MiR-21 directed the inhibition of Cdc25a and Cdk6 and led to
MC hypertrophy via a mechanism that impaired cell cycle
progression. Furthermore, miR-21 antagonism in a STZ-
induced diabetic mouse model resulted in reduced fibrotic and
inflammatory gene expression, as well as reduced mesangial
expansion, podocyte loss, interstitial fibrosis, macrophage
infiltration, and proteinuria (Kolling et al., 2017).

Liu et al. (2019) reported that bone morphogenetic protein 7
(BMP-7), a human recombinant protein, inhibited EMT and
ECM synthesis and accumulation in rat renal tubular epithelial
(NRK-52E) cells cultured under high glucose conditions.
Moreover, injection of a BMP-7-overexpressing plasmid to
STZ-diabetic mice caused a significant decrease in miR-21
expression and upregulated Smad7 expression, thereby leading
to the prevention of EMT and ECM accumulation. These data
support the view that the protective effect of BMP-7 against renal
fibrosis in DKD is in part via regulation of miR-21 and Smad7
signaling.

The bioactive saponin Astragaloside IV (AS-IV), which is
extracted from astragalus root, is known to have therapeutic
effects on conditions such as liver fibrosis, DKD, and chronic
medical heart failure (Gui et al., 2006; Wang et al., 2012b; Guo
et al., 2017). Wang et al. demonstrated that AS-IV decreased
the expression of miR-21 in cultured mouse MCs, mouse
primary podocytes, and serum and kidney of diabetic KK-
Ay mouse. In MCs and podocytes, overexpression of miR-21
enhanced signaling via the TGF-β/Smad and the β-catenin
signaling pathways, which was abolished by AS-IV
treatment. It was reported that AS-IV improved renal
function and fibrosis by a mechanism that involved
prevented increased miR-21 expression and thereby
preventing podocyte dedifferentiation and MC activation in
mice with DKD (Wang et al., 2018).

【miR-214】
High expression levels of miR-214 have been detected in human
and animal models of kidney disease (Gomez et al., 2016). MiR-214
is cotranscribed with miR-199a as a single long noncoding RNA
from an intron on the complementary strand of the dynamin-3
gene. The upregulation of both miR-214 and miR-199a is driven
by the TWIST transcription factor and HIF-1-mediated
hypoxia (Lee et al., 2009; el Azzouzi et al., 2013; Chen et al.,
2014).

The antifibrotic effect was observed when the anti-miR-214
drug was administered to mice before the induction of UUO.
In the UUOmodel, inhibition of canonical TGF-β signaling did
not change endogenous miR-214 expression but blocked
Smad2/3 activation. In contrast, treatment with miR-214
antagonist in mice did not prevent the activation of Smad2/
3. Moreover, TGF-β inhibition when combined with deletion
of miR-214 resulted is superior renal protection than miR-214
deletion alone. It was demonstrated that miR-214 has a fibrotic
effect independent of Smad2/Smad3 activation (Denby et al.,
2014).

Gene profiling revealed a significant upregulation of renal
cortical miR-214 expression in diabetic db/db mice. In human
embryonic kidney cells 293, PTEN was identified as a target of
miR-214. Inhibition of miR-214 was observed to significantly
decrease the expression of collagen IV, α-SMA, and SM22. In the
same study, miR-214 inhibition also partially restored PTEN
protein levels in human MCs under high glucose conditions as
well as in db/db mice. Furthermore, this inhibition attenuated
albuminuria and mesangial expansion in diabetic mice.
Moreover, overexpression of PTEN was found to ameliorate
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MC hypertrophy, whereas knockdown of PTEN promoted MC
hypertrophy (Wang et al., 2016).

【miR-199a】
As previously mentioned, miR-199a is cotranscribed with miR-
214. While several studies have investigated miR-199a and its
relevance to tissue fibrosis, the role of miR-199a in kidney disease
and particularly in DKD has not yet been established.

The expression of miR-199a-5p was found to be increased in
TGF-β-stimulated lung fibroblasts, UUO mice, and mice with
CCl4-induced liver fibrosis, suggesting that dysregulation of miR-
199a-5p contributes to the fibrogenesis. In vitro studies have
demonstrated that miR-199a-5p is a key downstreammediator of
TGF-β signaling in lung fibroblasts where it targets caveolin-1, an
important mediator of pulmonary fibrosis (Lino Cardenas et al.,
2013).

Sun et al. (2015) demonstrated that miR-199a-5p expression
was dramatically increased in the renal tissue of patients with
autosomal dominant polycystic kidney disease (ADPKD), in the
renal tissue of the rat ADPKD model, and in human ADPKD in
the epithelial cell lining. The target gene involved here was found
to be cyclin-dependent kinase inhibitor 1C (CDKN1C)/p57.
Increased expression of miR-199a in the ADPKD renal tissue
may promote cell proliferation through the suppression of
CDKN1C.

Therapeutic Strategies for Diabetic Kidney
Disease Using MicroRNAs
Dysregulation of TGF-β by resident renal cells and infiltrating
inflammatory cells that are subject to stress in response to high
glucose, angiotensin II, and reactive oxygen species, is a key factor
contributing to renal fibrosis. TGF-β causes MC hypertrophy and
proliferation, the induction of podocyte apoptosis and
detachment from the glomerular basement membrane, ECM
synthesis and accumulation, and other structural and
functional changes in the kidney (Wu and Derynck, 2009;
Boor and Floege, 2011; Rask-Madsen and King, 2013; Meng
et al., 2016; Ma et al., 2019). Drugs targeting signal
transduction pathways such as TGF-β have been developed for
the treatment of DKD with limited success due to the important
functions these pathways exert in normal physiology. As detailed
earlier, several miRNAs have been implicated in the development
and progression of DKD. Recent efforts were focused on applying
the current knowledge regarding miRNA structure and function
to develop novel miRNA therapeutics for DKD. Novel strategies
were focused on inhibiting those miRNAs that are induced by
DKD or increasing the expression of renoprotective miRNA
(Lennox and Behlke, 2011; Trionfini et al., 2015; Lima et al.,
2018).

MiRNA mimics for therapeutic use are designed to mimic the
endogenous miRNA. They are double-stranded synthetic
oligonucleotides that are processed in cells to mimic the
endogenous function of miRNA, with improved stability and
chemical modifications that enable efficient delivery and entry

into target cells. The inhibition of endogenous miRNA may be
achieved by introducing anti-miRNA oligonucleotides that target
pri-miRNA, pre-miRNA, or mature miRNA to sequester or
remove endogenous miRNA (Weiler et al., 2006; Kato et al.,
2016). Although miRNAs are generally considered to be stable,
individual miRNAs can rapidly decay in certain cellular
environments (Trionfini et al., 2015). Several modifications
have been made to increase RNA stability in vivo, which
include 1) replacing the phosphodiester backbone with a
phosphorothioate backbone, 2) ribose 2′-OH group, 3) locked
nucleic acid modifications, and 4) peptide nucleic acid
modification (Lennox and Behlke, 2011; Cao et al., 2019).

MiRNA may be a novel and attractive target for the
treatment of DKD; however, several obstacles must be
overcome to move miRNA-based therapies into clinical
trials. Targeting miRNAs to the kidney remains a significant
challenge in order to avoid potential unwanted effects in other
tissues and organs, as well as off-target effects. Using miRNA
mimics or inhibitors in vivo is considered to be a promising
therapeutic strategy for the treatment of DKD. In fact,
successful delivery of mimics and inhibitors to the kidney
has been achieved via intravenous and subcutaneous
injections (Trionfini et al., 2015).

Miravirsen, an anti-miR-122, is the first drug targeted for
miRNA, and a phase II trial in patients with hepatitis C virus
infection has been conducted. The use of Miravirsen in
patients with chronic HCV genotype 1 infection
prolonged reduction of HCV RNA levels (van der Ree
et al., 2016). With further developments in this area, it is
envisaged that targeting various miRNAs would be
introduced to clinical practice as a nephroprotective
treatment approach in the future.

CONCLUSION

DKD is a major complication of diabetes and a leading cause of
ESRD. It is a complex multifactorial disease, which involves
several physiological pathways leading to fibrosis. In recent
years, various therapeutic agents targeting fibrosis have been
investigated for DKD treatment, and some clinical trials have
been conducted; however, no useful therapeutic agent has been
found till date. MiRNA profiling may provide a better
understanding of the complex pathways of DKD progression,
and inhibition or overexpression of miRNAmay lead to miRNA-
based therapeutics in the future.
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Knockdown of LncRNA-H19
Ameliorates Kidney Fibrosis in
Diabetic Mice by Suppressing
miR-29a-Mediated EndMT
Sen Shi1,2,3*†, Li Song4†, Hao Yu1, Songlin Feng1, Jianhua He5, Yong Liu1,2,3 and
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Diabetic nephropathy is the leading cause of kidney fibrosis. Recently, altered expressed
or dysfunction of some long non-coding RNAs (lncRNAs) has been linked to kidney
fibrosis; however, the mechanisms of lncRNAs in kidney fibrosis remain unclear. We have
shown that the DPP-4 inhibitor linagliptin can inhibit endothelial-mesenchymal transition
(EndMT) and ameliorate diabetic kidney fibrosis associated with DPP-4 protein levels via
the induction of miR-29. Here, we found that expression of the lncRNA H19 was
significantly up-regulated in TGF-β2-induced fibrosis in human dermal microvascular
endothelial cells (HMVECs) in vitro, and in kidney fibrosis of streptozotocin-induced
diabetic CD-1 mice. We also detected up-regulated H19 expression and down-
regulated miR-29a expression in the early and advanced mouse models of diabetic
kidney fibrosis. H19 knockdown significantly attenuated kidney fibrosis in vitro and in
vivo, which was associated with the inhibition of the EndMT-associated gene FSP-1. We
also found that the up-regulation of H19 observed in fibrotic kidneys associated with the
suppression of miR-29a in diabetic mice. H19, miR-29a, and EndMT contribute to a
regulatory network involved in kidney fibrosis, and are associated with regulation of the
TGF-β/SMAD3 singling pathway. This study indicates that inhibition of LncRNA H19
represents a novel anti-fibrotic treatment for diabetic kidney diseases.

Keywords: TGF-β/SMAD3 singling, kidney fibrosis, long non-coding ribonucleic acid-H19, endothelial-mesenchymal
transition, microRNA-29a

INTRODUCTION

Diabetic nephropathy (DN) is a major cause of morbidity and mortality in patients with both type I
and type II diabetes mellitus and is the leading cause of end-stage renal disease worldwide (Loeffler
and Wolf, 2015). Kidney fibrosis is usually the final outcome of many renal diseases, of which DN is
the leading cause (Kanasaki et al., 2013). Many cellular and molecular events occur in kidney fibrosis
such as the activation of interstitial fibroblasts, phenotypic conversion of tubular epithelial and
endothelial cells, extracellular matrix (ECM) overproduction, and microvascular dysfunction (Eddy
and Neilson, 2006). Our previous studies shown that the endogenous antifibrotic peptide N-acetyl-
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seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of
angiotensin-converting enzyme (ACE), is an orally available
peptide drug used to cure kidney fibrosis in diabetic mice.
AcSDKP treatment can restore the level of anti fibrosis
miRNAs in diabetic mice, such as miR-29s and let-7s (Nitta
et al., 2016).

DPP-4 inhibitors have been introduced into the market as
antidiabetic drugs. We have found that the DPP-4 inhibitor
linagliptin ameliorated kidney fibrosis in diabetic mice without
altering the blood glucose levels associated with the inhibition of
EndMT and the restoration of microRNA (miR) -29s (Kanasaki
et al., 2014). However, whether there are other RNA mechanisms
underlying diabetic fibrosis remains largely unclear.

Long non-coding RNAs (lncRNAs) are defined as transcripts
longer than 200 nucleotides with little or no protein-coding
ability (Ma et al., 2013) and have been reported to participate
in a lot of biological and pathological processes such as
carcinogenesis and chronic diseases including DN (Briggs
et al., 2015; Huarte, 2015; Uchida and Dimmeler, 2015; Li
et al., 2018). It has been reported that lncRNAs might
function as competing endogenous RNAs (ceRNAs) to
regulate the expression of miRNAs (Ma et al., 2013). H19 is a
3 kb lncRNA expressed in the nucleus and cytoplasm and is
highly expressed in embryogenesis. The expression of H19 is
significantly increased in some diseased conditions (Bartolomei
et al., 1991; Matouk et al., 2007; Dudek et al., 2010) and it has been
reported to play an important role in renal development
(Okamoto et al., 1997).

Xie found that H19 expression was significantly upregulated in
TGF-β2-induced HK-2 cell fibrosis and in unilateral ureteral
obstruction (Xie et al., 2016). Our preliminary study showed
that EndMT and the restoration of miR-29s is associated with
TGF-β2-induced kidney fibrosis (Kanasaki et al., 2014). Whether
there is a further connection between H19, EndMT, and other
signaling pathways remains unclear. Herein, we explored the
therapeutic potential and possible mechanisms of H19 in kidney
fibrosis in a streptozotocin (STZ) induced diabetic mouse model,
examining themechanism of H19 in kidney fibrosis in association
with miR-29a-mediated EndMT.

MATERIALS AND METHODS

Animal Model and Treatment
All animal experimental procedures were approved by the Ethics
Committee of the affiliated Hospital of Southwest Medical
University. Eight-week-old male CD1 mice (Dossy Laboratory
Animal Co. Ltd., Chengdu, China) were administered with a
single intraperitoneal injection of streptozotocin (STZ)
(200 mg/kg); control mice were injected with citrate buffer.
Two weeks after the STZ injection, mice with blood glucose
levels >16 mmol/L were confirmed as valid diabetic mice and
used for this study. Themice were divided into the following three
groups: control, DM and H19 knockdownt group.24 weeks after
the initiation of diabetes, the mice were sacrificed. Kidney tissues
were isolated and then stored at –80°C for histological, RNA and
protein analysis.

Cell Culture
Human dermal microvascular endothelial cells (HMVECs,
Lonza, Basel, Switzerland) were cultured in EGM (Lonza,
Basel, Switzerland) containing 10% fetal bovine serum (FBS,
Gibco) in a regular CO2 incubator at 37°C under 5% CO2/
95% air. When HMVECs reached 70% confluence, they were
treated with 5 ng/ml recombinant human TGF-β2 (Abcam,
Cambridge, UK) for 48 h to induce fibrosis.

Transfection
A specific duplex small interfering RNA (siRNA) and a short
hairpin RNA (shRNA) against H19, with their respective AAV
vectors were synthesized by Vigene Biosciences (Jinan, Shandong,
China). CD-1 mice were injected with AAV- shH19 at a dose of 2 ×
1012 viral genome particles per animal through the tail vein using an
insulin syringe and a 30-gauge needle. Mice were sacrificed 4 weeks
later. The expression of H19 was analyzed using quantitative real
time PCR (qPCR). For in vitro transfection studies, HMVECs were
passaged in 6-well plates with growth medium; they were then
transfected with 100 nM shRNA and an antagomiR against miR-
29a using Lipofectamine 2000 transfection reagent (Jinan,
Shandong, China), according to the manufacturer’s instructions.
HMVECs were transfected with shH19 followed by treatment with
TGF-β2 (5 ng/ml) for 48 h to induce fibrosis. The sequences of
shH19: GGATCCAGCAAGAGCAGAA. The sequences of
mimetics for miR29s: 29a-3p: UAGCACCAUCUGAAAUCG
GUUA, 29b-3p: UAGCACCAUUUGAAAUCAGUGUU, 29c-3p:
UAGCACCAUUUGAAAUCGGUUA. The sequences of
antagomiR for miR29s: 29a-3p: UAACCGAUUUCAGAUGGU
GCUA, 29b-3p: AACACUGAUUUCAAAUGGUGCUA, 29c-3p:
UAACCGAUUUCAAAUGGUGCUA.

Immunofluorescence
Frozen kidney sections (5 μm) were used for immunofluorescence
and the number of double positive cells labeled for FSP-1 (cat. no.
ab197896; Abcam) and CD31 (cat. no. ab9498; Abcam) were
measured. Briefly, frozen sections were dried and placed in
acetone for 10min at −30°C. Once the sections were dried, they
were washed twice in phosphate-buffered saline (PBS) for 5min and
then blocked in 2% bovine serum albumin/PBS for 30min at room
temperature. Thereafter, the sections were incubated in primary
antibody (1:400) for 1 h and washed in PBS (5min) three times.
Next, the sections were incubated with the secondary antibodies (1:
600) for 30min, washed with PBS three times (5min each), and
mounted with mounting medium containing DAPI. The
immunolabeled sections were analyzed with an Olympus
fluorescence microscope (Olympus Corporation, Beijing, China).

Histology
Mouse kidney specimens were processed for further investigation.
The tissues were fixed in 4% paraformaldehyde solution, dehydrated
with a series of graded ethanol and embedded in paraffin. Sections
(10 μm thick) were stained with hematoxylin and eosin (H&E) and
Masson’s trichrome staining (MTS) then photographed under an
optical microscope (Leica Imaging Systems, Cambridge, United
Kingdom). Masson’s trichrome labeled sections were imaged and
analyzed with ImageJ software, and fibrotic areas were quantified.
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RNA Isolation and Quantitative Real Time
PCR
Total RNA was extracted from renal tissue or HMVECs using
Trizol reagent (Foregene, Chengdu, China). Reverse transcription
was performed using the Premix RT EasyTM II (With gDNase)
(Foregene, Chengdu, China). All qPCR experiments were
performed using SYBR Green real time qPCR Master Mix
(Foregene, Chengdu, China) on a Bio-Rad CFX Connect Real
Time qPCR Detection system (Bio-Rad Laboratories, Inc.). For
the qPCR reactions, two ul cDNA was added to a 20 µl reaction
mixture containing 10 µl of 2 × Power SYBR Green qPCRMaster
Mix with 0.8 µl of each primer. The comparative Ct method was
used to detect target gene expression in the test samples relative to
control samples. All primers were synthesized by RIBOBIO
(Guangzhou, China). 18S RNA level was used as a reference.
The primers sequences: H19: 5’-AAGCAGATGGAACAGGTG
GC-3’ (forward) and 5’-CACAGCCAAACTGCCCAAAG-3’
(reverse); miR 29s: miR-29a-3p: 5 -UAGCACCAUCUGAAA
UCGGUUA, miR-29b-3p: 5i UAGCACCAUUUGAAAUCA
GUGUU, miR-29c-3p: 5 UAGCACCAUUUGAAAUCGGUUA.

Western Blotting
Protein from renal tissues and HMVECs was extracted using
protein lysis buffer (Beyotime Biotechnology Co., Ltd., Shanghai,
China). Approximately 20 μg of protein lysates were separated on
SDS-PAGE and blotted onto PVDF membranes using semidry
transfer. After blocking with 5% BSA/TBST, the membranes were
incubated with primary antibodies (1:1000) at 4°C overnight. The
membranes were washed thrice by TBST and incubated with
secondary antibodies (1:10000) for 1 h at room temperature. The
rabbit polyclonal to CD31 antibody (cat.:ab9498; Abcam), rabbit
polyclonal to alpha smooth muscle actin (cat: ab5694; Abcam),
rabbit polyclonal anti-GAPDH (cat:ab8245; Abcam),
rabbit polyclonal anti-TGFβ-receptor I (TGFβ R1) antibody
(cat:ab31013; Abcam), rabbit polyclonal anti-TGFβ-receptor-II
(TGFβ R2) antibody (cat:ab269279; Abcam), rabbit monoclonal
anti-fibroblast specific proteins (FSP1, sometimes displayed as
S100A4) antibody (cat:ab197896; Abcam), and rabbit anti-
SMAD3 (phospho S423 + S425) antibody (cat:ab40854;
Abcam) were purchased from Abcam (Cambridge, UK). The
IRDye 800CW goat anti-rabbit IgG secondary antibody (cat:926-
32211; LI-COR) was purchased from LI-COR (Nebraska, USA).

Wound Healing Assay
Wound healing assays were performed to evaluate the migration
rate of HMVECs transfected with or without H19 shRNA.
HMVECs were placed in six-well plates and using a pipette tip
at an angle of 30°, each well received a straight scratch simulating
a wound. After 24 and 48 h, the number of cells that had migrated
into the wounded area was counted under a light microscope
(Leica Imaging Systems, Cambridge, UK).

Cell Migration Boyden Chamber Assay
The bottom side of the migration chamber (cell culture insert; BD
Falcon, San Jose, CA) was coated with Matrigel (BD Biosciences,
US), and 1,000 HMVECs were passaged in the upper migration
chamber. Twenty-four h after passage, the medium was changed to

medium containing the transfection reagents in both the upper and
the bottom wells. After 48 h, the cells were washed with PBS,
followed by fixation with formaldehyde (3.7% in PBS) at room
temperature for 2 min. After washing twice with PBS, the cells were
permeabilized with 100%methanol for 20min at room temperature.
Then, cells were washed twice with PBS and stained with H&E. After
scraping off the nonmigratory cells (upper well) with a cotton swab,
the number of migrated cells was counted under a light microscope
(Leica Imaging Systems, Cambridge, UK).

Assessment of Urinary Albumin and
Creatinine Concentrations
Urinary albumin concentration was measured using a Mouse
Albumin ELISA quantitation kit (E90-134; Bethyl Laboratories
Inc; Montgomery, TX, USA). Assay was conducted according to
the manufacturer’s protocol. Urinary creatinine levels were
measured using a CREP2 kit (Roche Diagnostics, Meylan,
France) according to an established protocol. The urinary
albumin to creatinine ratio was calculated.

Assessment of Serum Creatinine
The concentration of serum creatinine was detected using a
creatinine assay kit (cat. no. C011-1; Nanjing Jiancheng
Bioengineering Institute). Assay was conducted according to
the manufacturer’s protocol.

Glomerular Filtration Rate
Mice were anesthetized with isoflurane and aminiaturized imager
device (Mannheim Pharma and Diagnostics, Mannheim,
Germany) was mounted onto the animald) back. The skin
background signal was recorded for 5 min before intravenous
injection of 150 mg/kg FITC-sinistrin (Mannheim Pharma and
Diagnostics, Germany). Then, trans-cutaneous fluorescence was
recorded for 1 h in conscious animals. GFR (ml/min.g.Kw) was
calculated from the decrease in fluorescence intensity over time
(ie, plasma half-life of FITC-sinistrin) and an empirical
conversion factor using the MPD Lab software (Mannheim
Pharma and Diagnostics, Germany). Results are means ± SEM.

Statistical Analysis
The data are expressed as means ± S.E.M. A one-way ANOVA
followed by a Tukey’s multiple comparison test was used to
determine significance which was defined as P < 0.05, if not
otherwise noted. GraphPad Prism software (Ver 7.0) was used for
the statistical analysis.

RESULTS

H19 Expression Was Significantly
Up-Regulated in TGF-β2-Induced HMVEC
and in the Fibrotic Kidneys of
Streptozotocin-Induced Diabetic
CD-1 Mice
To determine the pathological significance of H19, we analyzed
STZ-induced diabetic male CD-1 mice, a murine model with
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extensive diabetes-associated kidney fibrosis, and TGF-β2-induced
HMVECs (Sugimoto et al., 2007). Our qPCR analysis showed that
H19 expression was significantly higher in HMVECs treated with
TGF-β2 (Figure 1A). To further investigate the role of H19 in the
progression of kidney fibrosis, we analyzed the expression of H19 at
different time points after the initiation of diabetes (Figure 1B). We
found that in the early period of fibrosis, there was no difference in
H19 expression in the kidneys of control and STZ mice; however,
after 8 weeks the expression of H19 was significantly higher in the
kidneys of STZ mice when compared with control mice, which
exhibiting a time dependence. We show that 20 weeks after the
initiation of diabetes, the kidneys exhibited serious fibrosis; however,
our data showed that the expression ofH19was not different between
the 20 and 24 weeks. These data revealed that H19 expression was
associated with the progress and severity of kidney fibrosis.

H19 Knockdown Significantly Attenuated
Kidney Fibrosis in the Diabetic Kidney
To further examine the potential relationship between H19 and
kidney fibrosis, we treated diabetic mice (DM) with H19 shRNA
20 weeks after the initiation of diabetes and 4 weeks later harvested
their kidneys. Our qPCR results confirmed knockdown of H19 in
DM treated with shRNA (Figure 1A). We performed H&E and
MTS staining to evaluate fibrosis in the kidney. Twenty-four weeks
after the initiation of diabetes mice exhibited severe fibrosis when
compared with controlmice andH19 shRNA-treatedDM exhibited
restored normal kidney structures (Figure 1B). Our morphometric
analysis of the kidneys revealed that DM displayed significantly
enlarged glomeruli (Figure 1C), mesangial expansion (D), and
relatively large areas of Masson’s trichrome–positive interstitial
fibrosis (E), whereas restored normal kidney histology and
normal architecture were seen in H19 shRNA treated DM mice.
The glomerular functional assays such as Albumin Creatinine ratio
(Figure 1F), Glomerular Filtration rate (G) and Serum Creatinine
ratio (H) also support the result.

H19 Knockdown Ameliorated Kidney
Fibrosis Was Associated With the
Suppression of EndMT
Our previous study showed that EndMT plays an important role
in kidney fibrosis (Kanasaki et al., 2014). The inhibition of the

EndMT associated gene FSP-1 ameliorated kidney fibrosis in vivo
and in vitro. To confirm the connection between H19 and
EndMT, we analyzed EndMT in the kidney of H19 shRNA
treated DM mice. Western blot analysis showed the expression
of the endothelial marker CD31 was suppressed and the
mesothelial cell marker FSP-1 was induced in DM compared
with control mice, suggesting the induction of EndMT in the DM
kidney; however, when the DM were treated with H19 shRNA,
EndMT was repressed (Figure 2A). Immunofluorescence results
for FSP-1 (green) and CD31 (red) were in agreement with the
western blot data (Figure 2B). Furthermore, we found that TGF-
β2 induced EndMT was suppressed by H19 knockdown in
HMVECs (Figure 2C). These data revealed that H19
knockdown ameliorated kidney fibrosis is associated with the
suppression of EndMT in vivo and in vitro.

We previously showed that EndMT in kidney fibrosis in
mediated by miRNA-29 family members (Kanasaki et al.,
2014). Whether the protective role of H19 knockdown in
kidney fibrosis is related to miRNA-29 family member
regulation remains unknown. We therefore confirmed the
expression of the miRNA-29 family members in vivo and
in vitro and found that their expression was suppressed in the
diabetic kidney, in agreement with our previous research.
However, only the expression of miR-29a was restored with
H19 shRNA. There was no significant difference in miR-29b
and miR-29c expression with or without H19 knockdown
(Figures 3A–C). In vitro, we also found that TGF-β2
suppressed miRNA-29a could be restored by H19 shRNA in
HMVECs, while miR-29b and miR-29c could not (Figures
3D–F). Furthermore, we confirmed the levels of H19 with
individual miRNA-29 family member knockdowns; we found
that TGF-β2 induced higher H19 expression could only be
suppressed with knockdown of miR-29a in HMVECs but not
with miR-29b and miR-29c knockdown (Figures 3G–M). These
results confirmed that the H19 knockdown mediated kidney
fibrosis was associated with miR-29a-mediated EndMT.

H19 Knockdown Inhibits TGFB/SMAD3
Signaling in the Diabetic Kidneys
Many researches have shown that targeting TGF-β/SMAD3
signaling may represent a specific and effective therapy for
kidney fibrosis (Meng et al., 2015; Song et al., 2016). Our

FIGURE 1 | H19 expression is significantly up-regulated in TGF-β2-induced fibrosis in vitro and in the kidney of streptozotocin-induced diabetic CD-1 mice. (A)
qPCR analysis of H19 expression in HMVECs; (B) qPCR analysis of H19 kidney expression at different time points after the initiation of diabetes . The data are presented
as mean ± SE in each group (n � 5) of three independent experiments.
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FIGURE 3 | Ameliorated kidney fibrosis by H19 knockdown is associated with the suppression of the EndMT associated gene FSP-1. (A)Western blot analysis of
CD31, FSP-1, α-SMA, and GAPDH in vivo; (B) Immunofluorescence analysis of CD31 and FSP-1. The original magnification was ×400. Scale bar: 100 μm in each panel.
(C) Western blot analysis of CD31, FSP-1, α-SMA and GAPDH in vitro. The data are presented as meanent in each group (n � 5) of three independent experiments.

FIGURE 2 | H19 knockdown significantly attenuates fibrosis in the diabetic kidney. (A) qPCR analysis of H19 expression in diabetic mice treated with shRNA; (B)
Representative images of hematoxylin and eosin, and Masson’s trichrome staining used to evaluate fibrosis in the kidney. Scale bar: 100 µm. (C)–(E) Morphometric
analysis of kidney histology. (F) Albumin Creatinine ratio, (G)Glomerular Filtration rate (ml/min.g.Kw), (H) Serum Creatinine ratio. The data are presented as mean ± SE in
each group (n � 5) of three independent experiments.
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research also confirmed that DPP-4 inhibitors ameliorate kidney
fibrosis via TGF-β/SMAD3 signaling modulation (Kanasaki et al.,
2014; Shi et al., 2015; Shi et al., 2016). Here, we analyzed TGF-
β/SMAD3 signaling in vivo and vitro.Western blot analysis revealed
that the expression of TGFβR1, TGFβR2 and p-SMAD3 in the DM
kidney were significantly induced when compared with control
mice; however, expression was restored to control levels when DM
were treated with H19 shRNA (Figures 4A–D), suggesting that
STZ-induced TGF-β/SMAD3 signaling was suppressed by H19
knockdown. TGF-β2 induced TGF-β/SMAD3 was similarly
suppressed by H19 knockdown in HMVECs (Figures 4E–H).
Furthermore, wound healing cell invasion assays revealed that
TGF-β2 induced the migration of HMVECs, while H19
knockdown inhibited their invasion (Figures 4I,J). The Boyden
chamber cell migration assay also revealed that H19 knockdown
inhibited endothelial cell transmigration through Matrigel (Figures
4K,L). These data reveal that TGF-β/SMAD3 signaling may be the
key pathway in the protective role for kidney fibrosis in H19
knockdown in DM.

DISCUSSION

In this research, our preliminarily data confirmed that H19
expression was significantly up-regulated in TGF-β2-induced

HMVEC fibrosis and in the fibrotic kidneys of STZ induced
diabetic CD-1 mice. H19 knockdown significantly attenuated
kidney fibrosis in vitro and in vivo, which was associated with the
inhibition of the EndMT associated FSP-1.We also found that the
up-regulated H19 observed in diabetic kidneys may be associated
with suppressed levels of miR-29a in DM. H19, miR-29a, and
EndMT contribute to a regulatory network involved in kidney
fibrosis, all of which were associated with the regulation of the
TGF-β/SMAD3 singling pathway.

LncRNA, initially thought to be transcriptional noise, have
been intensely studied in recent years and they have been found to
participate in gene expression, mammalian development, and
various disease processes (Ponting et al., 2009; Caley et al., 2010).
Several lines of evidence indicate that lncRNAs are responsible for
renal cell apoptosis in DN (Kato et al., 2016; Long et al., 2016;
Chen et al., 2017; Tsai et al., 2018). Recent evidence demonstrates
that lncRNAs also mediate renal fibrosis in DN, such as the
lncRNA NEAT1 and lncRNA ASncmtRNA-2 which induce
kidney fibrosis in DN, and 1700020I14Rik and
lncRNAGm4419 which attenuate kidney fibrosis in DN (Gao
et al., 2017; Yi et al., 2017; Huang et al., 2019). In this study, we
found that H19 knockdown can attenuate kidney fibrosis in vivo
and in vitro. Xie et al. (2016) also found that H19, along withmiR-
17 and fibronectin, contributed to a regulatory network involved
in renal fibrosis.

FIGURE 4 |H19 knockdown ameliorated kidney fibrosis was associated with miR-29a. (A)–(C) qPCR analysis of miRNA 29a/b/c expression in vivo; (D)–(F) qPCR
analysis of miRNA 29a/b/c expression in vitro; (G) qPCR analysis of miRNA 29a expression with diffreent treated. qPCR analysis of lncRNA-H19 expression when (H)–(J)
knockdown miRNA-29a/b/c (the antagonist of miRNA 29a/b/c) and (K)–(M) over expression miRNA-29a/b/c (the mimic of miRNA 29a/b/c) in vitro. The data are
presented as meanent in each group (n � 5) of three independent experiments.
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Inhibition of kidney fibrosis is a fundamental process in research
on developing therapies against kidney disease, although kidney
fibroblasts have been implicated in kidney fibrosis pathogenesis,
inoculating only kidney fibroblasts as therapeutic targets would be
challenging. The inhibition of kidney fibrosis and the restoration of
normal kidney structure are fundamental processes to combat the
progression of DN. Our previous research found that EndMT is very
important in the progression of kidneyfibrosis (Kanasaki et al., 2014).
In our analysis, the expression of H19 was induced in the diabetic
kidney in a time dependent manner and was associated with the
progress and severity of kidney fibrosis. H19 knockdown inhibited
kidney fibrosis and restored normal kidney structure. These data
confirmed that EndMT is a key factor in the progress of kidney
fibrosis. We know that mRNA, miRNA, and lncRNAs can
communicate with each other by competing for shared miRNA
targets (Tay et al., 2014; Srivastava et al., 2016). To further examine
the mechanism of H19 in fibrosis, we analyzed the miR-29 family
members which have been shown to have an antifibrotic role in DN
(Denzler et al., 2014; Kanasaki et al., 2014; Srivastava et al., 2016).We
revealed that H19 knockdown can restore the suppressed miR-29a in
the diabetic kidney and in TGF-β2-fibrosis-induced HMVECs. The
TGF-β/SMAD signaling pathway being key pathway to both. Thus,
H19, miR-29a, and EndMT contribute to a competing endogenous
RNA regulatory network. This regulatory network maintained a
relative balance to avoid abnormal kidney fibrosis. When H19
was induced in kidney fibrosis, elevated H19 expression could
alleviate the repressive effects of miR-29a and lead to increased

EndMT associated gene expression, which is a target gene of
miRNA-29 family. Similar H19 regulatory mechanisms have
previously been reported such as the finding that the H19/miR-
675 pathway inhibited cell growth and Igf1r expression (Keniry et al.,
2012); H19/Let-7-mediated inhibition on the target HMGA2-
mediated epithelial to mesenchymal transition (Ma et al., 2014);
and the H19/miR-675 axis inhibits prostate cancer metastasis via
affecting TGF-β1 expression (Zhu et al., 2014). Thus, H19 may act as
a competitive endogenous RNA. The regulatory network integrates
the transcriptional and posttranscriptional regulatory network of
kidney fibrosis.

In summary, our findings reveal high expression of the
lncRNA H19 in the diabetic kidney and in TGF-β2 induced
fibrosis in HMVECs. Inhibition of H19 attenuated kidney
fibrosis and restored normal kidney structure (Figure 5).
Interestingly, inhibition of H19 only altered miR-29a levels,
not miR-29b or miR-29-c levels, inactived the TGF-β/SMAD
pathway, in order to down-regulate EndMT, leading to the
suppression of kidney fibrosis. All together our data suggest
that suppression of H19 plays an anti-fibrotic role, which may
serve as a novel therapeutic target for DN.
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FIGURE 5 | TGF-β/SMAD signaling protects the kidney from fibrosis in H19 knockdown in HMVECs. (A)–(D)Western blot analysis of TGFβR1, TGFβR2, p-SMAD3
and GAPDH in the kidney; (E)–(H)Western blot analysis of TGFβR1, TGFβR2, p-SMAD3 and GAPDH in HMVECs; (I)–(J)Wound healing cell invasion assay; (K)–(L) The
Boyden chamber cell migration assay. The data are presented as meanent in each group (n � 5) of three independent experiments.
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Loss of Mitochondrial Control Impacts
Renal Health
Swayam Prakash Srivastava1,2*, Keizo Kanasaki 3 and Julie E. Goodwin1,2*
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Disruption of mitochondrial biosynthesis or dynamics, or loss of control over mitochondrial
regulation leads to a significant alteration in fuel preference and metabolic shifts that
potentially affect the health of kidney cells. Mitochondria regulate metabolic networks
which affect multiple cellular processes. Indeed, mitochondria have established
themselves as therapeutic targets in several diseases. The importance of mitochondria
in regulating the pathogenesis of several diseases has been recognized, however, there is
limited understanding of mitochondrial biology in the kidney. This review provides an
overview of mitochondrial dysfunction in kidney diseases. We describe the importance of
mitochondria and mitochondrial sirtuins in the regulation of renal metabolic shifts in diverse
cells types, and review this loss of control leads to increased cell-to-cell transdifferentiation
processes and myofibroblast-metabolic shifts, which affect the pathophysiology of several
kidney diseases. In addition, we examine mitochondrial-targeted therapeutic agents that
offer potential leads in combating kidney diseases.

Keywords: mitochdrial damage, mitochondrial sirtuins, renal damage, kidney fibrosis, diabetic kidney disease,
glycolysis, fatty acid oxidation, polycystic kidney disease

INTRODUCTION

Chronic kidney disease (CKD), which affects 10–15% of people, is a leading cause of death worldwide
(Levin et al., 2017). Almost 75% of CKD incidents are related to diabetic kidney disease (DKD) and
linked-hypertensive kidney disease (HKD) (Levin et al., 2017). Angiotensin-converting enzyme inhibitors
(ACEis) and angiotensin II receptor blockers (ARBs) are two classes of anti-hypertensive agents that can
effectively reduce the incidence of end-stage kidney disease and are first-line drugs for therapy in diabetic
kidney disease (Laverman et al., 2004; Palmer et al., 2015; Gu et al., 2016; Srivastava et al., 2020a; Srivastava
et al., 2020b). In addition, the renal protective nature of SGLT-2 inhibitors, DPP-4 inhibitors and statins
has been studied in the mouse models and controlled clinical trials (Kanasaki et al., 2014; Edwards, 2016;
Wanner et al., 2016; Bae et al., 2019; Hanssen and Jandeleit-Dahm, 2019). However, there remains a lack
of efficacious drugs that can retard CKD or DKD (Zelnick et al., 2017). This lack of progress is likely due
to poor understanding of the mechanisms of kidney diseases (Breyer and Susztak, 2016). Renal fibrosis is
the final consequence of all types of progressive kidney disease, including DKD, that results in end-stage
renal disease (ESRD) (Allison, 2019; Cooper and Warren, 2019). Renal fibrosis results in damage to
normal cellular functions and structures and is a result of severe inflammation and loss of control over
wound healing mechanisms which ultimately lead to an excess accumulation of extracellular matrix
(ECM) and fibrosis-associated proteins (Srivastava et al., 2019b). Renal fibroblasts accumulation play a
crucial role during fibrogenic processes however, the genesis of fibroblasts is not clear and is a matter of
ongoing discussion (Srivastava et al., 2019b).
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The primary functions of the kidneys are to balance electrolytes,
acid-base status and to maintain water homeostasis and remove
toxic substance from the body, all of which are highly energetic
processes. Since catabolism of free fatty acids produces more ATP
than does catabolism of glucose, kidney tubule segments aremostly
dependent on fatty acid oxidation (FAO) and have enormous
numbers of mitochondria; they utilize mitochondrial oxidative
phosphorylation (OXPHOS) to supply their energy demands (Kang
et al., 2015). Mitochondrial synthesis needs the expression of both
nuclear- and mitochondrial-coded proteins (Tanaka et al., 2020).
The production of cellular energy, in the form of ATP, is the
primary function of this organelle (O’Rourke and Blatter, 2009;
Kuhlbrandt, 2015). However, the mitochondrion also participates
in calcium homeostasis, heat production, cell-signaling and
apoptosis (O’Rourke and Blatter, 2009). The metabolic enzymes
in the mitochondria are highly regulated by cellular energy status
and play an important role in metabolic control (O’Rourke and
Blatter, 2009).Doleris et al. reported mitochondrial cytopathy cases
from patients who had glomerulosclerosis (Doleris et al., 2000).M2-
to-M1 macrophages conversion had been observed in the ESRD
patients and which are associated associated with metabolic shifts
from oxidative phosphorylation to glycolysis, indicates that
suppression of mitochondrial oxidative phosphorylation is
positively linked with inflammation and CKD (Ravi et al., 2014;
Quadri et al., 2019). Loss of control over mitochondrial biogenesis,
mitochondrial function or regulation affects fibrogenic phenotypes
in kidney cells (Qin et al., 2018; Srivastava et al., 2018; Chung et al.,
2019). The association among renal function, FAO, and bio-
energetics suggests that alterations in tubule cell metabolism lead
to CKD, DKD and activation of fibrogenic events (Kang et al.,
2015). Over-expression of peroxisome proliferator-activated
receptor alpha (PPARa) and peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1a) in epithelial cells,
or pharmacological activation of PPARa by fenofibrate were
reported to be renal protective in several mouse models of renal
fibrosis (Kang et al., 2015).

The Unifying hypothesis suggests that defects in
mitochondrial oxidative phosphorylation is a shared pathway
in the pathogenesis of microvascular complications of diabetes,
including diabetic nephropathy and CKD progression (Brownlee,
2005) however, the various aspects and validity of this theory
have been challenged and remain to be carefully addressed
(Galvan et al., 2017).

The present review will asses the association between the loss
of control over mitochondrial bioengergetics in CKD
development and, provide new insights into the role of
mitochondrial sirtuins in the regulation of kidney diseases. A
comprehensive analysis and its underlying mechanisms offer
future therapeutic approaches in the management of kidney
diseases.

LOSS OF MITOCHONDRIAL CONTROL IN
KIDNEY DISEASE

Evidence suggests that excessive production of mitochondrial
ROS is linked to cellular damage and progression of renal disease

(Galvan et al., 2017; Forbes and Thorburn, 2018). Autophagy
plays an essential role in the homeostasis of diverse cell types
including kidney endothelial cells. Autophagy defects in
endothelial cells lead to IL-6 (interleukin 6)-dependent
endothelial-to-mesenchymal transition (EndMT) and organ
fibrosis with metabolic defects in mice (Takagaki et al., 2020).
Mitophagy is the removal of damaged mitochondria and
recycling of useful components. Identification of the
Parkin–phosphoubiquitin complex, PINK–ubiquitin complex
and prohibitin 2, a mitophagy receptor contribute to
mitophagy (Kumar et al., 2017; Schubert et al., 2017; Wei
et al., 2017). Mitophagy regulatory mechanisms can be
ubiquitin-dependent or independent (Zachari and Ktistakis,
2020). In addition, mitochondrial dynamics are regulated by
the PINK1–Parkin pathway for proteasomal degradation by
targeting mitofusins (MFN) and Miro (outer mitochondrial
membrane protein) (Shirihai et al., 2015). In receptor-
mediated mitophagy, PHB2 (prohibitin 2) and cardiolipin
interactiom play a crucial role in LC3 impairment (Wei et al.,
2017; Zhou et al., 2020b). In diabetic nephropathy, mitochondrial
debris accumulation has been observed in the kidneys, suggesting
that defective clearance of abnormal mitochondria is associated
with disease (Sheng et al., 2018; Zhang et al., 2018). Calpain10,
which is a mitochondrial cysteine protease, is suppressed in
streptozotocin-induced diabetic rats which activate PINK1
(Smith et al., 2012). Calpain10 suppression causes reduction in
mitochondrial fusion and induction of mitochondrial fission and
autophagy, suggesting that calpain10 negatively regulates
mitochondrial autophagy in early diabetics (Smith et al.,
2012). However, researchers believe that in early diabetes,
removal of defective mitochondria takes place and
mitochondrial autophagy is compensatorially increased, which
is correlated with progression of diabetic nephropathy (Smith
et al., 2012; Yamahara et al., 2013).

NLRP3 inflammatory bodies regulate the secretion of IL-1β
and IL-18, which are the critical for the inflammatory response
(Kelley et al., 2019). Activated NLRP3 is linked to the activation of
caspase-1 (Kelley et al., 2019). This activated caspase-1 enhances
the formation of IL-1β and IL-18 by cleaving pro-IL-1β and pro-
IL-18 (Kelley et al., 2019). These interleukins are involved in both
the inflammatory response and the innate immune response in
the kidney cells. Higher ROS or mtDNA release activate NLRP3
inflammasome formation, whereas mitochondrial autophagy
inhibits NLRP3 inflammasomes (Zhuang et al., 2015).

ER stress is characterized by alteration in calcium homeostasis,
redox imbalance, impaired protein glycosylation and causes
misfolded proteins to gather in the ER lumen (Molino et al.,
2017). ER-mitochondria crosstalk and contact sites are crucial in
autophagosome formation (Molino et al., 2017). The ER-derived
mitochondria-associated membranes (MAMs) form contact sites
between the ER and mitochondria (Molino et al., 2017). MAMs
are involved in lipid biosynthesis, mitochondrial dynamics and
bioenergetics, and autophagy (Molino et al., 2017). MAMs
transmit stress signals from the ER to mitochondria (Molino
et al., 2017). In MCD patients, ER stress and higher release of
mitochondrial ROS accelerate the interstitial fibrosis
(Lindenmeyer et al., 2008). The elevated ROS level, ER
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dysregulation, and inflammasome are major factors in the
development of renal fibrosis in diabetic nephropathy (Quadri
et al., 2019).

LOSS OFMITOCHONDRIAL FUNCTIONS IN
GLOMERULAR CELLS

Glomerular disease is often linked to mesangial cell proliferation
and extracellular matrix deposition (Scindia et al., 2010).
Increased mesangial proliferation leads to ECM accumulation
and glomerular sclerosis (Scindia et al., 2010). Under high glucose
conditions, excessive ROS level, is associated with a decrease in
MnSOD activity, mtDNA copy number, mitochondrial
membrane potential, and ATP production (Xu et al., 2012).
Excessive ROS activate nuclear factor-κB signaling and
activated protein-1 and induce TGFβ1 which is associated with
inflammation, ECM synthesis, and glomerular sclerosis in
diabetic kidneys (Jha et al., 2016). ROS promote mesangial cell
proliferation and ECM synthesis by inducing ERK1/2) (Chen
et al., 2018). Cyt bc1 complex inhibitor stigmatellin and the
respiratory chain complex I inhibitor rotenone inhibit mesangial
proliferation and its associated ECM synthesis by suppressing
ROS production (Huang et al., 2009; Akool et al., 2012).

Podocytes, GBM and glomerular endothelial cells constitute
the glomerular filtration barrier (Garg, 2018). Disruption in the
permeability of the glomerular filtration barrier leads to
proteinuria (Garg, 2018). The complex formed by nephrin,
CD2AP, and podocin plays an important role in maintaining
the homeostasis of the glomerular filtration barrier (Mallipattu
and Kravets, 2020). Mutations in the mitochondrial gene A3243G
cause podocyte injury such as abnormalities in podocyte
mitochondria size and structure, aberrant podocyte cell bodies
and foot process fusion (Hotta et al., 2001). The puromycin
aminonucleoside-induced mouse model of glomerular sclerosis is
associated with a defect in oxidative phosphorylation, suppressed
mtDNA copy number, and downregulated expression of
respiratory chain enzyme complex subunits (Hagiwara et al.,
2006). Suppressed level of oxidative phosphorylation results in
podocytes cell apoptosis (Zhou et al., 2019). Mitochondrial fission
caused by high-glucose leads to effacement of podocyte foot
processes, through Drp-1 phosphorylation by Rho-associated
coiled-coil-containing protein kinase 1 (ROCK1) (Wang et al.,
2012). In addition, podocytes have shown higher mTORC-
associated autophagy levels while being unable to regenerate
(Cinà et al., 2012) and, as a result of compensatory podocyte
loss, parietal cells show fibrogenic responses (Hakroush et al.,
2014).

LOSS OF MITOCHONDRIAL FUNCTION
AND METABOLISM IN TUBULAR
EPITHELIAL CELLS
Fibrosis in renal tubules is a final common outcome in all kinds of
chronic kidney disease which lead to ESRD (Efstratiadis et al.,
2009; Liu et al., 2018).TECs are highly susceptible to damage (Liu

et al., 2018). Proteinuria, lipid loading, aberrant levels of
cytokines, ischemia, hypoxia, and hyperglycemia can damage
tubular functions (Liu et al., 2018). Injured TECs can undergo
phenotypic transitions into mesenchymal cell phenotypes via
epithelial-to-mesenchymal transition (EMT) (Grande et al.,
2015; Lovisa et al., 2015; Srivastava et al., 2019a). During EMT
events, altered sets of inflammatory cytokines disrupt normal
TECs structure and lead to fibrosis (Grande et al., 2015; Lovisa
et al., 2015; Srivastava et al., 2019a). mtDNA depletion and loss of
control over mitochondrial function induce EMT process and the
recovery of mtDNA and mitochondrial function can reverse the
EMT phenotype via gain of endogenous E-cadherin,
downregulation of α-SMA expression, and restoration of an
epithelial cell phenotype (Yuan et al., 2012). In folic acid-
induced and urinary obstruction renal fibrosis models,
deterioration in mitochondrial structure and function can
cause mitophagy and apoptotic necrosis, which lead to
defective fatty acid metabolism and accelerate interstitial
fibrosis (Kang et al., 2015; Bhargava and Schnellmann, 2017).
Induction of transforming growth factor (TGF)-β signaling is
involved in the pathogenesis of renal fibrosis (Meng et al., 2015;
Chung et al., 2018). The TGFβ/Smad3 pathway plays an
important role in EMT and EndMT events (Srivastava et al.,
2013). EMT and EndMT processes are key phenomena in the
formation of cancer-associated fibroblasts in diabetes (Amar
et al., 2020; Srivastava and Goodwin, 2020).TGFβ impairs
antioxidant status by enhancing pro-oxidant NADPH oxidase
(Wan et al., 2016).

In contrary to previous findings (Hickey et al., 2011), found
higher expression of key mitochondrial proteins from renal
biopsies from diabetic nephropathy patients, suggesting
mitochondrial biogenesis in renal fibrosis (Hickey et al., 2011).
The level of c-AMP is positively related with mitochondrial copy
numbers and ATP levels in the tubules (Ding et al., 2018).
Restoring cAMP levels by rolipram, a phosphodiesterase
(PDE4) inhibitor, improves kidney fibrosis by inhibiting the
mitochondrial biogenesis pathway regulator C/EBP-β /PGC1-α
(Ding et al., 2018). It was observed that monoallelic mutations in
the gene encoding glycine amidinotransferase (GATM), a renal
proximal tubular enzyme in the creatine biosynthetic pathway,
caused the abnormal aggregation of GATM (Reichold et al.,
2018).

The mitochondrial transcription factor A (TFAM) is the
crucial human mtDNA binding protein which is involved in
the expression and maintenance of mtDNA (Campbell et al.,
2012). TFAM regulates metabolic activities by directly targeting
PGC1a and PPARa (Scarpulla, 2008). Whole-body knockout of
TFAM in mice is lethal (Larsson et al., 1998); however, tubule-
specific knock out mice are associated with metabolic defects and
kidney fibrosis (Chung et al., 2019). TFAM regulates the
mitochondrial copy number and concentration of ATP
(Chung et al., 2019). Loss of TFAM in the tubules results in
cytokine activation and immune cell infiltration. TFAM
deficiency leads the mtDNA to move into the cytoplasm and
activate the stimulator of interferon genes (STING) pathway,
which, in turn, potentially lead to tubular cell apoptosis,
interstitial fibrosis and, renal failure. These results suggest that
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tubule cell-specific loss of TFAM or mitochondrial damage leads
to renal fibrosis not only by causing defective metabolism and
energy deficits but also by leaking mtDNA into the cytoplasm,
resulting in the activation of STING-dependent NF-kB pathways
(Chung et al., 2019). Induction of STING-associated renal
inflammation is an important downstream event in the
development of kidney disease and inhibiting the STING
pathway ameliorates disease development processes in the
kidney. Figure 1 depicts a schematic diagram showing the
functional importance of TFAM in tubular epithelial cells.

LOSS OFMITOCHONDRIAL FUNCTIONS IN
KIDNEY ENDOTHELIAL CELLS

Glomerular endothelial cells (GECc) regulate hemodynamic
homeostasis, ROS levels and metabolic homeostasis (Jourde-
Chiche et al., 2019). GECs affect the integrity of the filtration
barrier. Injuries to the endothelial cells lead to microvascular
occlusion, glomerular capillary function loss and glomerular
sclerosis (Jourde-Chiche et al., 2019). Loss of cristae
membranes in the mitochondria of endothelial cells have been
observed after ischemic injury in rats (Liu et al., 2014). Restoring
mitochondrial structure effectively reduces the loss of peritubular
capillaries and cortical arterioles (Liu et al., 2014). Endothelial cell
dysfunction results in microalbuminuria in early diabetic
nephropathy (Daehn, 2018). High glucose increases
mitochondrial superoxide anion production with resultant
decreased membrane potential and respiratory chain enzyme
complex I deactivation (Sivitz and Yorek, 2010). In the early
stages of the rat model of 5/6 nephrectomy, which is an
established model of chronic progressive renal injury, with
glomerular sclerosis and interstitial fibrosis are observed as
well as increased GECs proliferation and apoptosis (Kang
et al., 2002). Inflammation contributes to endothelial cell
damage through EndMT (Galle et al., 2003; Bogdanova and
Castellon, 2016; Zhou et al., 2020a). TNF-α stimulates
mitochondrial membrane permeability, thereby inducing
cytoplasmic entry of cytochrome c, induction of the
proapoptotic protein Bak and suppression of the anti-
apoptotic protein Bcl-xL (Meßmer et al., 2000). In addition,
mitochondrial oxidative stress induces EndMT (Lin et al.,
2018b; Thuan et al., 2018).

Interstitial endothelial cells play critical roles in health and
disease processes of the kidneys (Kanasaki et al., 2014; Shi et al.,
2015; Chung et al., 2019). Mitochondrial biogenesis and
dynamics are important events in determining endothelial cell
homeostasis (Wada and Nakatsuka, 2016; Hu et al., 2018). and
are central for stress responses, that includes cell-differentiation
and organ fibrosis (Stallons et al., 2014; Hu et al., 2018; Srivastava
et al., 2018). Das et al. reported that microRNAs regulate
mitochondrial function by regulating mitochondrial gene
expression (Das et al., 2017). MiR-let-7a regulates glucose
catabolism by generating ROS in cancinoma cells (Serguienko
et al., 2015). Downregulation of miR-let-7 genesis has critical
roles in aerobic glycolysis (Ma et al., 2014). Additionally, the
clusters of miR-let-7 have diverse and critical roles in endothelial
cell function and metabolism (Srivastava et al., 2013; Srivastava
et al., 2014; Hu et al., 2018). Targeting the miR-let-7 biogenesis
pathway can affect mitochondrial structure and function (Hu
et al., 2018) and among all clusters of the miR-let-7 family, miR-
let-7b is well-known to contribute to mitochondrial biogenesis
(Kuppusamy et al., 2015). The fibroblast growth factor (FGF)/
FGFR1 signaling pathway plays a crucial role in regulating both
mitochondrial biogenesis and dynamics and endothelial cell
homeostasis (Li et al., 2017a; Hu et al., 2018).

N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), an
endogenous tetrapeptide, plays a crucial role in kidney cell
homeostasis (Srivastava et al., 2016; Srivastava et al., 2020b).

FIGURE 1 | Mitochondrial damage leads to renal inflammation and
fibrosis. Mitochondrial transcription factor A (TFAM) is critical in the regulation
of mtDNA structure, replication, and stability. Suppression of TFAM is a key
event in renal fibrosis in 2 ways: 1) By leading to the leakage of mtDNA in
the cytosol which activates the STING pathway and results in transcription of
NFkB-associated cytokines and release of cytokines outside the cells, induces
pathological inflammation in tubular cells and neighboring cell types i.e.
macrophages. Higher release of cytokine may influence macrophage-to-
mesenchymal transition and epithelial-to-mesenchymal transition and
contribute to the accumulation of mesenchymal-like cells in the extracellular
matrix; 2) Deficiency of TFAM causes reduced oxidative phosphorylation that
is involved in the alteration of metabolic shifts and metabolic insults, influences
the reactive oxygen species level; cumulative effects may lead to epithelial-to-
mesenchymal transition program and accumulations of EMT-derived
myofibroblasts in the extracellular matrix and contributes to renal injury and
renal fibrosis.
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AcSDKP induces the expression of FGFR1 and miR-let-7 in
diabetic endothelium (Nagai et al., 2014; Nitta et al., 2016;
Srivastava et al., 2016; Srivastava et al., 2019a). FGFR1 is
required for the action of AcSDKP in regulating endothelial-
mitochondrial dynamics by controlling miR-let-7b genesis (Hu
et al., 2018). The FGF21/FGFR1 axis accelerates mitochondrial
biogenesis in an AMP-activated-protein-kinase (AMPK)-
dependent manner (Wang et al., 2016). miR-let-7a and miR-
let-7b preserve endothelial cell-mitochondrial biogenesis and
protect endothelial cells by mitigating ROS generation (Bao
et al., 2014). In summary, mitochondrial dynamics,
mitochondrial biogenesis, and mitophagy, play key roles in
endothelial cell function and homeostasis (Sanchis-Gomar
et al., 2014). Endothelial cell SIRT3 and endothelial cell
glucocorticoid receptor deficiency is associated with
endothelial-to-mesenchymal transition in the kidneys and
endothelial FGFR1 deficiency results in severe organ fibrosis in
both the kidney and heart via the induction of AcSDKP-resistant
EndMT (Li et al., 2020a; Srivastava et al., 2020c). Figure 2 depicts
the functional importance of FGFR1-miR-let-7s axis in the
regulation of mitochondrial dynamics and suppression of
FGFR1-miR-let-7s axis is associated with activation of
endothelial-to-mesenchymal transition in the kidney.

MITOCHONDRIA-TARGETTED
THERAPEUTICS IN KIDNEY DISEASES

In vitro and in vivo studies confirm the involvement of
microRNAs in the pathogenesis of kidney diseases (Srivastava
et al., 2019a; Metzinger-Le Meuth et al., 2019; Nascimento and
Domingueti, 2019). Several microRNAs play a crucial role in
mitochondria (Gomez et al., 2013; Jaquenod De Giusti et al.,
2018; Bai et al., 2019). MiR-30e is suppressed in renal fibrosis, and

its antagonism exerts an antifibrotic effect by targeting
mitochondrial protein UCP2 (Jiang et al., 2013a). miR-21
contributes widely to organ fibrosis by acting on energy
metabolism. miR-21 antagonism suppresses ROS production
and significantly reduces glomerular sclerosis, interstitial
fibrosis, and inflammatory responses (Chau et al., 2012;
Kolling et al., 2017). miR-17 is capable of mitochondrial
metabolism and promotes the growth of polycystic kidney
cysts (Hajarnis et al., 2017).

The renal cortex of db/db mice have reduced levels of total and
oxidized forms of Coenzyme Q10 and intervention with Q10
ameliorated mitochondrial functions and suppressed collagen
deposition in these diabetic kidneys (Sourris et al., 2012).
Similarly, supplementation of Q10 suppressed ROS levels and
ameliorated renal function in nephrectomized rats (Ishikawa
et al., 2010). Q10 mitigates nicotine-induced oxidative stress in
tubular epithelial cells through activating the non-mitochondrial
fork protein p66shc (Arany et al., 2016). A clinical randomized
trial showed that hemodialysis patients benefitted from daily use
of 1,200 mg of Q10 per day to control oxidative stress (Rivara
et al., 2017).

MitoQ is used as a mitochondria-targeted antioxidant, exerts a
protective effect on lipid peroxidation and oxidative stress (Kelso
et al., 2001). MitoQ is known to reduce oxidative stress and
protect renal function in the ischemia-reperfusion-induced renal
injury (Rouschop et al., 2005) and has antifibrotic effects in
Ins2Akita mouse model of type I diabetic nephropathy
(Chacko et al., 2010) and in db/db mice (Ward et al., 2017).
MitoQ suppresses oxidative stress through inducing autophagy,
inhibiting mitochondrial membrane potential, suppressing
fission protein Drp1, and restoring fusion protein Mfn2
expression in tubular epithelial cells (Xiao et al., 2017). MitoQ
prevents hypertension, stimulates endothelial NO bioavailability
and improves kidney structure in spontaneously-hypertensive

FIGURE 2 | FGFR1-miR-let-7 axis maintains endothelial cell homeostasis by regulating mitochondrial dynamics and integrity through modulating SIRT3. In healthy
endothelial cells, FGFR1-miR-let-7 maintains mitochondrial dynamics and influences SIRT3; however, suppression of the FGFR1-miR-let-7 axis disrupts the miR-29
level and SIRT3 level, and ultimately disrupts mitochondrial biogenesis and integrity. Cumulative effects of suppressed levels of FGFR1-miR-let-7 axis and SIRT3 lead to
the activation of pro-mesenchymal signaling, Wnt signaling, BMP, Notch, and TGF-β signaling; resulting in EndMT events and accumulation of EndMT-derived
myofibroblasts.
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rats (Graham et al., 2009). Oral MitoQ is in phase II clinical trials
(Gane et al., 2010) (Snow et al., 2010).

SS-31 is a small peptide which suppresses excess ROS,
stabilizes mitochondrial membrane potential, prevents
cytochrome c translocation, and is associated with fibrogenesis
in 5/6 nephrectomized rats (Zhao et al., 2017b). SS-31
significantly reduced tubular apoptosis, macrophage infiltration
and maintained the integrity of mitochondrial function while
inhibiting renal fibrosis in the UUO rat model (Mizuguchi et al.,
2008) and in rat model of ischemia-reperfusion (Zhang et al.,
2019). SS-31 restored mitochondrial function in podocytes
(Sweetwyne et al., 2017) and parietal epithelial cells (Zhao
et al., 2013), and reduced fibrosis in glomeruli and endothelial
cells (Sweetwyne et al., 2017).

Rapamycin, an inhibitor of mTORC1, regulates mitochondrial
autophagy (Bartolomé et al., 2017). Activation of the mTOR
signaling pathway is the key pathogenic mechanism in diabetic
kidney disease (Lloberas et al., 2006). Rapamycin inhibits kidney
fibrosis, glomerulosclerosis, proteinuria and mesangial matrix
deposition through mitigating the activation of mTOR
(Lloberas et al., 2006; Li et al., 2019). Rapamycin can inhibit
both mTORC1 and mTORC2 (Kawata et al., 2018). Rapamycin
therapy is limited due to its side effects such as
immunosuppression, and glucose intolerance in type II
diabetic mice by reducing mTORC2 (Lamming et al., 2012)
(Schreiber et al., 2019). mTORC2 regulates autophagy genes
by FOXO3a phosphorylation and activation of the Akt
pathway (Hung et al., 2012) (Chen et al., 2013). FOXO3a
regulates mitochondrial autophagy through LC3, Bnip3, Nix,
Atg4b, and Atg12l (Higgins and Coughlan, 2014). Further
research is needed to establish rapamycin and its analogs as
safe measures for treating fibrotic renal disease.

METABOLIC CONTROL BY
POSTTRANSLATIONAL MODIFICATIONS
IN MITOCHONDRIA
Metabolic control switches depend on the availability and scarcity
of fuel. These regulatory mechanisms are highly conserved
throughout evolution and affect many cellular signaling
pathways linked to food intake and bioenergetics (Finkel et al.,
2009; Morigi et al., 2018). Reversible acetylation is one important
mechanism that regulates metabolic processes in mitochondria
(Guan and Xiong, 2011). Reversible acetylation is regulated by the
antagonistic activities of protein acetyltransferases (KATs) and
deacetylases (HDACs) (Guan and Xiong, 2011). These proteins
are encoded by multigene families, and are nuclearly-encoded
(Guan and Xiong, 2011). In mammalian cells, thirty KATs and
approximately eighteen HDACs are known (Guan and Xiong,
2011). The eighteen HDACs are classified into four types. Class I
and II, which consist of ten members, are called “classical”
HDACs; the enzyme activity of these classical HDACs can be
repressed by trichostatin A, excluding HDAC11 that is
unresponsive to trichostatin A. Class III HDACs, known as
SIRTs (sirtuins), include 7 members and all are structurally
different from HDACs. Most of the SIRTs need nicotinamide

adenine dinucleotide (NAD+) as a co-substrate and are repressed
by nicotinamide (NAM); however, these are unaffected by
trichostatin A treatments (Guan and Xiong, 2011). Increasing
evidence suggests metabolic function of these SIRTs whereas, the
function of KATs and HDACs are less clear (Guan and Xiong,
2011). Out of the eleven HDACs, 4 (HDACs: 1, 2, 8, and 11) are
localized in the nucleus and six (HDACs: 3, 4, 5, 7, 9, and 10) are
either dispensed in or channeled between the nucleus and the
cytosol (Seto and Yoshida, 2014). HDAC7 has been found to
localize to the mitochondria (Seto and Yoshida, 2014).

Moreover, out of the seven SIRTs, SIRT3, 4, and 5 reside in
mitochondria while SIRT2 is found in the cytosol and SIRT1 has
been reported to be present in both the nucleus and the cytosol
(Seto and Yoshida, 2014; Morigi et al., 2018). Figure 3
demonstrates the subcellular localization and biological
functions of these sirtuins. The presence of many situins in
mitochondria suggests a crucial role of metabolic control by
the mitochondria (Wakino et al., 2015; Hershberger et al.,
2017). Studies of several sirtuins in different model organisms
have suggested that sirtuin genes play a role in life span, caloric-
restriction, nutrient responses and bioenergetics (Lin et al., 2000;
Finkel et al., 2009).

Deacetylase and Autosomal Dominant
Polycystic Ribosylase Activity
In humans, the deacetylase domain of SIRTs is distinct from class
I and class II HDACs, which are zinc dependent. SIRTs utilize one
NAD+ to produce acetyl-ADP-ribose and NAM in the
deacetylation process. Defective mitochondrial pathways can
lead to metabolic diseases, oxidative damage, organ fibrosis
and cancer (Pearce et al., 2009; Kang et al., 2015; Carrico
et al., 2018; Srivastava et al., 2018). A proteomic approach
revealed that twenty percent of mitochondrial proteins that are
involved in life-span control and in metabolic control are present
in the acetylated form (Kim et al., 2006). Reversible deacetylation
of mitochondrial proteins is a crucial mechanism of metabolic
control (Carrico et al., 2018). Acetyl-CoA and NAD+ are critical
markers of energy levels in cells. Acetyl CoA is the substrate for
histone acyl transferases while NAD+ is a co-substrate for SIRTs
(Carrico et al., 2018). The deacetylation processes of
mitochondrial SIRTs are known to have key roles in metabolic
shifts in cancer cells (Carrico et al., 2018).

The deacetylation ability of the histone H4 peptide is different
among the sirtuins. SIRT 1, 2, 3, 4, 5, 6, and 7 show increased
tendencies toward histone H4 polypeptide whereas, SIRT 1,4,6
have mono-ADP-ribosylation activity (Lee et al., 2019). SIRT1
deacetylates histones, p53, Ku70 and FOXO. Among the sirtuins,
only SIRT 2 deacetylates tubulin (Morigi et al., 2018). Similarly,
the mono-ADP-ribosylating activity of sirtuins differs among
different groups and is associated with SIRT4 and SIRT6. Mono-
ADP-ribosylation is a process in which ADP-ribose from
nicotinamide-adenine-dinucleotide is moved to the target
acetylated protein (Carrico et al., 2018). This process is highly
conserved from bacteria to humans (Saunders and Verdin, 2007).
In addition to mono-ADP-ribosylation, SIRT4 has robust
deacylase activity as well as substrate-dependent lipoamidase
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and deacetylase properties (Lee et al., 2019; Tomaselli et al., 2020).
Beside deacetylase activity, SIRT5 has also been found to have
demalonylase and desuccinylase activity (Lee et al., 2019).

Regulation of Mitochondrial Sirtuins
Among all mitochondrial SIRTs, SIRT3 mainly targets those
proteins that are involved in metabolic homeostasis (Lombard
et al., 2007; Houtkooper et al., 2012). For example, SIRT3 targets
long-chain acyl CoA dehydrogenase, a key protein in FAO in
prolonged fasting conditions (Hirschey et al., 2010). Deficiency of
Sirt3 disrupts lipolysis, and lipid catabolism, and thus promotes
diet-induced obesity (Hirschey et al., 2011). SIRT3 deacetylates 3-
hydroxy-3-methylglutaryl-CoA-synthase 2, which controls the
synthesis of ketone bodies, a crucial energy source for the brain
under fasting conditions (Shimazu et al., 2010). During caloric
restriction, SIRT3 induces the enzyme activitiy of isocitrate
dehydrogenase (Someya et al., 2010), glutamate dehydrogenase
and the enzymes of the TCA cycle (Lombard et al., 2007). SIRT3
deacetylates components of ETC such as complex I, complex II
and complex III, and these are associated with oxidative-
phosphorylation, the final stage of aerobic respiration (Ahn
et al., 2008; Finley et al., 2011b; Jing et al., 2011). In addition,
SIRT3 protects cells from oxidative stress by mitigating ROS
levels (Someya et al., 2010; Jing et al., 2011) and activating the
enzyme activity of superoxide-dismutase 2, a key antioxidant
enzyme in mitochondria (Qiu et al., 2010). Caloric restriction
increases SIRT3-associated deacetylation of IDH2, thereby
increasing the reduced-to-oxidized glutathione ratio, and
hence iinhibiting ROS (Someya et al., 2010).

SIRT4 primarily plays a role in metabolic control (Han et al.,
2019). SIRT4 inhibits the GDH enzyme activity by ADP-
ribosylation, and hence, blocks amino-acid-linked insulin
secretion (Argmann and Auwerx, 2006). As a result, SIRT4
knock out mice have elevated levels of plasma insulin, in fed,

as well as fasted,conditions (Argmann and Auwerx, 2006). In
addition, SIRT4 controls FAO in cultured hepatocytes and
myotubes, and knockdown of SIRT4 in the liver is associated
with higher FAO (Nasrin et al., 2010). Interestingly, SIRT3 and
SIRT4 have shown antagonistic properties in the regulation of
GDH (Haigis et al., 2006; Lombard et al., 2007) and FAO
(Hirschey et al., 2010; Nasrin et al., 2010). Further scientific
advancement is required to analyze how SIRT3 and SIRT4
coordinate similar nutrient states to achieve opposite responses.

SIRT5 deacetylates CPS1 in a fasting state and promotes
ammonia detoxification in the urea cycle (Nakagawa et al.,
2009). SIRT5 may not primarily act as a deacetylase
(Nakagawa et al., 2009) however, it acts as a demalonylase and
desuccinylase (Peng et al., 2011), even for the described
deacetylase target CPS1 (Du et al., 2011).

Sirtuin3 Regulates Mitochondrial Dynamics
In spite of the oval-shaped structure of mitochondria, these
organelles can exist in an active, dynamic nexus and
continuously go through fission and fusion phenomena
(Lesnefsky et al., 2001; Otera and Mihara, 2011; Chan, 2012).

Mitochondria divide by a simple binary fission process which
requires only mtDNA for its function (Otera and Mihara, 2011;
Chan, 2012). Both fission and fusion are highly linked to
replication of mtDNA. Several proteins involved in the fission
process have been implicated in mitochondrial diseases (Otera
and Mihara, 2011; Chan, 2012).

Mitochondria maintain their active dynamic form by
coordinating networks and sustaining a series of fusion
(mitofusin-2, MFN-2; optic atrophy protein 1, OPA1) and
fission cycles (dynamin-related protein-1, DRP1) (Dorn et al.,
2015; Wada and Nakatsuka, 2016). The effector molecules differ
in the outer and inner membranes of the mitochondria (Wada
and Nakatsuka, 2016). Membrane-bound dynamins arbitrate

FIGURE 3 | Sub-cellular localization of diverse types of sirtuins and their functional properties. SIRT1, SIRT6, and SIRT7 localize in the nucleus; SIRT3, SIRT4, and
SIRT5 localize in mitochondrial; however only SIRT4 is known to reside in the cytosol. SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7 have deacetylation
properties; SIRT1, SIRT4 and, SIRT6 have ADP-ribosylation activity, however, SIRT5 has two unique properties of demalonylation and desuccinylation. These functional
differences make each sirtuin of diverse biological importance in renal health.
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fusion between outer-membranes and are identified asMFN1 and
MFN2 proteins (Wada and Nakatsuka, 2016). However, a single-
dynamin OPA1 coordinates fusion processes between inner-
membranes (Wada and Nakatsuka, 2016). This protein is well-
conserved among mammals, flies, and yeast. OPA1 is anchored to
the inner membrane of mitochondria. OPA1 assists in preserving
cristae structure and protectscells from apoptosis (Frezza et al.,
2006). SIRT3 can directly target OPA1 (Samant et al., 2014).
OPA1 is hyper-acetylated under stress conditions, and
hyperacetylated OPA1 reduces its GTPase enzyme activity,
thereby mitigating its biological functions (Frezza et al., 2006).
SIRT3 activates OPA1 by deacetyation and consequently alters
mitochondrial dynamics (Samant et al., 2014). Therefore, SIRT3
activates the function of mitochondria not only by affecting the
enzyme activity level but by directly regulating mitochondrial
dynamics by activating OPA1 (Samant et al., 2014). The DRP1
protein, a dynamin protein of large GTPases, positively regulates
the mitochondrial fission process by pinching off the membrane
stalk between two forming daughter mitochondria (Dorn et al.,
2015; Wada and Nakatsuka, 2016). SIRT3-loss is associated with
activation of mitochondrial-fission by moldulating DRP1
protein level.

Sirtuin3 in Renal Health and Metabolism
SIRT3 plays a major role in kidney health. Available evidence
suggests that SIRT3 maintains mitochondrial energy homeostasis
in proximal and distal tubule compartments (Morigi et al., 2018).
A role for SIRT3 in the regulation of tubular-cell homeostasis has
also been demonstrated and suggests that SIRT3 regulates
microtubule-dependent transport of mitochondria among
tubular epithelial cells, which is a process that conserves cell
bioenergetic profiles and antioxidant mechanisms (Morigi et al.,
2018).

However, our recent studies suggest that SIRT3 has a
protective role in renal fibrosis and diabetic kidney disease
(Srivastava et al., 2018). Renal fibrosis is the dominant cause
of end-stage renal disease across the world (Roxburgh et al.,
2009). It is characterized by deposition of collagen,
myofibroblasts, and pro-inflammatory cells (Zeisberg et al.,
2003; LeBleu et al., 2013). Renal fibroblasts have a crucial role
in such fibrotic events, but, the genesis of these fibroblasts is not
clear (Grande and Lopez-Novoa, 2009; Zeisberg and Neilson,
2010; Liu, 2011; Schrimpf and Duffield, 2011; Grgic et al., 2012;
Srivastava et al., 2013; Srivastava et al., 2019b).

Available data suggest that activated myofibroblasts and
fibroblast formation are caused by activated resident
fibroblasts and/or activation of mesenchymal cell
differentiation processes in neighboring cells such as epithelial
cells, endothelial cells, pericytes and M2-derived macrophages.
(Srivastava et al., 2013; Srivastava et al., 2019b). SIRT3 acts as a
tumour-suppressor, maintains stability in the genome (Kim et al.,
2010) and inhibits the features of organ fibrosis by mitigating
TGF-β/Smad signaling (Sundaresan et al., 2009; Chen et al., 2015;
Sundaresan et al., 2015; Bindu et al., 2017; Sosulski et al., 2017).
However, during the cell-to-cell transition process, the metabolic
switch is altered (Jiang et al., 2013b; DeNicola and Cantley, 2015;
Liu et al., 2016). Thus, the fuel choice or energy sources of these

injured cells is a matter of ongoing debate (Jiang et al., 2013b;
DeNicola and Cantley, 2015; Liu et al., 2016). These
reprogrammed metabolic shifts cause production of
myofibroblast precursors and may assist in fibroblast growth
and survival (Zeisberg et al., 2003; Kalluri and Weinberg, 2009;
Jiang et al., 2013b).

Sirtuin3, in Association With Activated
STAT3, Regulates Aberrant Glycolysis
In response to cytokines, signal transducer and activator of
transcription (STAT)3 phosphorylation on its tyrosine 705
residue (Y-P) is mediated by receptor-associated JAK kinases
(Schindler et al., 2007). Tyrosine705 phosphorylation causes
dimerization and translocation from the cytosol to the nucleus
where it binds to gene promoters and modulates the transcription
(Yu et al., 2014). Besides regulation by phosphorylation on Tyr705,
STAT3 is also regulated by phosphorylation on Ser727 by some
members of the MAP kinases. Ser727 phosphorylation is a
secondary step for enhancing transcriptional activity of STAT3
(Wen et al., 1995). STAT3 is mainly regulated by the cytokine IL-
6 and other cytokines such as IL-11 and IL-27 which work
through a gp130 signal transducer in their receptors (Zhong
et al., 1994; Niemand et al., 2003). IL-10, IL-21 and leptin can also
activate STAT3 which is independent of gp130 signal
transduction (Niemand et al., 2003). STAT3 activation is also
regulated by phosphatases and by the Suppressors of Cytokine
Signaling (SOCS), which interfere with nuclear translocation or
promote STAT3 degradation (Ward et al., 1994).

STAT3 affects energy metabolism by influencing the pathways
both at nucleus and the mitochondrion, depending on specific
post-transcriptional modifications (Y-P or S-P) triggered by
diverse stimuli (Poli and Camporeale, 2015). Y-P nuclear
STAT3 accumulation mediates transcriptional upregulation of
HIF1α and the downregulation of mitochondrial genes (Poli and
Camporeale, 2015). This leads to aberrant aerobic glycolysis,
suppressed ETC activity, and decreased ROS generation, thus
enhancing cell-proliferation and inhibiting apoptosis (Poli and
Camporeale, 2015). S-P STAT3 mitochondrial activity also leads
to increased cell-proliferation and limits apoptosis through
retaining ETC activity, stimulating aerobic glycolysis,
decreasing ROS generation, and inhibiting the opening of the
mitochondrial permeability transition pore (Poli and
Camporeale, 2015; Meier et al., 2017).

STAT3 promotes Complex I activity and mitochondrial
respiration by binding on GRIM-19, which is a component of
Complex I of the electron transport chain (ETC) (Lufei, 2003). In
addition, STAT3 can bind to Complex II or Complex V (ATP
synthase) and modulates ATP production (Gough et al., 2009).
Mitochondrial STAT3 binds to cyclophilin D, and inhibits the
opening of the mitochondrial permeability transition pore, hence
reducing ROS generation (Meier et al., 2017). GRIM-19 functions
as a chaperone which helps in recruiting STAT3 to the
mitochondrial inner membrane complex and the
mitochondrial importer Tom20 is involved in STAT3
recruitment into mitochondria (Boengler et al., 2010;
Tammineni et al., 2013). Mitochondrial recruitment of Stat3 is
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enhanced by its acetylation, but the mechanism remains unclear;
mitochondrial sirtuins may be involved in this mechanism (Xu
et al., 2016b). The role of mitochondrial STAT3 has been
demonstrated primarily in cancer, cardiology, neuroscience,
organ fibrosis and in diabetic kidney disease (Yang and
Rincon, 2016). JAK inhibitors and STAT3 inhibitors may have
the potential to develop a new generation of therapeutics (Rincon
and Pereira, 2018).

Recent studies suggest that SIRT3 deficiency in diabetic
kidneys leads to the induction of aberrant glycolysis and
linked fibrogenic programming through activation of the
TGFβ/Smad3 signaling pathway in tubular epithelial cells that
promotes an epithelial-to-mesenchymal transition program
(Srivastava et al., 2018). SIRT3 deficiency-linked abnormal
glycolysis is due to higher PKM2-dimer formation, HIF1α and
activated STAT3 signaling (Srivastava et al., 2018; Li et al., 2020b).
Disruption in glucose metabolism is associated with metabolic
reprogramming in damaged cells and mesenchymal activation
and gain of fibrogenic properties in diabetic kidneys (Srivastava
et al., 2018). Suppression of SIRT3, HIF-1α accumulation and
STAT3 phosphorylation are linked with EMT phenotype and
defective glucose metabolism (Finley et al., 2011a; Palmirotta
et al., 2016). Inhibition of glycolysis by either by 2-deoxy-glucose
(2-DG) or with dichloroacetate (DCA) leads to reduction in EMT
processes and cancer cell metastasis (Sottnik et al., 2011; Lu et al.,
2015; Zhao et al., 2017a). HIF-1α and STAT3 phosphorylation in
renal epithelial cells is linked to mesenchymal activation and
renal fibrogenesis (Higgins et al., 2007; Sun et al., 2009).
Proximal-tubular-cells (PTCs) are widely unprotected to
excessive glucose uptake from the urine in severe-diabetes; it
may possible that the urinary glucose can be utilized as a substrate
for glycose catabolism by TECs (Hato et al., 2016). Hence,
cumulative effects of SIRT3 deficiency and HIF-1α
accumulation and defective central metabolism, triggered by
higher glucose reabsorption, stimulate PTCs to transform into
an intermediate-type mesenchymal- and complete-mesenchymal
cell phenotype (Srivastava et al., 2018). In our study, it was
demostated that loss of SIRT3-linked PKM2 tetramer-to-
dimerization occurred in diabetic kidneys and in cultured
TECs exposed to high-glucose-stimulated cell media
(Srivastava et al., 2018). PKM2-dimerization causes
transactivation of HIF1α and is a crucial mechanism for
abnormal glucose metabolism in cancer cells by enhancing the
Warburg effect (Greer et al., 2012; Soga, 2013; Palsson-
McDermott et al., 2015).

The pathogenic role of defective glucose metabolism has been
demonstrated in diabetic kidney disease (Qi et al., 2017). Tubular
interstitial pathology was improved with increased enzyme
activity of the PKM2 tetramer (Qi et al., 2017). TEPP-46
induced PKM2 tetramer formation, suppresseed accumulation
of fibronectin and type-I-collagen, and mitigated TGFβ1 levels in
the injured tubules. Conversely, TEPP-46 has less effect on
glomerular collagen deposition since TGFβ1 signaling is higher
in damaged tubules and not induced in the glomeruli of diabetic
kidneys (Qi et al., 2017). This study suggests that aberrant
glycolysis in TECs confers a renal disease phenotype in
diabetes. Higher SIRT3 expression levels inhibit glucose-

stimulated cell-senescence through FOXO1-mediated signaling
mechanisms (Zhang et al., 2013) and enhance cellular resistance
to oxidative stress damage (Morigi et al., 2018).

SGLT2 inhibitors and glycolysis inhibitors act primarily on
kidney proximal tubular cells. One recent study suggests that
SGLT2 inhibition and glycolysis inhibition in diabetic tubules
impact central metabolism through restorating SIRT3 protein
level, by causing a reduction in EMT events reducing abnormal
glycolysis attributed to STAT3-phosphorylation, HIF1α-
transactivation and PKM2-dimerization (Li et al., 2020b).
SGLT2 inhibition suppresses EMT events in proximal tubular
cells and linked EndMT in perivascular endothelial cells (Li et al.,
2020b) and has been the focus of intensive discussion as a
potential source of myofibroblasts (Srivastava et al., 2019a).
TECs are injured in diabetic kidneys. They undergo
phenotypic changes and acquire the features of matrix-
generating mesenchymal cells, and fibrogenesis markers such
as αSMA, fibronectin and FSP1. Renal fibrosis is influenced by
intercommunication among several cell types in the kidney
(Srivastava et al., 2019b). EMT influences the mesenchymal
activation of perivascular endothelial cells, pericytes and
macrophages through soluble-factors. Figure 4 represents the
role of aberrant glucose metabolism in the induction of EMT
events. EMT releases soluble factors that may accelerate EndMT
events in diabetic kidneys.

Sirtuin3 Deficiency Disrupts Fatty Acid
Oxidation
PTECs require excessive energy for proper function and have
enormous quantities of functional mitochondria. Free fatty acids
(FAs) are used as the most favored metabolic fuel for TECs, since
catabolism of FAs synthesizes more ATP per molecule than does
glucose catabolism (Kang et al., 2015). FA uptake is facilited by
the transporter protein CD36, and fatty acids transporter proteins
(Susztak et al., 2005). Catabolism of FFAs is dependent on
transport into mitochondria that is catalyzed thorugh
carnitine-palmitoyltransferase 1 (CPT1) (Schug and Li, 2011).
The peroxisome-proliferator-activated-receptor-α (PPARα) and
PPAR-γ-coactivator-1α (PGC1α) are crucial transcription factors
that control the expression of genes/proteins in FA uptake and
oxidation (Tran et al., 2011; Kang et al., 2015). In healthy TECs,
FA uptake, FAO and FA biosynthesis are highly regulated to
abstain from intra-cellular lipid deposition (Kang et al., 2015).
The accumulation of lipids in TECs and their pathological role in
acute and diabetic kidney disease is the subject of debate among
researchers (Decleves et al., 2014; Srivastava et al., 2014). In
addition, defective FA utilization and oxidations leads to
mesenchymal activation and fibrogensis (Kang et al., 2015)
since higher triglyceride accumulation in TECs catalyzes
lipotoxicity, and augments the induction of mesenchymal
activation and progression of kidney fibrosis (Decleves et al.,
2014).

In diabetic kidneys with tubules undergoing mesenchymal cell
formation, SIRT3 suppression is associated with defective FAO
and concomitant induction of abnormal glycolysis (Srivastava
et al., 2018; Srivastava et al., 2020b). Defective fatty acid oxidation
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has been found to play a critical role in humans and in mouse
models of tubulointerstitial fibrosis (Kang et al., 2015; Srivastava
et al., 2020b). Injured tubulointerstitial cells have been shown to
have suppressed levels of regulatory enzymes of FAO and
accumulation of intracellular lipids (Kang et al., 2015). FAO
inhibition in TECs by the small molecule etomoxir causes ATP-
deficits, cell-death, cell-differentiation, and lipid-accumulation,
mimicking features of renal fibrosis (Kang et al., 2015). However,
normalizing FAO by genetic or pharmacological means using
small chemicals protects against renal fibrosis, suggesting that
normalization of the renal-metabolic abnormality might be
utilized for the treatment of chronic kidney disease (Kang
et al., 2015).

Sirtuin4 in Renal Health and Metabolism
SIRT4 is a critical molecule in mitochondrial physiology.
Researchers have investigated a pathological connection
between SIRT4 and diabetic nephropathy in high-glucose-
stimulated cultured podocytes (Shi et al., 2017). Glucose
stimulation remarkably induces podocyte apoptosis which is
associated with diminished protein levels of SIRT4, suggesting
that SIRT4 suppression is critical in diabetic nephropathy (Shi
et al., 2017). Over-expression of SIRT4 suppresses podocyte
apoptosis, stimulates mitochondrial-membrane potential and
decreases ROS generation (Shi et al., 2017). SIRT4-
overexpression suppresses the level of apoptosis-linked effector
molecules such as NOX1, Bax and p38 phosphorylation and
increases the Bcl-2 protein expression in high-glucose-treated
cultured podocyte cells (Shi et al., 2017). These results
demonstrate that SIRT4 overexpression protects against
hyperglycemia-associated podocyte cell death and ROS
generation and that deficiency of podocyte SIRT4 represents a
critical development in the understanding of diabetic
nephropathy (Shi et al., 2017).

SIRT4 inhibits renal tumor metabolism, especially glutamine
metabolism, and therefore functions as a tumor suppressor gene
in the kidneys (Jeong et al., 2013). It is thought to be a gatekeeper
of glutamine metabolism energetics (Mathias et al., 2014). Indeed,
a metabolic shift is a hallmark of all types of tumors (Faubert
et al., 2013). Tumor cells typically showWarburg metabolism and
are dependent on enhanced glucose and glutamine uptake and
catabolism to meet the large energy demand for tumor
development (Daye and Wellen, 2012). In the future, it will be
desirable to determine the corelation between SIRT4 levels and
the prognosis of renal clear cell carcinoma, pending the existence
of a suitable number of patients, which would allow further
analysis of the influence of SIRT4 on the biological behavior
of these cancer cells.

Sirtuin5 in Renal Health and Metabolism
SIRT5 has diverse, unique functional properties in its substrate
choice for succinyllysine, malonyllysine, and glutaryllysine; it
enhances fatty acid oxidation in hepatcytes and cardiac
myocytes (Rardin et al., 2013; Du et al., 2018). Intriguingly,
SIRT5 has been shown to localize to peroxisomes as well
(Chiba et al., 2019). In contrast to its effect on mitochondrial
FAO, SIRT5 suppresses peroxisomal FAO in vitro and in rodent
liver (Chiba et al., 2019). SIRT5 knock out mice are protected
against ischemic- and cisplatin-mediated AKI (Chiba et al., 2019).
Although the mitochondrial function is moderately suppressed in
SIRT5 KO kidneys, the peroxisome function is increased in
kidneys from mice subjected to acute kidney injury (Chiba
et al., 2019). These results suggest that SIRT5 controls the
balance of mitochondrial versus peroxisomal FAO in PTECs
and protects from acute kidney injury (Chiba et al., 2019).

The loss-of-function of SIRT5 is renoprotective (Chiba et al.,
2019). The role of SIRT5 is antagonistic to that of SIRT1 and
SIRT3, as their loss promotes acute kidney injury. Knock-down of

FIGURE 4 | Defective central metabolism in diabetic tubular epithelial cells. Diabetic tubular epithelial cells have higher expression of SGLT-2 which transports urine
glucose into tubular cells. Excess glucose accumulates in the cytosol which results in activation of SIRT3 deficiency-linked disruption in central metabolism. This defective
central metabolism is characterized by PKM2-and STAT3-linked aberrant glycolysis and suppression of fatty acid oxidation. Defective central metabolism contributes to
EMT events. These EMT events produce and release soluble factors which affect the homeostasis of endothelial cells and induce EndMT events in the kidneys.
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SIRT3 in proximal tubular epithelial cells disrupts mitochondrial-
fatty acid oxidation through hypersuccinylation and therefore,
reduces the enzyme activity of key proteins involved in FAO
(Chiba et al., 2019). Metabolic adaptation to blocked
mitochondrial-FAO in proximal tubular epithelial cells reveals
the compensatory FAO in the peroxisome, hence mitigating
oxygen necessity, reducing reactive oxygen species, and
protecting against kidney injury (Chiba et al., 2019).

METABOLIC AND MITOCHONDRIAL
REPROGRAMMING IN POLYCYSTIC
KIDNEY DISEASE
Autosomal dominant polycystic kidney disease (ADPKD) is one
of the most common, monogenic disorders and is caused mostly
by gene mutations in polycystic kidney disease 1 (PKD1) and 2
(PKD2), which encode polycystin 1 and polycystin 2, respectively
(Harris and Torres, 2009). ADPKD is characterized by bilateral
renal cyst development that impairs kidney function, leading to
ESRD (Torres et al., 2007). Multiple pathways are dysregulated in
the cystic epithelium including alterations in cell metabolism
which have emerged as a hallmark of ADPKD (Rowe et al., 2013;
Menezes et al., 2016; Podrini et al., 2020). Evidence suggests that
the cystic epithelial lining shares neoplastic features (Rowe et al.,
2013). Impaired mitochondrial structure and function play a role
in ADPKD disease progression (Cassina et al., 2020). Metabolic
reprogramming in PKD is similar to that reported in cancer
(Rowe et al., 2013). Studies suggest that aerobic glycolysis is
present in the disease, along with other metabolic defects such as
augmentation of the pentose phosphate pathway, and increases in
glutamine anaplerosis and fatty acid biosynthesis,; fatty acid
oxidation and mitochondrial metabolism are suppressed
(Podrini et al., 2020). ADPKD cells alter their energy
dependency from oxidative phosphorylation to glycolysis
(Podrini et al., 2020).

The precise origin of metabolic shifts has not been clearly
demonstrated, however, two hypotheses has been postulated
(Podrini et al., 2020). First, the polycystins have the ability to
regulate mitochondrial function and structure either by
regulating Ca++ uptake in mitochondria, or by a direct
translocation of a small fragment protein into the
mitochondrial matrix (Kuo et al., 2019). Second, loss of
mitochondrial functions in ADPKD is driven by multiple
signaling pathways, which include AMPK, PPARα, PGC1α,
mTORC1, cAMP and cystic fibrosis transmembrane
conductance regulator (CFTR)-mediated ion transport as well
as the expression of crucial components of the mitochondrial
energy production apparatus (Hajarnis et al., 2017). PKD1-
deficient mouse embryonic fibroblasts were found to have
increased glucose uptake and glycolysis as their primary
source of energy, even in normoxic conditions (Rowe et al.,
2013). Importantly, these effects are dependent on the
upregulation of mTORC1 signaling, resulting in the inhibition
of AMP-activated protein kinase (AMPK), which led to the
hypothesis that, in ADPKD, cells preferentially use aerobic
glycolysis for energy production (Rowe et al., 2013). Menezes

et al. found reduced oxidative phosphorylation in Pkd-/- cells that
had fatty acids as their main energy source, suggesting that FAO
is reduced (Menezes et al., 2016), and is accompanied by a
compensatory glycolysis and administration of 2-deoxyglucose
slowed disease progression (Riwanto et al., 2016).

In adition, a renal transcriptomic analysis and urine
metabolomic analysis in a mouse model of ADPKD revealed
altered metabolic pathways that are associated with cyst
formation (Menezes et al., 2012). Among these altered
pathways were high levels of acetylcarnitine in the urine of
ADPKD mice, suggesting the presence of defective fatty acid
metabolism in mitochondria. Transcriptional profiling and
metabolomic analysis of progressive ADPKD found alterations
in lipid metabolism (Menezes et al., 2016). The defective FAO in
mice with renal tubule-specific Pkd1 deletion occurs via signaling
involving miR-17 and PPARα (Hajarnis et al., 2017). Inhibition of
miR-17 restored defective FAO and suppressed cyst formation in
PKD mouse models (Hajarnis et al., 2017). Moreover, mutations
in genes encoding components of the OXPHOS and FAO
pathways, as well as in PPARα target genes, result in clinical
disorders that include cystic kidneys (Hackl et al., 2017). Renal
cysts develop in patients with glutaric acidaemia type II
(Whitfield et al., 1996), which is caused by gene mutations in
electron transfer flavoprotein subunit-α (ETFα), ETFβ or ETF
dehydrogenase (ETFDH), which are components of an OXPHOS
enzyme, ETF complex. Polycystins affect the function and
morphology of mitochondria (Padovano et al., 2017; Lin et al.,
2018a). The clear mechanisms underlying these alterations
identified in ADPKD will need further investigation.

PERSPECTIVES AND FUTURE
DIRECTIONS

TFAM is important for mitochondrial integrity and its loss causes
metabolic insults in tubular cells and cytosolic mtDNA leak,
resulting in activation of an inflammatory response and kidney
damage (Chung et al., 2019). Loss of TFAM causes tubular cell
inflammation which is key for the activation of mesenchymal
programming in epithelial cells and in neighboring cells.
However, it is hard to determine the severity of mitochondrial
DNA leakage in CKD or DKD subjects, and it would be striking to
unravel the contribution of the upstream-effectors of STING that
could have a potential impact on disease progression.
Mitochondrial sirtuins and their association with TFAM may
be a key link in the pathogenesis of kidney disease.

Mitochondrial sirtuins are a prominent class of metabolic
regulators that exert effects on energy metabolism by protein
acetylation and are linked to several biological effects on kidney
health. Restoring SIRT3 has shown to have renal protective effects
in age-associated renal fibrosis, as well as several models of kidney
injury and diabetic models as well (Srivastava et al., 2018).
However, dissecting the diverse functions of SIRT3 in different
cell types remains a challenge. How SIRT3 expression levels
change in different compartments and what the impact of the
distribution of subcellular SIRT3 is on cellular health has not yet
been fully investigated.
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As compared to SIRT3, little is known about the role of SIRT4
and SIRT5 in the regulation of central metabolism in diverse cell
types in the kidney. ADP-ribosylation activity by SIRT4, and
demalonylation and desuccinylation activity by SIRT5,
distinguish them from SIRT3 (Morigi et al., 2018). Available
clinical data describing the effects of SIRT4 and SIRT5 on patients
is not yet sufficient enough to decipher the role of SIRT4 and
SIRT5 in the kidney (Morigi et al., 2018). The understanding of
different sirtuins in renal physiology is still in its early stages.
However, scientific advancement in evaluating the broad-
spectrum of sirtuins targets involved in protective and
developmental mechanisms has been studied but still needs
more attention in the development of suitable therapeutics for
combating kidney diseases.

In mouse models of diabetic kidney disease, SGLT-2 inhibitors
and glycolysis inhibitors have shown protective effects on renal
tubules; however, an unbiased study is needed to test FAO
modulators, DPP-4 inhibitors, Wnt signaling inhibitors,
antifibrotic peptides, ACE inhibitors and ARBs on their ability
to restore SIRT3 levels in injured kidneys (Kanasaki et al., 2014;
Srivastava et al., 2020a; Li et al., 2020b).

Further studies are required to identify small molecules that
activate sirtuins activity, known as sirtuin-activating-
compounds (STAC). Mostly, these STAC are related to
naturally-occuring polyphenols (Morigi et al., 2018).
Resveratrol was a well-known sirtuin activator discovered
from these naturally-occurring polyphenols (Morigi et al.,
2018). Resveratrol induces SIRT1 and SIRT3 and can act as
an allosteric modulator, leading to conformational changes in
the substrate, which can then influence the binding affinity for
sirtuins (Xu et al., 2016a; Morigi et al., 2018). These studies
suggest that there is a need to search for compounds that
influence sirtuin level and activity in diabetic kidneys, such
as flavonoids, chalcones, polyhydroquinolines, propiophenone
derivatives, deoxyandrographolides, 2-methoxy-estradiol (2-
ME) and thiazolidin-4-one derivatives; all of these
compounds have shown protective effects in mouse models
of diabetes mellitus (Kumar et al., 2010; Srivastava et al., 2010;
Srivsatava et al., 2010; Shukla et al., 2011; Jaiswal et al., 2012;

Kumar et al., 2012; Verma et al., 2012; Jaiswal, 2013; Mishra
et al., 2013; Raza et al., 2013; Balaramnavar et al., 2014; Arha
et al., 2015; Kanasaki et al., 2017), and can be further tested and
potentially could be used in the treatment of diabetic kidney
disease. The non-coding microRNAs play a critical role in the
pathogenesis of diabetes mellitus; in spite of certain limitations
about their specificity, the tissue-specific expression of these
microRNAs is needs to be to analyzed (Kaur et al., 2011; Pandey
et al., 2011; Srivastava et al., 2019a).

In current literature, it is reported that curcumin, silybin and
AICAR induce SIRT3 levels, improve renal function and improve
mitochondrial physiology in cisplatin-induced AKI (Li et al.,
2017b; Ortega-Dominguez et al., 2017). Stanniocalcin reduces
renal damage by SIRT3-linked activation of AMPK and UCP2 in
a mouse model of renal ischemia-reperfusion injury (Pan et al.,
2015). Honokiol decreases renal damage by activating SIRT3 in
sepsis-associated AKI and hypertensive nephropathy (Kume
et al., 2010; Li et al., 2014). Of great interest for future
development would be new pharmacological strategies to
target the effector molecules that control NAD + syntheses
such as NAPMT and pharmacological compounds that reduce
the activity of NAD + -depleting enzymes such as ADP-ribosyl-
cyclases (Morigi et al., 2015; Camacho-Pereira et al., 2016).
Further research and large double-blind clinical trials will be
required to advance our understanding in this field. In summary,
mitochondrial SIRT3 could be a novel candidate for treating renal
diseases.
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Diabetic Nephropathy: Novel
Molecular Mechanisms and
Therapeutic Targets
Carlamaria Zoja1*†, Christodoulos Xinaris1,2† and Daniela Macconi1†

1Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro
Rosso, Bergamo, Italy, 2University of Nicosia Medical School, Nicosia, Cyprus

Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes
mellitus and the leading cause of end-stage kidney disease. The standard treatments for
diabetic patients are glucose and blood pressure control, lipid lowering, and renin-
angiotensin system blockade; however, these therapeutic approaches can provide
only partial renoprotection if started late in the course of the disease. One major
limitation in developing efficient therapies for DN is the complex pathobiology of the
diabetic kidney, which undergoes a set of profound structural, metabolic and functional
changes. Despite these difficulties, experimental models of diabetes have revealed
promising therapeutic targets by identifying pathways that modulate key functions of
podocytes and glomerular endothelial cells. In this review we will describe recent advances
in the field, analyze key molecular pathways that contribute to the pathogenesis of the
disease, and discuss how they could be modulated to prevent or reverse DN.

Keywords: diabetic nephropathy, renin-angiotensin system, angiotensin 1–7, sirtuins, notch signaling, thyroid
hormone signaling, sodium-glucose cotransporter 2, hypoxia inducible factor

INTRODUCTION

Diabetes is a global epidemic that is creating an unsustainable strain on healthcare systems due to its
rising incidence worldwide and the costs associated with its chronic complications (http://www.idf.
org/diabetesatlas). About one-third of diabetic patients develop diabetic nephropathy (DN), which in
patients with micro- and then macro-albuminuria tends to progress to end-stage renal disease
(ESRD) (Remuzzi et al., 2002). In type 2 diabetes, albuminuria is now recognized not simply as a
marker of renal dysfunction but also as a risk factor for cardiovascular disease, which is three times as
high as that for diabetic patients with no evidence of renal disease (Fox et al., 2004; Zhou et al., 2009).
Renin-angiotensin system (RAS) inhibitors reduce albuminuria and the cardiovascular
complications of diabetes but may provide incomplete renoprotection if started late in the
course of the disease (Perico et al., 1994; Ruggenenti et al., 2010). Developing efficient therapies
for DN is extremely challenging because of the complex pathobiology of the diabetic organ, which
undergoes a set of profound structural, metabolic and functional changes.

Glomerular visceral epithelial cells (podocytes). Podocytes are the main determinant of the
maintenance of the perm-selective properties of the glomerular filtration barrier (Nagata, 2016;
Conti et al., 2017), and podocyte dysfunction has been considered a major factor in the development
of diabetic glomerular disease (Pagtalunan et al., 1997; Wolf et al., 2005). Podocytes are highly
specialized cells located on the visceral side of the Bowman’s capsule and exhibit podocyte foot
processes, which are connected by a specialized intracellular junction, the slit diaphragm, which in
turn forms a size-selective barrier for the passage of large molecules. Specific diaphragm proteins,
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such as nephrin, form the filtration slits (Conti et al., 2017). At the
slit diaphragm, podocin and other proteins provide structural and
functional support to the filtration barrier and participate in
signaling pathways by interacting with actin cytoskeleton
components (Perico et al., 2016a; Schell and Huber, 2017).
Reduced expression of podocyte proteins, which reflects
podocyte dysfunction, and a reduced number of podocytes are
characteristic features of DN, both in experimental models and
humans (Pagtalunan et al., 1997; Aaltonen et al., 2001; Benigni
et al., 2004; Lin and Susztak, 2016). A correlation between
podocyte detachment/loss and the albumin excretion rate has
been reported in DN patients (Pagtalunan et al., 1997; Meyer
et al., 1999; Lemley et al., 2000). Recently, scanning electron
microscopy (SEM) analysis of the podocyte cytoarchitecture in
type 2 diabetic patients at different stages of kidney disease
showed that in normoalbuminuric subjects, podocytes had
intact cell bodies with normal interdigitating foot processes
(Conti et al., 2018). In patients with micro-albuminuria,
features of podocyte injury, consisting of podocyte
hypertrophy with diffuse foot process effacement and
occasional pseudocysts representing site of initial cell
detachment from the GBM, were observed. In the late stages
of proteinuric DN the structural integrity of the glomerular
barrier was irreversibly compromised, with the occurrence of
striking podocyte loss and extensively denuded glomerular
basement membranes (Conti et al., 2018). These observations
help explain why drugs may fail to affect renal disease progression
in the latter circumstance while underlining the need for early
therapeutic intervention to efficiently achieve renoprotection.
Although podocytopathy has been considered the culprit in
the development of diabetic glomerular disease, glomerular
endothelial dysfunction also plays a key role in the
pathogenesis and progression of DN (Toyoda et al., 2007;
Broekhuizen et al., 2010; Kuwabara et al., 2010; Satchell, 2012;
Weil et al., 2012).

Glomerular endothelium. The glomerular endothelium
along with the glycocalyx–a negatively charged network of
proteoglycans and glycoproteins that covers the luminal
surface of fenestrated glomerular endothelial cells–has been
recognized as crucial in restricting the passage of plasma
proteins and preserving the glomerular filtration barrier
(Fogo and Kon, 2010; Haraldsson and Nystrom, 2012;
Salmon and Satchell, 2012). Loss of the endothelial
glycocalyx is linked to increased vascular permeability in
type 2 diabetic patients and to albuminuria in experimental
DN (Broekhuizen et al., 2010; Kuwabara et al., 2010). Lower
endothelial cell fenestrations are associated with
macroalbuminuria and GFR decline (Weil et al., 2012) and
glomerular capillary loss correlates with the degree of
glomerulosclerosis (Hohenstein et al., 2006). Multiple
pathways contribute to endothelial dysfunction in DN.
Hyperglycemia and oxidative stress cause glycocalyx
destruction through the induction of heparanase, a
degrading enzyme of heparan sulfate, reduced synthesis of
heparan sulfate, and uncoupling of the endothelial nitric oxide
synthase (Fu et al., 2015; Jourde-Chiche et al., 2019). Studies
have provided evidence that there is cross-talk between

glomerular endothelial cells and podocytes that is important
in regulating survival and function for both cells (Satchell,
2012; Fu et al., 2015; Lennon and Hosawi, 2016; Cassis et al.,
2019b). Thus, glomerular endothelial dysfunction may cause
injury in the neighboring podocytes and, vice versa, podocyte
activation may foster endothelial damage through specific
paracrine signals. Vascular endothelial growth factor
(VEGF), angiopoietins, endothelin-1, transforming growth
factor-β (TGF-β), to name a few, have all been implicated as
major mediators of this vicious cycle (Fu et al., 2015; Garsen
et al., 2016; Wu et al., 2017; Jourde-Chiche et al., 2019).
Targeting the reciprocal interaction between endothelial
cells and podocytes may be a therapeutic opportunity to
limit DN progression.

Impairment of the glomerular filtration barrier, with the
onset of overt proteinuria, accelerates the progression of
diabetic kidney disease, and glomerular sclerosis and
interstitial fibrosis is the final step toward ESRD. Several
studies have elucidated the complexity of the fibrogenic
process in the kidney, which involves the interplay among
different cell types, the activation of several profibrotic
pathways, including the most known TGF-β, and their
epigenetic regulation (Srivastava et al., 2013; Lovisa et al.,
2016; Macconi, et al., 2016; Zhao et al., 2020). Kidney
fibrosis develops through intracellular mechanisms, that
comprise glomerular and tubular epithelium distress,
inflammation, dysregulated innate and adaptive immune
response, tubular injury and atrophy, and microvasculature
rarefaction (Liu, 2011; Tang and Yiu, 2020). In the last decade
potential progenitors for myofibroblasts were identified which
include proliferating resident interstitial fibroblasts, bone
marrow-derived cells, perivascular mesenchymal stem cells,
and epithelial and endothelial cells that acquire a
myofibroblast phenotype in processes termed epithelial to
mesenchymal transition (EMT) and endothelial-to-
mesenchymal transition (EndMT) (Zeisberg et al., 2008;
LeBleu et al., 2013; Srivastava et al., 2013; Falke et al., 2015;
Kramann et al., 2015; Lovisa et al., 2016; Srivastava S. P. et al.,
2019).

Experimental models of diabetes have revealed promising
therapeutic targets by enabling the identification of pathways
that modulate key functions of podocytes and glomerular
endothelial cells. In this review, we describe recent advances in
the field and discuss emerging therapeutic strategies. Specifically,
we focus on the angiotensin converting enzyme 2 (ACE2)/
Angiotensin-(1–7)/Mas receptor axis and the protective effects
of cyclic Ang-(1–7) on both podocytes and glomerular
endothelial cells in experimental type 2 DN. Morever, we
discuss Sirtuins 1 and 3 as a therapeutic target for
counteracting diabetes-induced oxidative stress and glomerular
injury. The role of the developmental pathways Notch1 and
thyroid hormone signaling in podocytes during diabetic
disease is described as a mechanism that underlies podocyte
de-differentiation and loss. Finally, the contributions of the
sodium-glucose cotransporter 2 (SGLT2), hypoxia-inducible
factor-1 (HIF-1) and dipeptidyl peptidase-4 (DPP-4) signaling
pathways to the progression of DN are discussed.
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THE RENIN-ANGIOTENSIN SYSTEM

Angiotensin Converting Enzyme/
Angiotensin-II/Ang II Type 1-Ang II Type 2
Receptors
The RAS plays a key role in a variety of physiological and
pathological processes. The RAS is activated by the secretion
of renin by the juxtaglomerular cells of the kidney. Renin
hydrolyzes liver-derived angiotensinogen into angiotensin
(Ang) I, a decapeptide, which is then cleaved by ACE into the
octapeptide Ang II (Figure 1). This occurs not only in the
circulation but also locally in several organs, including the
kidney, blood vessels, and heart. The effects of Ang II are
exerted mainly through the activation of the G protein-
coupled receptor Ang II type 1 receptor (AT1R) and include
vasoconstriction, fluid retention, inflammation, fibrosis, oxidative
stress, and cell growth and migration, to name a few (Forrester
et al., 2018).

Ang II also binds to Ang II type 2 receptor (AT2R), which
usually has the opposite effects of AT1R, in terms of blood
pressure regulation, vascular remodeling and cell growth
(Horiuchi et al., 1999; Jones et al., 2008; Kaschina et al., 2017).
The local actions of Ang II depend on the combined net effect of
AT1R and AT2R, so that the levels of AT2R expression relative to
AT1R in different pathological states, including diabetes, may be
crucial for determining the end-organ response (Jones et al.,

2008). However, the signaling mechanisms of AT2R are not
completely understood (Forrester et al., 2018). While several
studies have reported beneficial effects of AT2R activation on
organ protection (Naito et al., 2010; Padia and Carey, 2013; Chow
and Allen, 2016; Sumners et al., 2019), some others have shown
that increased activation of AT2R could have detrimental effects
(Cao, 2002; Tejera et al., 2004). Most of the RAS inhibitors
currently used to delay the progression of kidney injury in
diabetes target the ACE/Ang II/AT1 receptor axis.

Angiotensin Converting Enzyme Substrate
N-Acetyl-Seryl-Aspartyl-Lysyl-Proline has
Antifibrotic Properties in Diabetic
Nephropathy
ACE has two homologous N- and C-terminal active domains
(Bernstein et al., 2011). While the ACE C-terminal catalytic
domain is the main site of Ang I cleavage into Ang II in vivo
(Fuchs et al., 2008), the N-domain specifically cleaves its natural
substrate N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into
inactive fragments (Fuchs et al., 2004). Ac-SDKP is released by
the nephron from its precursor thymosin β4 through two-step
proteolytic cleavage that involves meprinα and the serine protease
prolyl oligopeptidase (POP), also known as prolyl endopeptidase
(Prep) (Kumar et al., 2016), and the thymosin β4-Ac-SDKP axis is
a peptidergic system that prevents kidney fibrosis under normal
conditions (Romero et al., 2019) and can reduce established

FIGURE 1 | Schematic representation of the renin-angiotensin system (RAS) showing that the angiotensin converting enzyme 2 (ACE2)/Angiotensin-(1–7)/Mas
receptor axis exerts opposite effects to those of ACE/Angiotensin II/AT1 receptor axis. Renin cleaves hepatic angiotensinogen into Angiotensin I which is then cleaved via
ACE into Angiotensin II. The effects of Angiotensin II are exerted mainly through the activation of the Angiotensin II type 1 receptor (AT1R) and includes vasoconstriction,
inflammation, fibrosis, oxidative stress and cell growth. Angiotensin II also binds to Angiotensin II type 2 receptor (AT2R) which usually opposes the actions of AT1R.
Angiotensin-(1–7), which is a specific Mas receptor (MasR) agonist, can be formed directly from Angiotensin II via ACE2, or it can be generated through the ACE2-
catalyzed hydrolysis of Angiotensin I to the inactive Angiotensin-(1–9) which is then converted to Angiotensin-(1–7) by ACE or neprilysin (NEP). However, Angiotensin-
(1–7) is mainly formed through the action of ACE2 on Angiotensin II which has more affinity to ACE2 than Angiotensin I. When levels of Ang II are not sufficiently elevated,
Ang-(1–7) can also be formed directly from Ang I via NEP. Interaction of Angiotensin-(1–7) with MasR triggers intracellular signaling pathways leading to beneficial actions
such as vasodilation, anti-inflammatory, anti-fibrotic and anti-oxidative effects, and inhibition of cell proliferation.
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fibrosis during kidney injury (Zuo et al., 2013). The homeostatic
role of Ac-SDKP in collagen balance is further supported by
evidence that low endogenous levels of the peptide in the kidneys
as a result of POP inhibition promote organ fibrosis, which is
accelerated in the presence of profibrotic stimuli (Cavasin et al.,
2007). Consistently, the epigenetic downregulation of POP/Prep
by miR-324-3p contributed to kidney fibrosis in chronic kidney
disease (CKD) by rendering renal tubular cells more prone to
acquiring a mesenchymal phenotype in response to profibrotic
stimuli (Macconi et al., 2012). The rise in plasma and urinary
levels of Ac-SDKP caused by ACE inhibitors is part of their
renoprotective effect (Macconi et al., 2012; Nagai et al., 2014;
Srivastava et al., 2020a; Srivastava et al., 2020b). Differences in
the renal protective ability of ACE inhibitors and AT1R blockers
(ARB) have been described in experimental DN, which were
attributable to the capacity of ACE inhibitor, but not ARB, to
prevent ACE-induced Ac-SDKP degradation (Nagai et al., 2014;
Srivastava et al., 2020a; Srivastava et al., 2020b). In a mouse
model of type 1 DN, both ACE inhibitor and Ac-SDKP, but not
ARB, ameliorated renal fibrosis by controlling the metabolic
switch between glucose and fatty acid metabolism, thus
suppressing glycolysis-related EMT (Srivastava et al., 2020b).
Moreover, the ACE inhibitor alone or combined with Ac-SDKP
inhibited the renal overexpression of the enzyme dipeptidyl
peptidase-4 (DPP-4) and the activation of TGF-β signaling by
restoring the expression of the anti-fibrotic microRNAs miR-
29s and miR-let-7s, which targeted DDP-4 and the TGF-β
receptor TβRI, respectively. This resulted in reduced EndMT
and ECM deposition in diabetic kidneys (Srivastava et al.,
2020a). Unlike ACEi, an ARB, which failed to protect the
diabetic kidney against fibrosis, did not modulate miRNAs
and DDP-4 expression (Nagai et al., 2014; Srivastava et al.,
2020a).

ANGIOTENSIN CONVERTING ENZYME 2/
ANGIOTENSIN-(1–7)/MAS RECEPTOR AXIS
IN DIABETIC NEPHROPATHY
Studies performed in the past few decades have revealed the great
complexity of the RAS and demonstrated that, in addition to the
classical ACE/Ang II/AT1R axis, the RAS comprises other
important, biologically active enzymes, peptides and receptors
(Simoes e Silva et al., 2013; Forrester et al., 2018; Povlsen et al.,
2020). In 2000, the discovery of ACE2, a zinc metalloprotease
homologous to ACE, revealed a new pathway for the Ang II
peptide metabolism (Donoghue et al., 2000; Tipnis et al., 2000;
Hamming et al., 2007). ACE2 hydrolyzes Ang II to the
heptapeptide Ang-(1–7) and converts Ang I to the
nonapeptide Ang-(1–9), which in turn can be converted to
Ang-(1–7) by ACE, limiting Ang II production (Figure 1).
Ang-(1–7) is produced mainly through the action of ACE2,
which has a greater affinity for Ang II than Ang I; thus, Ang
II is the major substrate for Ang-(1–7) synthesis. However, when
levels of Ang II are not sufficiently elevated, Ang-(1–7) can also be
formed directly from Ang I via neprilysin (NEP) (Rice et al.,
2004). Ang-(1–7) is degraded to Ang-(1–5) by the action of ACE.

Ang-(1–7) binds to a specific G protein-coupled receptor, the
Mas receptor (Santos et al., 2003) triggering intracellular
mechanisms and functional events that oppose many of the
deleterious effects of Ang II, to the point that the ACE2/Ang-
(1–7)/Mas receptor is considered the counterregulatory axis of
ACE/Ang II/AT1R (Simoes E Silva and Teixeira, 2016; Rodrigues
Prestes et al., 2017). In diabetes, an imbalance between the Ang II
and Ang-(1–7) systems is indeed associated with vascular
dysfunction, inflammation and fibrosis (Simoes e Silva et al.,
2013; Srivastava P. et al., 2019).

Angiotensin Converting Enzyme 2
ACE2 is an 805 amino-acid type 1 integral membrane
glycoprotein (110–120 kDa) that consists of an extracellular
domain, a transmembrane region and an intracellular tail. The
extracellular domain of ACE2 contains a single active catalytic
domain, unlike ACE, which consists of two catalytic domains
(Donoghue et al., 2000; Tipnis et al., 2000; Batlle et al., 2012).
ACE2 is mainly a tissue enzyme that is expressed at high levels in
the kidneys, testes, intestine and heart (Donoghue et al., 2000;
Tipnis et al., 2000) but can also be found in the lungs, liver, brain
and pancreas. Unlike ACE, its levels in plasma are relatively low.
A soluble form of ACE2 has been found in the circulation, in
urine and in cerebrospinal fluid.

Studies have suggested that ACE2 has a renoprotective role in
experimental renal diseases, including DN, particularly in
combination with decreased ACE activity (Ye et al., 2004),
because it enhances the degradation of Ang II (Batlle et al.,
2012). Reduced expression of glomerular ACE2, coupled with
increased expression of ACE, has been found in type 2 diabetic
db/db mice, which favors excessive Ang II accumulation and its
deleterious effects (Ye et al., 2006). After diabetic mice were
treated with a specific ACE2 inhibitor, ACE increased further. In
the same study, immunogold electron microscopy, used to
identify the ultrastructural localization of ACE2 and ACE in
the glomeruli of diabetic mice, showed that ACE2 was
predominantly localized in podocyte foot processes, whereas
ACE was expressed in glomerular endothelial cells. This
finding suggested that the presence of ACE2 in podocytes
could play an important counterregulatory role by preventing
glomerular Ang II accumulation and the Ang II-mediated
increase in glomerular permeability that results in the
development of albuminuria (Ye et al., 2006). In this regard,
the selective overexpression of human ACE2 in the podocytes
attenuated the development of nephropathy in mice with
streptozotocin-induced type 1 diabetes, and compared with
wild-type diabetic mice, these mice experienced less
glomerular injury, a delay in developing albuminuria, a
blunted decrease in the podocyte markers nephrin and
synaptopodin, and protection against podocyte loss (Nadarajah
et al., 2012). On the other hand, pharmacological ACE2
inhibition worsened albuminuria and glomerular mesangial
matrix expansion in streptozotocin-induced diabetic mice, in
association with increased glomerular and vascular ACE
expression (Soler et al., 2007; Wysocki et al., 2017). Studies
using recombinant ACE2 in rodents have demonstrated the
ability of ACE2 to rapidly metabolize ANG II in vivo and to
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promote Ang-(1–7) formation (Batlle et al., 2012). However,
recombinant ACE2 induced an increase in plasma ACE2
activity but did not affect urinary ACE2, and failed to protect
mice against the development of DN, indicating that when the
augmentation of ACE2 activity is limited to the circulation, it is
not sufficient to provide renoprotection because ACE2 needs to
reach the urinary space to be effective (Wysocki et al., 2017). The
fact that there was no increase in urinary ACE2 activity was
attributed to the lack of glomerular filtration of recombinant
ACE2, because of its large molecular size. Recently, shorter forms
of ACE2, which are enzymatically active and can be filtered and
delivered to the kidney, have been generated (Wysocki et al.,
2019). They would enhance the formation of Ang-(1–7) from
Ang II and could be a potential therapeutic approach for kidney
diseases, including DN.

Angiotensin-(1–7)
A large body of studies has shown that the biological actions of
Ang-(1–7) through the Mas receptor are generally the opposite of
those exerted by Ang II through its AT1R (Simoes E Silva and
Teixeira, 2016; Rodrigues Prestes et al., 2017). Ang-(1–7) is
formed mainly by Ang II via ACE2 and the balance between
these two peptides within the RAS is greatly dependent on this
enzyme (Marquez and Batlle, 2019). Beneficial effects of Ang-
(1–7) have consistently been reported in experimental DN (Giani
et al., 2012; Mori et al., 2014; Shi Y. et al., 2015; Zhang et al., 2015).
The delivery of Ang-(1–7) by osmotic minipumps to Zucker
diabetic fatty rats, a model of type 2 DN, thus caused a reduction
in proteinuria, systolic blood pressure, and renal fibrosis, in
association with decreased production of oxidative stress and
inflammatory markers (Giani et al., 2012). Similarly, Ang-(1–7)
treatment reduced oxidative stress, fibrosis and lipotoxicity in the
kidneys of db/db mice (Mori et al., 2014). The infusion of Ang-
(1–7) also attenuated the progression of streptozotocin-induced
diabetic injury, limiting glomerulosclerosis, oxidative stress and
cell proliferation (Zhang et al., 2015). Enhancing the Ang-(1–7)
axis led to remarkable anti-inflammatory effects, resulting in the
reduction of diabetes-induced leukocyte recruitment (Bossi et al.,
2016). All these reported effects therefore made Ang-(1–7) a
candidate therapeutic agent for DN.

Cyclic Ang-(1–7) and Renoprotection in
Diabetic Nephropathy
Ang-(1–7) has a short half-life in plasma, due to rapid in vivo
catabolism by ACE and other proteases (Yamada et al., 1998),
which is a limiting factor for its use for clinical purposes. Through
the thioether cyclization method, a modified lanthipeptide cyclic
(c)-Ang (1–7) was generated in which the amino acids Tyr4 and
Pro7 were replaced with a D,L lanthionine (dAla-S-Ala)
(Kluskens et al., 2009; Kuipers et al., 2019). The thioether-
cyclized Ang-(1–7) provided enhanced resistance against
proteolytic degradation in the circulation, with improved
activity compared to the linear counterpart (Kluskens et al.,
2009; de Vries et al., 2010). The higher resistance of cAng-
(1–7) enables the use of lower doses and possibly less frequent
administration than would be necessary with the linear peptide

(Kluskens et al., 2009). Another advantage of the thioether-
bridged cAng-(1–7) is that, unlike linear Ang-(1–7), it offers
the possibility of oral and pulmonary delivery (de Vries et al.,
2010). The lantipeptide cAng-(1–7) stimulates the Mas receptor,
maintaining the receptor profile of the linear Ang-(1–7),
specifically, as indicated by evidence that its vasodilating
activity was abolished or decreased by the Mas receptor
agonists D-Prot7 and D-Ala7 (Kluskens et al., 2009). In both
mice with streptozotocin-induced diabetes and db/db mice,
cAng-(1–7) caused an increase in insulin levels and reduced
blood glucose levels, indicating the therapeutic potential that
cAng-(1–7) has for treating type 1 and 2 diabetes (Kuipers et al.,
2019).

Using BTBR ob/ob diabetic mice, a model that reproduces
characteristic features of human type 2 DN better than other
murine models, remarkable renoprotection was obtained after
subcutaneous injections of cAng-(1–7) (Cassis et al., 2019a).
Cyclic Ang (1–7) treatment, started when mice had already
developed albuminuria, significantly limited the progressive
increase in albuminuria that was observed in untreated BTBR
ob/ob mice. Notably, we found that cAng (1–7) had as strong an
antiproteinuric effect as the ACE inhibitor lisinopril, which was
used for comparison, and limited glomerular fibrosis and
inflammation even better than lisinopril (Cassis et al., 2019a).
To uncover the mechanisms underlying the strong antiproteinuric
effect of cAng-(1–7), we focused on podocytes and the glomerular
endothelium because of their key role in maintaining an intact
glomerular filtration barrier in DN (Weil et al., 2012; Siddiqi and
Advani, 2013). cAng-(1–7) ameliorated the defective expression in
podocytes of nephrin–the slit diaphragm protein that preserves slit
pore integrity and renal filtration capacity–and nestin–a protein
involved in the organization of the cytoskeleton–and limited
podocyte loss, similar to the ACE inhibitor. cAng (1–7) was
better at counteracting glomerular capillary rarefaction, a
hallmark of advanced DN (Eleftheriadis et al., 2013), than
lisinopril. The beneficial effects of cAng (1–7) on the
glomerular endothelium were also revealed by electron
microscopy analysis showing a reduction of vacuolization and
improvement in the loss of endothelial fenestration. These data
indicate that podocytes and glomerular endothelial cells are
important targets of the renoprotective effects displayed by
cAng-(1–7) in experimental diabetes. When cAng (1–7) was
combined with lisinopril, the renoprotective action was additive,
with a superior anti-proteinuric effect than ACE inhibitor had
alone, along with better preservation of podocyte proteins and
glomerular capillaries. Thus, cAng-(1–7), added to a background of
chronic ACE inhibition, may provide a therapeutic opportunity for
those diabetic patients who benefit less from ACE inhibitors.

EFFECTS OF SIRTUINS IN DIABETIC
NEPHROPATHY

Sirtuins are an evolutionarily conserved family of seven
NAD+ -dependent deacetylases that reside in different subcellular
compartments and regulate many physiological processes,
including energy production, metabolism, mitochondrial
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biogenesis, stress resistance, inflammation and longevity (Haigis
and Sinclair, 2010; Guarente, 2011; Morigi et al., 2018).

Sirtuin-1
Of the seven sirtuins, sirtuin-1 has been one of the most
extensively investigated in kidney diseases (Kong et al., 2015),
and its renoprotective effects have been consistently
demonstrated in experimental DN (Wang et al., 2019). It is
localized in the nucleus and exerts its biological effects
through the deacetylation of histones and transcription factors
relevant for kidney disease progression, including p53, NF-kB,
FOXO4, STAT3, PGC-1alpha, and consequently regulating their
activities (Morigi et al., 2018; Wang et al., 2019). Sirtuin-1 protein
expression was reduced in podocytes and in glomerular cells of
human diabetic kidneys (Chuang et al., 2011).

Role of Sirtuin-1 on Podocytes
The podocyte-specific loss of sirtuin-1 reduced podocyte
numbers, exacerbated albuminuria, and accelerated renal
disease progression in diabetic mice (Chuang et al., 2014; Liu
et al., 2014). There is evidence that sirtuin-1 is necessary for the
preservation of cytoskeleton integrity and podocyte survival
(Motonishi et al., 2015; Nakatani and Inagi, 2016). Analyses of
isolated glomeruli from podocyte-specific sirtuin-1 knockout
mice after the induction of a non-diabetic injury revealed
severe morphological changes in podocytes, with foot process
effacement and cytoskeleton derangement, in association with
reduced expression of podocyte proteins, such as nephrin, nestin
andWilm’s tumor 1 protein (WT-1) (Motonishi et al., 2015). The
mechanisms responsible for podocyte dysfunction after the loss of
sirtuin-1 were found to be dependent on the inactivation of
cortactin, an actin-binding protein that regulates the assembly,
polymerization and stabilization of F-actin in different cell types,
including podocytes. Indeed, sirtuin-1 deacetylated cortactin and
enhanced cortactin activity, favoring localization in the cytoplasm
and interaction with actin fibers, which are essential for
maintaining the actin cytoskeleton (Motonishi et al., 2015).
The induction of sirtuin-1 overexpression, specifically in
podocytes, or treatment with the specific sirtuin-1 agonist
BF175, in OVE26 type 1 diabetic mice, reduced albuminuria
and attenuated diabetes-induced podocyte loss and oxidative
stress, providing evidence that sirtuin-1 protects against
diabetic disease (Hong et al., 2018). Sirtuin-1 renoprotection
was mediated through PGC-1 alpha, the master regulator of
mitochondrial function that, once deacetylated, protects
podocytes against high glucose-induced oxidation and
mitochondrial dysfunction (Hong et al., 2018). Some data
suggest that in DN there is complex functional interplay
between proximal tubules and glomeruli, regulated by sirtuin-1
(Hasegawa et al., 2013). The targeted deletion of sirtuin-1 in the
proximal tubules of diabetic mice led to reduced levels of sirtuin-1
and high expression of the tight junction protein claudin-1 in
podocytes, which led to the initiation of albuminuria and the
development of renal function impairment (Hasegawa et al.,
2013). To provide one potential explanation for these results,
it was shown that proximal tubular cells exposed to high glucose
concentrations in vitro secrete less nicotinamide mononucleotide

(NMN), which lowers sirtuin-1 in podocytes and upregulates
claudin-1 expression (Hasegawa et al., 2013). There is also some
evidence that sirtuin-1 and the RAS interact, and this supports the
hypothesis that sirtuin-1 is an important therapeutic target in
DN. Sirtuin-1 activates the ACE2 promoter, thus favoring the
production of Ang-(1–7) and its positive effects (Clarke et al.,
2014; Mori et al., 2014). Ang-(1–7) increases sirtuin-1 expression,
whereas Ang II has the opposite effect. In podocytes exposed to
Ang II the expression of sirtuin-1 actually decreased, concomitant
with the acetylation of p53, a pathway involved in podocyte
apoptosis. Treating diabetic mice with an ARB that reduced
albuminuria and protected podocytes against apoptosis and
loss was associated with increased sirtuin-1 activity and
reduced p53 acetylation in the kidneys (Gu et al., 2016).

Role of Sirtuin-1 on Endothelial Cells
It has been shown that sirtuin-1 regulates the angiogenic activity
of endothelial cells and a specific deletion of its deacetylase
activity in endothelial cells aggravated capillary rarefaction in a
model of renal interstitial fibrosis (Potente et al., 2007; Kida et al.,
2016). There is evidence that hyperglycemia-induced endothelial
dysfunction was associated with sirtuin-1 downregulation and
overexpression of vasoactive and profibrotic factors, such as
endothelin-1 and TGF-β (Mortuza et al., 2015). Sirtuin-1
overexpression prevented glucose-induced increased
endothelial permeability and extracellular matrix protein
production in vitro. In addition, sirtuin-1 overexpressing
transgenic mice with diabetes exhibited ameliorated
albuminuria and kidney fibrosis (Mortuza et al., 2015). As for
the mechanism(s) underlying the protective role of sirtuin-1 in
diabetes-induced endothelial dysfunction, a recent study showed
that sirtuin-1, through its deacetylase activity, suppresses the
capacity of the 66-kDa Src homology two domain-containing
protein (p66Shc) to induce vascular oxidative stress (Kumar et al.,
2017). The p66Shc is a member of the Shc family of the adaptor
proteins that acts as a redox enzyme for intracellular ROS
generation. There is evidence that p66Shc is upregulated in
cultured endothelial cells exposed to high glucose and in the
vascular endothelium of diabetic mice, and that it is responsible
for the upregulation of miR-34a, an upstream epigenetic regulator
of sirtuin-1 (Li et al., 2016). Actually, systemic infusion of miR-
34a inhibitor or genetic ablation of endothelial miR-34a
prevented downregulation of endothelial sirtuin-1 caused by
hyperglycemia (Li et al., 2016). All the above findings indicate
that interplay between sirtuin-1, p66Shc and miR-34a regulates
oxidative stress-driven dysfunction of vascular endothelium in
diabetes.

Sirtuin-3 and Diabetic Nephropathy
Sirtuin-3, localized in the mitochondrial matrix, is the main
mitochondrial NAD+ -dependent deacetylase that affects key
mitochondrial processes, such as respiratory chain activity, the
tricarboxylic acid cycle, ATP production, and antioxidant
pathways (Ahn et al., 2008; Perico et al., 2016b). Changes in
sirtuin-3 expression have a profound impact on the
pathophysiology of several diseases, including metabolic
syndrome, diabetes, and the aging processes (Benigni et al.,
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2016; Perico et al., 2016b; Benigni et al., 2019). In an in vitro
model of diabetes, sirtuin-3 overexpression protected proximal
tubular cells against high glucose-induced oxidative stress by
enhancing the expression of antioxidant genes superoxide
dismutase (SOD) and catalase (Jiao et al., 2016). Sirtuin-3
also protected endothelial cells from high glucose-induced
cytotoxicity by modulating ROS production and oxidative
stress through SOD deacetylation (Liu G. et al., 2015). There
is evidence that sirtuin-3 mRNA expression is
downregulated in kidney biopsies from DN patients
(Wang X.X. et al., 2016). The kidneys of streptozotocin-
induced diabetic CD-1 mice consistently exhibited a
reduction in the sirtuin-3 protein, with the concomitant
induction of a fibrogenic phenotype, which was exacerbated
after sirtuin-3 suppression by the systemic administration of
sirtuin-3 small interfering (si)RNA (Srivastava et al., 2018).
The observation that in these mice the suppression of
sirtuin-3 was associated with the induction of abnormal
glycolysis, and that treatment with glycolysis inhibitors
ameliorated renal fibrosis and restored sirtuin-3 levels as
well, was taken to suggest that the restoration of sirtuin-3
could be a strategy for combating diabetes-associated kidney

fibrosis through the inhibition of aberrant glycolysis
(Srivastava et al., 2018) (Figure 2).

Honokiol and Renoprotection in Diabetic
Nephropathy
We recently demonstrated that renal sirtuin-3 mRNA expression
was lower in type 2 BTBR ob/ob diabetic mice, in association with
an impairment in its deacetylase activity toward SOD2, a major
target of sirtuin-3, and was also associated with increased ROS
production (Locatelli et al., 2020) (Figure 2). The selective
activation of sirtuin-3 through the administration of honokiol,
a natural biphenolic compound isolated from magnolia bark that
has antioxidant, anti-inflammatory and anti-fibrotic properties,
resulted in the attenuation of albuminuria and amelioration of
glomerular injury (Locatelli et al., 2020). The anti-albuminuric
effect of honokiol was associated with the amelioration of
podocyte dysfunction and loss. In addition, honokiol limited
glomerular capillary rarefaction, as revealed by
immunofluorescence for CD-31, an endothelial cell marker,
and the accumulation of Mac-2 positive monocytes/
macrophages in the glomeruli. Sirtuin-3 activation with

FIGURE 2 | Role of sirtuin-3 dysregulation in kidney disease progression in diabetes. Sirtuin-3 is downregulated in the diabetic kidney. Reduced expression in
podocytes and glomerular endothelial cells impairs SOD2 antioxidant activity as a consequence of enzyme acetylation, resulting in increased ROS generation, which
promotes mitochondrial dysfunction and cell loss. These changes contribute to the development of albuminuria associated with inflammation and mesangial matrix
expansion. Renal tubules with reduced sirtuin-3 undergo ametabolic reprogrammingwith a shift toward abnormal glycolysis, display EMT, and acquire a profibrotic
phenotype. Rescuing sirtuin-3 by the specific activator honokiol prevents glomerular and tubule dysfunction and ameliorates diabetic nephropathy. acSOD2, acetylated
SOD2; PKM2, pyruvate kinase isozyme M2; EMT, epithelial to mesenchymal transition; ECM, extracellular matrix.
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honokiol also translated into improvements in mitochondrial
wellness in the glomeruli of diabetic mice through the activation
of SOD2 and the restoration of the defective expression of PGC-1
alpha, a known regulator of mitochondrial homeostasis. The
specific activation of sirtuin-3 is therefore effective in reducing
diabetes-induced oxidative stress and providing protection for
podocytes and more generally the glomerulus against diabetes-
induced damage.

All the above evidence suggests that the pharmacological
modulation of sirtuins is an attractive option for treating DN,
and natural and synthetic sirtuin-activated compounds that have
been tested in experimental kidney diseases (Morigi et al., 2018)
are available for this purpose.

NOTCH SIGNALING IN DIABETIC
NEPHROPATHY

The Notch signaling pathway comprises a family of four Notch
transmembrane receptors (Notch1–4) and two different families
of Notch ligands, namely Jagged (Jag1–2) and Delta-like (Dll1–4).
The activation of this signaling requires cell–cell contact.
Following ligand engagement, the Notch receptor is
proteolytically cleaved by metalloproteases and the c-secretase
complex into the Notch intracellular domain (NICD), which
enters the nucleus and associates with the DNA-binding protein
CSL (CBF1/RBPjκ/Su(H)/Lag-1) and other transcriptional
coactivators to trigger the transcription of target genes, such as
hairy-enhancer of split (Hes) and Hes-related genes with the
YRPW motif (Hey) (Kopan and Ilagan, 2009). Notch signaling is
highly active during nephrogenesis, where it regulates nephron
endowment and segmentation spatiotemporally through the
differentiation of nephron progenitor cells into mature
nephron cell types and patterning cell types within the
collecting duct. Specifically, Notch2 signaling plays a key role
early in nephrogenesis and is required in the acquisition of
proximal nephron cell fates, including those of proximal
tubules and podocytes (Mukherjee et al., 2019). Notch1 also
contributes to nephrogenesis, albeit to a lesser extent than
Notch2 (Surendran et al., 2010).

Reactivation of Notch1 Signaling in Diabetic
Nephropathy
In the normal kidney, Notch signaling is attenuated after birth
and is inactive in the mature glomeruli of the adult kidney. De
novo expression of active Notch1 in mature podocytes has been
shown to induce apoptosis, which translates in vivo into the
development of proteinuria and glomerulosclerosis (Niranjan
et al., 2008). Active Notch1 leads to an increase in TGF-β1
transcription, which activates the Notch1 signaling pathway
through the upregulation of Jag1. De novo expression of Notch
pathway-related transcripts and the active Notch1 intracellular
domain have been observed in the glomeruli and podocytes of
murine and human diabetic kidneys (Niranjan et al., 2008). On
the other hand, TGF-β1 is stimulated by diabetic states and plays
an important role in the pathogenesis of DN (Ziyadeh, 2004).

Thus, the interplay between Notch and TGF-β pathways in
disease conditions is crucial in the regulation of podocyte
apoptosis and can contribute to maintaining the damage.

Notch1 vs. Notch2
Proof that podocyte Notch signaling activation in DN plays a
detrimental role comes from studies on the genetic knockdown of
Notch signaling components. Diabetic mice with a podocyte-
specific deletion of RBPj, which is essential for canonical Notch
signaling, were partially protected against renal damage,
exhibiting lower levels of albuminuria and less podocyte
dedifferentiation and loss, accompanied by reduced TGF-β and
vascular endothelial growth factor (VEGF) expression compared
with wild-type mice with DN (Niranjan et al., 2008). In addition,
the relative role of Notch1 vs. Notch 2 in podocytes during DN
development was investigated in studies based on the specific
genetic deletion or overexpression of each receptor (Sweetwyne
et al., 2015). Podocyte-specific Notch1 deletion ameliorated DN,
reducing albuminuria and mesangial expansion by preventing
podocyte dedifferentiation and loss (Sweetwyne et al., 2015). In
contrast, mice with podocyte-specific deletion of Notch2 were not
protected against diabetic kidney disease development. Notch1-
null podocytes exhibited preserved nephrin and podocin
expression after TGF-β1 stimulation and were protected
against growth factor-induced apoptosis. Moreover, glomeruli
with podocyte-specific Notch1 deletion exhibited enhanced
Notch2 expression, whereas Notch2 levels were lower in TGF-
β1-stimulated podocytes with active Notch1, indicating that
Notch1 regulates Notch2 in podocytes, both at baseline and
after TGF-β1 treatment (Sweetwyne et al., 2015). Consistent
with previous findings, podocyte-specific expression of the
active Notch1 intracellular domain caused albuminuria and
glomerulosclerosis, while mice with overexpression of the
Notch2 intracellular domain did not exhibit phenotypic
alterations (Sweetwyne et al., 2015). These studies highlighted
the harmful role that Notch1 plays in inducing podocyte injury in
diabetic kidney disease, while suggesting that Notch2 has a
protective effect. Given the differential role of Notch1 and 2, it
is likely that the loss of Notch1 and maintenance of Notch 2 in
podocytes has a superior effect on glomerulosclerosis and
proteinuria than the podocyte-specific loss of the pan-Notch
regulator Rbpjk. In this context, the findings that higher
glomerular Notch2 expression from diabetic mice that
overexpressed podocyte-specific Mafb–a transcription factor
that is essential for podocyte differentiation and foot process
formation–ameliorated DN (Morito et al., 2014), and that
pharmacological activation of Notch2 by an agonist mAb was
beneficial against adriamycin-induced nephrosis (Tanaka et al.,
2014) further support the hypothesis that this receptor has a
protective effect on podocyte function and survival.

Triggers of Notch1 Signaling and Downstream
Effectors
The Notch 1 signaling pathway has been recognized as playing a
pathogenic role in DN through the induction of podocyte
dysfunction and the loss of integrity of the glomerular
filtration barrier, eventually resulting in proteinuria. The
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functional link between Notch1 activation and nephrin
downregulation in podocytes, which is a hallmark of DN, is
crucial to this event. Target transcripts that are induced by the
active Notch1 intracellular domain include Snail, a
transcriptional factor involved in EMT, which acts as a
repressor of nephrin expression (Matsui et al., 2007). The
Notch1/Snail pathway has been identified as the molecular
mechanism underlying Ang II-induced nephrin
downregulation in podocytes and the perpetuation of
glomerular injury in experimental and human type 2 DN
(Gagliardini et al., 2013). In Ang II-stimulated podocytes, the
activation of Notch1 canonical signaling, through Hes1,
upregulated the expression of Snail and its translocation into
the nucleus, leading to nephrin downregulation. These effects
were reversed by a c-secretase inhibitor. In keeping with this,
kidney specimens from either diabetic rats or humans exhibited a
strong association between enhanced Snail protein signal and
reduced nephrin protein expression. The Notch1/Snail pathway
has clinical relevance, since its modulation by ACE inhibitors
improved podocyte function and reduced overt proteinuria in
diabetic patients (Gagliardini et al., 2013). In vitro studies have
demonstrated that Ang II-induced Notch1 activation in
podocytes was associated with the upregulation of TGF-β and
VEGF, promoting apoptosis, and these effects were reversed by
ARBs. Consistently, in the glomeruli of diabetic kidneys, the
overexpression of TGF-β paralleled the increase in Jag1 and active
Notch1 intracellular domain staining in podocytes. Ang II
inhibition through telmisartan reduced albuminuria in Ins2
Akita diabetic mice by inhibiting TGF-β-associated activation
of the Notch1 pathway (Koshizaka et al., 2012). In this context,
another ARB, valsartan, also inhibited the activation of Notch,
B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 apoptotic pathways,
and reduced apoptosis and podocyte detachment and loss in the
glomeruli of mice with streptozotocin-induced diabetes (Gao
et al., 2016). These findings suggest there is a link between
Ang II and TGF-β in the activation of Notch1 signaling in
podocyte loss in DN. Since TGF-β can also induce sustained
Snail expression in podocytes via Notch1 (Sweetwyne et al.,
2015), it is conceivable that the growth factor may also act as
a mediator of Ang II-driven activation of the Notch1/Snail axis,
leading to podocyte dedifferentiation. Another mechanism
through which Notch triggers the onset of proteinuria is by
promoting dynamin-dependent, raft-independent nephrin
endocytosis (Waters et al., 2012).

Studies in cultured podocytes exposed to high glucose,
mimicking diabetic conditions, enabled the identification of
VEGF as a downstream effector of Notch1-induced podocyte
dedifferentiation and apoptosis. VEGF, which is upregulated in
the early stages of DN, is a direct trigger of nephrin repression and
apoptosis in podocytes. The inhibition of Notch1 signaling by a
c-secretase inhibitor abrogated the high glucose-induced
upregulation of VEGF, reduced nephrin expression and
podocyte apoptosis and ameliorated proteinuria in diabetic
rats (Lin et al., 2010). Another study has demonstrated there
is interplay between the Notch1 and phosphatidylinositol 3-
kinase (PI3K)/Akt pathways in regulating high glucose-
induced podocyte apoptosis, suggesting that the balance

between these two pathways may be important in the context
of DN (Wang et al., 2014).

Notch1 Signaling: A Therapeutic Target for
Podocyte Protection in Diabetic
Nephropathy
Pharmacological Modulation of Notch1 Signaling
The reactivation of Notch1 signaling in podocytes contributes to
diabetic glomerulopathy, and its modulation can be achieved
through the pharmacological inhibition of RAS (Koshizaka et al.,
2012; Gagliardini et al., 2013; Gao et al., 2016), the standard
therapy for CKD, including DN, and of Rho kinase, which
mediates TGF-β-induced Jag1 expression in podocytes
(Matoba et al., 2017) (Figure 3A). Type 2 diabetic mice
treated with fasudil exhibited reduced albuminuria, urinary
nephrin excretion and podocyte loss, which was associated
with the downregulation of Jag1 and apoptotic markers in
podocytes and less glomerular apoptosis (Matoba et al., 2017).

Preclinical studies have demonstrated that targeting Notch
signaling via the genetic deletion of its components or the
c-secretase inhibitors ameliorated DN by having a protective
effect on podocyte function and survival (Lin et al., 2010).
However, c-secretase inhibitors are nonspecific because they
inhibit all c-secretase complex-regulated intramembrane
proteolyses of different substrates and fail to distinguish
between individual Notch receptors. Moreover, concerns have
been raised regarding adverse side effects on the gastrointestinal,
immune and cutaneous systems, especially with long-term
treatment (Wong et al., 2004; van Es et al., 2005). Notch
receptor-specific inhibitors may overcome c-secretase
inhibitor-associated side effects, such as gastrointestinal tract
toxicity, which depends on the dual inhibition of Notch1 and
2 receptors (Wu et al., 2010). Two different classes of Notch1
monoclonal antibodies are now available (Aste-Amezaga et al.,
2010). Nanoparticle-based delivery of Notch1 monoclonal
antibodies, which represses Notch signaling by locking the
Notch1 receptors in a ligand-unresponsive state, is emerging
as a promising, more targeted and efficient therapeutic
strategy for treating cancer (Valcourt et al., 2020). The
translatability of this tool for treating aberrant Notch1
signaling in DN remains to be established.

Islet-Like/Islet-Based Cell Therapy
Notch1 signaling in DN is emerging as a molecular target of the
beneficial effects of cell therapy based on the administration of
bonemarrow-derived stem cells, which differentiate into islet-like
cells in combination with microRNA 124a. Bone marrow-derived
stem cells combined with miR-124a inhibited high glucose-
induced podocyte apoptosis, concomitant with the repression
of Notch1 activation, and ameliorated DN in type 2 diabetic rats
(Sun et al., 2018). Islet transplantation consistently ameliorated
albuminuria and podocyte ultrastructural changes in DN (He
et al., 2018). However, these beneficial effects on renal injury and
podocyte restoration were limited by the aberrant activation of
Notch1 despite glycemic control, suggesting that the activation of
this pathway by multiple factors can promote podocytopathy and
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disease progression and affect response to treatment. In this
context, the overexpression of active Notch1 in podocytes is
not limited to DN but is a common type of intracellular

signaling underlying glomerulopathy in several proteinuric
kidney diseases, where it strongly correlates with
glomerulosclerosis (Murea et al., 2010).

FIGURE3 |Modulation of podocyte Notch1 signaling in diabetic nephropathy (DN). (A) Pharmacological inhibition of active Notch1 inducers. Ang II and TGF-β drive
podocyte injury in diabetes through the activation of Notch1 signaling. Following Jag1 engagement Notch1 is cleaved by c-secretase and the released Notch1
intracellular domain (NICD1), via Hes1, induces sustained Snail expression, which represses nephrin, leading to podocyte dedifferentiation. On the other hand, NICD1
downregulates Notch2 and NICD2 and activates proapoptotic pathways, promoting podocyte apoptosis. Targeting Ang II by RAS inhibition and TGF-β-induced
upregulation of Jag1 with the Rho kinase inhibitor fasudil prevents Notch1-mediated podocyte phenotypic changes and loss, ameliorating DN (B,C). Epigenetic
regulation of Notch1 signaling through miRNAs (B) or posttranslational histone modification (C). (B) In normal, mature, differentiated podocytes miR-146a and miRNA
34a/c prevent Notch1 signaling activation by targeting the 3′UTR of Notch1 or both Notch1 and Jag1, thus decreasing their mRNA and protein expression. Conversely,
diabetes and hyperglycemia-induced downregulation of miR-146a and miRNA 34a/c result in Notch1 signaling activation in podocytes (C) In healthy podocytes the
trimethylation of lysine residue 27 on histone protein H3 (H3K27me3) in the Jag1 promoter and the Sirt6-mediated deacetylation of lysine residue nine on histone protein
H3 (H3K9) in the Notch1 promoter keep the Notch1 signaling pathway silent. In diabetes, reduced H3K27me3 – dependent on the overexpression of the demethylase
UTX–and increased H3K9ac due to Sirt6 downregulation relieve the repression of Jag1 and Notch1, respectively, switching on Notch1 signaling in podocytes. ACEi,
angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; UTX, Jumonji C domain-containing family: ubiquitously transcribed tetratricopeptide repeat
on chromosome X.
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Epigenetic Regulation of Notch1 Signaling
An alternative way of modulating Notch1 dysregulation in DN
has been suggested by the recent discovery of the epigenetic
regulation of Notch1 and/or its ligand Jag1 (Figures 3B,C).

MicroRNAs
Notch1 is a direct target of miR-146a, which is highly expressed in
healthy podocytes, protecting them against diabetic injury. In
contrast, miR-146a-deficient mice exhibited accelerated
glomerulopathy and albuminuria following streptozotocin-
induced hyperglycemia. Consistently, the downregulation of
miR-146a in the glomeruli of both diabetic human and mouse
kidneys correlated with glomerular damage and with a faster
decline in renal function and paralleled the upregulation of
Notch1 and ErbB4, a member of the epidermal growth factor
receptor (Lee et al., 2017). Other miRNAs, including the miR-34
family members miR-34a and miR-34c, have been identified as
upstream regulators of the Notch1 signaling pathway. Both
miRNAs were downregulated in podocytes under
hyperglycemic conditions, while their overexpression inhibited
high glucose-induced podocyte apoptosis by directly targeting the
3′UTR of either Notch1 or Jag1, thus decreasing their mRNA and
protein expression and blunting Notch1 signaling activation (Liu
X. D. et al., 2015; Zhang et al., 2016).

Posttranslational Histone Modification
Chromatin dynamics control cell fate determination and the
maintenance of a differentiated phenotype. Specifically, the
trimethylation of lysine residue 27 on histone protein H3
(H3K27me3), is enriched at the promoter region of Jag1 and,
by inhibiting Jag 1 transcription, restrains Notch pathway activity
in adult differentiated podocytes (Majumder et al., 2018). The
gain of the H3K27me3 mark is catalyzed by the histone
methyltransferase enzyme, the enhancer of zeste homolog 2
(EZH2), while its loss depends on the activity of the Jumonji
C domain-containing histone demethylases Jmjd3 and UTX.
Notably, podocytes in glomeruli from humans with diabetic
glomerulosclerosis exhibited reduced H3K27me3 concomitant
with UTX overexpression, Jag1 upregulation, and nephrin loss.
Moreover, the inhibition of Jmjd3 andUTX reduced albuminuria,
podocyte foot process effacement, and Jag1 upregulation in
diabetic mice, indicating that shifts in podocyte H3K27me3
levels may influence the development and outcomes of
glomerular injury in DN (Majumder et al., 2018).

Chromatin remodeling and gene transcription are also
regulated by histone acetylation/deacetylation, with
deacetylated histones being associated with transcriptional
repression. Sirtuin-6 is a member of the sirtuin family of class
III NAD+-dependent histone deacetylases, which inhibits Notch
signaling by deacetylating lysine residue nine on histone protein
H3 (H3K9). Sirtuin-6 expression was reduced in the kidneys of
type 1 and 2 diabetic mice, mainly in the podocytes, and in renal
biopsies from DN patients. It correlated positively with estimated
glomerular filtration rate and negatively with proteinuria and was
associated with increased H3K9ac levels. Lower Sirt6 expression
in high glucose-treated podocytes consistently paralleled the
increased levels of H3K9ac in the promoters of Notch1 and

Notch4 and the overexpression of Notch downstream target
genes Hes1 and Snail. Furthermore, the activation of Notch
signaling is part of the mechanism through which podocyte-
specific loss of sirtuin-6 exacerbates podocyte injury and
proteinuria in DN (Liu et al., 2017).

Altogether these findings suggest that the epigenetic regulation
of Notch1 signaling through the modulation of either miRNA or
posttranslational histone modification could be a novel strategy
for preventing the reactivation of this developmental pathway in
podocytes during glomerular disease and a potential therapeutic
intervention that confers protection against DN.

THYROID HORMONE SIGNALING

Thyroid Hormone Signaling: A Critical
Player in Diabetes-Induced Fetal
Reprogramming
Thyroid hormone signaling plays a critical role in physiological
growth and organ development. It is mediated by two main
classes of thyroid hormone receptors (TRs) that regulate gene
transcription: TR alpha (TRα) and TR beta (TRβ). In mammals,
the predominant TR isoforms include TRα1, TRβ1, TRβ2, TRβ3,
TRβ4. Other TR variants lack T3-binding capacity, and these are
TRα2, TRα3 and TRαΔE6. TRβ is the predominantly adult isoform
and regulates TH levels and the liver and kidney metabolism, and
is also critical for the normal development of auditory and visual
systems (Brent, 2012; Mourouzis et al., 2020). TRα1 is highly
expressed in developing organs, including the heart, brain and
kidney, and plays a key role in cell proliferation prenatally, while
after birth it regulates differentiation in various cell types (Horn
and Heuer, 2010; Pantos and Mourouzis, 2014; Benedetti et al.,
2019). In the fetus, when the levels of the active form of TH
L-triiodothyronine (T3) are low, TRα1 mainly acts as an apo-
receptor (unliganded state) to repress adult genes (thus protecting
the embryo from premature differentiation) and enhances cell
proliferation and organ growth. In contrast, after birth when T3
levels increase, TRα1 switches to the holo-receptor (liganded
state) to induce the expression of adult genes, thus promoting
cell differentiation, physiological organ maturation and function.

Compared to the healthy population, diabetic patients exhibit
lower T3 plasma levels (Wu et al., 2015) and a higher prevalence
of thyroid dysfunction, suggesting the recurrence of the fetal
profile, with low T3 levels. Several clinical studies have also shown
that thyroid dysfunction and low T3 levels are strongly associated
with worse renal clinical outcomes and increased mortality in
diabetic patients (Zoccali et al., 2006; Lazzeri et al., 2012; Rhee,
2016). However, the etiogenesis underlying these phenomena
remains poorly understood.

Recent studies in our lab have shown that podocytes and
parietal epithelial cells in the glomeruli of patients and rats with
DN re-expressed the fetal isoform TRα1, and that these cells were
also positive for several fetal, mesenchymal and damage-related
podocyte markers (Benedetti et al., 2019). Notably, the
simultaneous re-expression of TRα1 and fetal markers in the
glomerulus was observed in almost all of the common rodent
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models of DN (i.e. streptozotocin-induced type I diabetes, and the
models of type II diabetes with a deficiency for leptin (ob/obmice)
or for leptin receptor (Zucker diabetic fatty rats). In rats with DN,
we also observed that the glomerular expression of the TH-
inactivating enzyme deiodinase 3 (DIO3) increased, and blood
T3 levels decreased progressively, correlating inversely with the
metabolic and renal disease worsening. In addition, human
podocytes exposed to typical components of the diabetic
milieu in vitro (high glucose and H2O2), exhibited markedly
upregulated TRα1 and DIO3 expression. The adoption of this
fetal profile of TH signaling was associated with cytoskeleton
rearrangements, adult podocyte marker downregulation and fetal
kidney marker upregulation, along with the induction of a
maladaptive cell cycle, and TRα1-ERK1/2-mediated
hypertrophy (Benedetti et al., 2019).

It is noteworthy that similar alterations in the TH-TRα1 axis
are also observed in cardiomyocytes, another terminally
differentiated and highly specialized cell type. In response to a
wide range of stressful stimuli, cardiomyocytes adopt a fetal TH
signaling profile and (at least partially) re-activate the fetal gene
program, which eventually leads to structural alterations and the
deterioration of organ function. It has been shown that during
adrenergic injury the unliganded TRα1 induces the adoption of a
fetal pattern of myosin isoform expression and radical
phenotypical changes in the structure, shape and size of
neonatal cardiomyocytes (Pantos et al., 2007). Similarly,
inhibiting T3 binding to the TRα1 receptor delayed cardiac

myoblast differentiation, while enabling the T3-TRα1 binding
reversed all the aforementioned phenotypical changes (Pantos
et al., 2008). Our ongoing studies have shown that cardiac TH
signaling was also altered in diabetic rats, and these alterations
were associated with molecular and phenotypical changes in the
left ventricle.

In light of the above data, which demonstrate the existence of a
causal link between the reduction in TH availability and the
reactivation of developmental pathways in adulthood, and
considering the crucial regulatory role of TH signaling in
development and metabolism, we hypothesize that the TH/
TRα1 axis is a key regulator of the reactivation of the cell
developmental program (defined as fetal reprogramming, FR)
in terminally differentiated and highly specialized cells
(Figure 4).

Adopting a Fetal Thyroid Hormone Signaling
Profile: Adaptation, Maladaptation or
Therapeutic Opportunity?
So far, our data suggest that the fetal profile of TH signaling
(characterized by low T3 systemic levels, TRα1 in the apo-
receptor state and increased DIO3 activity) in the diabetic
kidney triggers podocytes to dedifferentiate and re-activate
fetal genes, re-enter the cell cycle and increase DNA content
and cell size. Although the role of TH signaling in the
pathobiology of the stressed kidney is clear, the biological

FIGURE 4 | In the fetus, when the levels of the active form of TH L-triiodothyronine (T3) are low, TRα1 mainly acts as an apo-receptor (unliganded state) to repress
adult genes (thus protecting the embryo from premature differentiation) and enhances cell proliferation and organ growth. In contrast, after birth when T3 levels increase,
TRα1 switches to the holo-receptor (liganded state) to induce the expression of adult genes, thus promoting cell differentiation, physiological organ maturation and
function. In adult life, local T3 availability is controlled by the T3-inactivating enzyme DIO3, which converts excessive T3 into rT3 and T2. In response to diabetic injury,
systemic T3 levels drop markedly, and TRα1 and DIO3 are overexpressed locally, resulting in the coordinated adoption of the fetal ligand/receptor relationship profile
(i.e., low T3 availability/high local TRα1). Apo-TRα1 binds DNA and represses the transcription of target adult genes (as happens in the fetus), leading to cell
dedifferentiation, metabolic and structural remodeling, and cell cycle reactivation. The figure is modified from Benedetti et al., 2019.
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significance of this response, especially in humans, remains
unknown.

One hypothesis we can put forward is that the reactivation of
fetal TH signaling is an adaptive response of the tissue to
diabetes-induced chronic stress to enable non-proliferating
cells to reach a lower energy state and/or to allow for
compensatory growth. Alternatively, it could be a
maladaptive response of the tissue that leads to phenotypical
changes that are more detrimental than beneficial. The
insufficient availability of data in DN limits the formulation
of robust hypotheses about the biological significance of the
adoption of fetal TH signaling in the diabetic kidney.
Nevertheless, analyzing data and paradigms from other
organs may help us to better understand the causal rationale
behind this response. Generally, low T3 levels initially provide a
metabolic benefit to stressed organs. In the diabetic heart, for
example, the local reduction of T3 levels triggers a metabolic
switch that is associated with remodeling of the contractile
machinery, which includes a switch from the expression of
proteins that consume high levels of energy to energy-saving
ones (Rajagopalan and Gerdes, 2015). In addition to the
metabolic/energetic benefit, low T3 levels also enable the
proliferation of damaged cells in some tissues that are
endowed with high regenerative capacities. This is clearly
observed in skeletal muscles, which in mice can regenerate
through satellite cell amplification after acute injury (Dentice
et al., 2010; Dentice et al., 2014). The regeneration process
begins with a drastic DIO3-mediated reduction of local T3
concentrations (Dentice et al., 2014), which allows for cell
proliferation and is immediately followed by a concomitant
downregulation of DIO3 and upregulation of DIO2 expression,
thus leading to a renewed increase in T3 levels, enabling cell
differentiation (Dentice et al., 2010). This strategy is effective
for organs that can regenerate through cell proliferation and
differentiation (at least in response to acute injuries). However,
for terminally differentiated and highly specialized cells, such
as podocytes and cardiomyocytes, which cannot proliferate
without affecting organ integrity and function, another
strategy was selected. In order to cope with the increased
workload that results from cell loss, these cells
dedifferentiate and increase their genome content
(polyploidization) and cell size (hypertrophy). For these
coordinated phenotypical alterations to occur, the fetal
profile of TH signaling (characterized by low T3 systemic
levels, TRα1 in the apo-receptor state and/or increased DIO3
activity) must be recapitulated. Even though this is beneficial
for organ function (at least in the early stages of the disease), the
persistent lack of T3 induces extensive cell dedifferentiation
and maladaptive proliferation, the reactivation of several
developmental pathways, and pathological growth and
structural remodeling in damaged tissue. Several studies in
experimental hypothyroidism support this concept. In diabetes,
hypothyroidism induces the dedifferentiation and/or
transdifferentiation of pancreatic β-cells, and these
phenomena (instead of apoptosis) have been proposed as
putative explanations for pancreatic β-cell loss (Moin and

Butler, 2019). Notably, the simultaneous overexpression of
TRα1 and the administration of T3 enhanced cell cycle
progression and proliferation, leading to the reprogramming
of pancreatic cells into insulin-producing cells, in both the rat
β-cell line and in an animal model of STZ-induced diabetes
(Furuya et al., 2010). These findings are consistent with our
studies on the diabetic kidney (Benedetti et al., 2019) and
indicate that the adoption of a fetal TH signaling profile is
associated with cell dedifferentiation and loss and pathological
growth.

Regardless of whether these phenomena should be considered
adaptations or maladaptations, they can be exploited as
therapeutic opportunities: controlling these pathways
spatiotemporally could in fact be a strategy for directing the
regeneration of damaged tissues. Administering T3 to
pharmacologically modulate the TH-TRα axis has indeed
exhibited exceptional therapeutic potential in various diabetic
organs (Furuya et al., 2010; Lin and Sun, 2011; Mourouzis et al.,
2013) and in in vitro models (Furuya et al., 2010; Benedetti et al.,
2019). In diabetic milieu-injured podocytes, T3 treatment
completely reversed the fetal phenotype and subsequent
pathological alterations by upturning changes in TH signaling,
promoting re-differentiation, and restoring normal cellular
morphology (Benedetti et al., 2019). In the kidneys of patients
with chronic kidney disease, TH treatment improves renal
function (Shin et al., 2012, Shin et al., 2013), while in our
ongoing models of diabetes, T3 reverses FR by promoting re-
differentiation and reducing hypertrophy, and improves renal
structure.

Nevertheless, translating this strategy into clinical practice will
not be straightforward: the high doses of T3 that need to be
administered to achieve therapeutic effects under conditions of
systemic hypothyroidism lead to various adverse effects (Collet
et al., 2012; Ali Rajab et al., 2017; Pantos and Mourouzis, 2018).
Thus, to maximize therapeutic efficacy while minimizing
possible adverse effects, future therapeutic strategies should
use drug delivery systems that can target and deliver the
drug to injured cells only. Alternatively, new thyromimetics
with a higher affinity for TRα1 and less susceptibility to
inactivation need to be produced to allow for more efficient
receptor activation and to drastically reduce the high dose-
related adverse effects. We are currently working in both
directions to ensure the success of the most clinically
promising option.

SODIUM-GLUCOSE COTRANSPORTER 2

SGLT2, which is located on the apical membrane of renal
tubular epithelial cells, is the principal contributor to the
reabsorption of filtered glucose, and SGLT2 inhibitors are
now a well-defined class of anti-hyperglycemic agents for
type 2 diabetes. These drugs block renal reabsorption of
glucose, promoting glycosuria and lowering blood glucose
(Vallon and Thomson, 2017). In addition, SGLT2 inhibitors
have direct effects on glomerular hemodynamics, which are
important for renoprotection in DN. In diabetes, because of a
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high filtered load of glucose, reabsorption of glucose and sodium
is increased in the proximal tubule via SGLT2, with a resulting
diminished delivery of sodium to the macula densa. These
effects reduce the tubuloglomerular feedback signal, causing
constriction of the adjacent efferent arteriole, and dilatation of
the afferent arteriole, leading to increases in intraglomerular
pressure and single nephron GFR. The inhibition of SGLT2
increases the delivery of sodium to the macula densa, restoring
tubuloglomerular feedback and promoting afferent arteriolar
constriction, which results in reduced intraglomerular pressure
and hyperfiltration (Skrtic and Cherney, 2015; DeFronzo et al.,
2017; Perico et al., 2017; Toto, 2017) would translate into
lowered albuminuria and reduced progression of the diabetic
kidney disease. Several kidney and cardiovascular outcome
studies in type 2 diabetes have indeed demonstrated that
there are important advantages to using SGLT2 inhibitor
therapy, including mortality benefits (for review see (Alicic
et al., 2019) (Kanduri et al., 2020). In experimental diabetes
SGLT2 inhibitors controlled hyperglycemia and limited
albuminuria and renal damage, including glomerular
mesangial matrix accumulation and interstitial fibrosis,
through combined effects on glomerular hemodynamics and
the inhibition of inflammation and oxidative stress (Gembardt
et al., 2014; Terami et al., 2014; Vallon et al., 2014; Wang et al.,
2017). SGLT2 inhibition also prevented podocyte injury and
loss (Wang et al., 2017). There is evidence that in addition to
tubular epithelial cells, SGLT2 is expressed in glomerular cells,
and that SGLT2 inhibitors may exert tubular SGLT2-
independent reno-protective effects (Cassis et al., 2018; Maki
et al., 2019). The expression of SGLT2 protein has been
demonstrated in cultured mesangial cells, and was
upregulated by exposure to high glucose (Maki et al., 2019).
Moreover, in db/db mice with type 2 diabetes, a low dose of
SGLT2 inhibitor–which, unlike a higher dose, did not affect
hyperglycemia and glycosuria–was still able to reduce
albuminuria and mesangial expansion in the same way as a
higher dose (Maki et al., 2019). Through in vitro and in vivo
experiments, we have shown that SGLT2 is also expressed in
mouse podocytes and that its level was increased by albumin
overload, depending on NF-kB activation (Cassis et al., 2018).
Further, we showed that SGLT2 inhibitor limited proteinuria
and protected mice with protein-overload proteinuria against
podocyte dysfunction and loss, and that SGLT2 inhibitor
directly targeted podocytes through the maintenance of actin
cytoskeleton architecture (Cassis et al., 2018). All the above
evidence indicates that SGLT2 inhibitors, through their
pleiotropic effects, independently of their glucose-lowering
property, may provide renoprotection not only in diabetic
but also non-diabetic CKD.

HYPOXIA-INDUCIBLE FACTOR-1

Chronic hypoxia has been recognized as an important signaling
pathway driving diabetic kidney disease (Hesp et al., 2020).
Emerging evidence indicates that many of the renoprotective
benefits of SGLT2 inhibitors may be due to their action on

hypoxia-inducible factor (HIF)-1 (Bessho et al., 2019; Packer,
2020), a heterodimeric transcription factor that plays a key role
in cellular adaptation to different oxygen concentrations
(Patten et al., 2010; Packer, 2020). It is composed of an
oxygen-sensitive α-subunit (HIF-1α) and a constitutively
expressed ß-subunit (HIF-1β). In normoxic conditions, HIF-
1α subunit is continuously produced in the cytosol but rapidly
degraded; it is hydroxylated at specific proline residues by
prolyl-4-hydroxylase domain (PHD) proteins, allowing for
recognition by von Hippel-Lindau-(VHL)-E3 ubiquitin ligase
complex, which targets HIF-1α for proteasomal degradation.
During hypoxia, the degradation process is suppressed and
HIF-1α is transferred into the nucleus to form, with the ß-
subunit, an active heterodimer that binds to hypoxia response
elements (HRE) in the promoter regions of target genes
involved in different processes, including erythropoiesis,
glycolysis, angiogenesis, oxidative stress and fibrogenesis
(Haase, 2006; Packer, 2020). Notably, in addition to hypoxia,
nonhypoxic factors such as high glucose, Ang II, TGF-β and
ROS–all of which mediate renal damage in diabetes–promote
HIF-1 activation (Macconi et al., 2014; Nayak et al., 2016). HIF-
1 is per se implicated in the regulation of the above mediators,
so it has been proposed that there is a feedback loop through
which HIF-1 mediates the initiation and progression of
diabetes-induced renal damage (Nayak et al., 2016). It has
been reported that the activation of HIF-1 signaling by
hypoxia promoted fibrosis. Thus HIF-1α enhanced EMT
transition in renal epithelial cells in vitro, and genetic
ablation of epithelial Hif-1α reduced tubulointerstitial fibrosis
in a mouse model of kidney fibrosis (Higgins et al., 2007).
Increased expression of HIF-1 and its target genes has been
found in fibrotic areas of microdissected kidney tissues from
DN patients (Higgins et al., 2007), and the upregulation of HIF-
1α has been detected in hypertensive DN kidneys of mice with
renal fibrosis (Jiao et al., 2018). Moreover, HIF-1α blockade
through treatment with a HIF-1 inhibitor ameliorated
glomerular hypertrophy, mesangial matrix expansion and
fibrosis in diabetic OVE26 mice (Nayak et al., 2016). Based
on in vitro and in vivo experiments, recent studies have
proposed HIF-1 as a therapeutic target for an SGLT2
inhibitor for DN (Bessho et al., 2019; Packer, 2020). In
cultured tubular epithelial cells, an SGLT2 inhibitor reduced
hypoxia-induced HIF-1α protein expression and its target genes
by reducing mitochondrial oxygen consumption (Bessho et al.,
2019). In diabetic db/db mice, treatment with the SGLT2
inhibitor attenuated cortical tubular HIF-1α expression,
tubular injury and interstitial fibrosis (Bessho et al., 2019).
There is also evidence that in type 2 diabetes, SGLT2 inhibitors
enhanced nutrient deprivation signaling through the
upregulation of AMPK and SIRT1, which in turn act to
suppress HIF-1α (Packer, 2020).

DIPEPTIDYL PEPTIDASE-4

Dipeptidyl peptidase-4, also known as CD26, is a ubiquitously
expressed serine protease that cleaves several substrates,
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including the incretin hormones, glucagon-like peptide 1
(GLP–1) and glucose-dependent insulinotropic polypeptide
(GIP), which regulate post-prandial insulin secretion
(Röhrborn, 2015). DPP-4 inhibitors have been approved as
antihyperglycemic medication for type 2 diabetes. DPP-4
inhibitors are oral, weight neutral, well tolerated blood
glucose-lowering drugs with a low risk of hypoglycemia and
proven cardiovascular safety (Gallwitz, 2019). Clinical studies
have reported that some DPP-4 inhibitors used as monotherapy
or added to ACE inhibitors/ARBs reduced albuminuria in
diabetic patients without affecting other renal outcomes (see
reviews (Penno et al., 2016; Coppolino et al., 2018; Taylor and
Lam, 2020). However, there are no definitive data that would
make it possible to establish whether DPP-4 inhibitors confer
renoprotection on type 2 patients (Hanssen and Jandeleit-Dahm,
2019).

The role of DPP-4 and the effects of DPP-4 inhibitors in
diabetic kidney disease have been reviewed recently, with a
focus on linagliptin (see (Kanasaki, 2018; Gupta and Sen, 2019).
In the healthy rat kidney, DPP-4 is expressed in proximal
tubular cells and in the glomerulus, mainly in podocytes. In
humans, glomerular expression of DDP-4 was only detected
under pathological conditions. Consistent with this, in vitro
studies have reported DPP-4 induction in human podocytes
and glomerular endothelial cells in response to inflammatory
cytokines and high glucose (Kanasaki, 2018). In experimental
DN the DPP-4 inhibitor linagliptin reduced albuminuria and
ameliorated glomerulosclerosis and interstitial fibrosis,
independently of glucose control (Kanasaki, 2018). The
renoprotective effects were associated with the attenuation of
podocyte dysfunction and loss (Sharkovska et al., 2014;
Takashima et al., 2016) and the inhibition of EndMT
(Kanasaki et al., 2014). The molecular mechanisms
underlying DPP4-induced EndMT have been elucidated by
in vitro studies that showed that DPP-4 interacts with the
integrin β1, causing TGF-βR heterodimer formation and the
consequent activation of TGF-β signaling. The DPP-4/integrin
β1 complex can also downregulate VEGFR2 while upregulating

VEGFR1, thus favoring EndMT (Shi S. et al., 2015). In diabetic
kidneys DPP-4 is overexpressed in endothelial cells with a
mesenchymal phenotype, concomitant with the
downregulation of miR-29s. By restoring miR-29s, which
target DPP-4, linagliptin inhibited DPP-4 overexpression
and its interaction with integrin β1, thus reducing TGF-
β-induced EndMT (Kanasaki et al., 2014; Shi S. et al., 2015).
This effect is unique to linagliptin and not shared by other
members of the gliptin family (Shi et al., 2016). Similarly to
what has been observed in endothelial cells, linagliptin is able to
reduce TGF-β signaling in proximal tubular cells under
hyperglycemic conditions by inhibiting the interaction of
DPP-4 with the cation-independent mannose 6-phosphate
receptor (Gangadharan Komala et al., 2015). Altogether
these findings suggest that the DPP-4 inhibitor linagliptin
has a pleiotropic effect that is incretin- and glucose-
lowering- independent, and which confers protection against
kidney fibrosis in experimental DN through miRNA
modulation and the inhibition of DPP-4 interaction with
other proteins.

CONCLUSION

Diabetes is a global health concern of epidemic proportions. About
one-third of affected people develop diabetic nephropathy, a leading
cause of end-stage kidney disease worldwide. There is an imperative
need to identify novel therapeutic interventions with renoprotective
effects for those diabetic patients who do not respond completely to
standard therapy. In this review we first described four major
signaling pathways that have emerged as mediators of podocyte/
endothelial cell injury that contribute crucially to the pathogenesis of
DN and can be targets for therapeutic interventions (Table 1). The
development of cAng-(1–7), a modified peptide that is more
peptidase resistant than the linear peptide, is particularly
attractive for long-term treatment and has potential suitability for
clinical use. The availability of natural compounds that increase
sirtuin expression/activity in the diabetic kidney makes

TABLE 1 | Selected targetable signaling pathways in experimental diabetic nephropathy mentioned in this review.

Pathway Intervention Model References

ACE2/Ang-(1‒7)/MasR Podocyte-specific hACE2 overexpression STZ-induced diabetes in mice Nadarajah et al. (2012)
Ang-(1‒7) Zucker diabetic fatty rats, db/db mice,

STZ-induced diabetes in mice
Giani et al. (2012), Mori et al. (2014),
Zhang et al. (2015), Bossi et al. (2016)

Cyclic Ang-(1‒7) BTBR ob/ob mice, type 1 and type 2 diabetes
mouse models

Cassis et al. (2019a), Kuipers et al. (2019)

Sirtuin-1 Podocyte-specific sirtuin-1 overexpression
Sirtuin-1 agonist BF175

OVE 26 type 1 diabetic mice Hong et al. (2018)

Sirtuin-3 Honokiol BTBR ob/ob mice Locatelli et al. (2020)
Notch Podocyte-specific RBPj deletion STZ-induced diabetes in mice Niranjan et al. (2008)

Podocyte-specific Notch 1 deletion STZ-induced diabetes in mice Sweetwyne et a. (2015)
Podocyte-specific Mafb overexpression STZ-induced diabetes in mice Morito et al. (2014)
γ-secretase inhibitor DAPT STZ-induced diabetes in mice Lin et al. (2010)
histone demethylase inhibitor GSK-J4 db/db mice Majumder et al. (2018)

Thyroid hormone L-triiodothyronine (T3) db/db mice Lin and Sun (2011)
high glucose-loaded podocytes Benedetti et al. (2019)
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pharmacological modulation of sirtuins a novel strategy for treating
DN. Notch1 and TH signaling pathways, which are abnormally
activated in podocytes in DN, are targets for podocyte-directed
therapy. Future drug delivery systems that can target and deliver the
TH to injured cells, or new thyromimetics with a higher affinity for
TRα1, may allow us to maximize the regenerative potential of TH
signaling and minimize the high dose-related adverse effects. In
addition, there are a number of different experimental therapies that
could directly or indirectly target other discussed signalings.
Actually, drugs that target podocytes or vasculature, such as
SGLT2 inhibitors and DPP-4 inhibitors, as well as drugs that can
modulate HIF activity, may lead to next-generation therapeutics that
can efficiently mitigate diabetes complications in the kidney. Finally
silencing of miRNAs that are found to directly contribute to the
pathogenesis of DN, e.g., miR-21 (Kölling et al., 2017), miR-214
(Wang X. et al., 2016) or miR-184 (Zanchi et al., 2017), to name a
few, or to induce changes in TH signaling (e.g., induction of the
DIO3 (Di Girolamo et al., 2016), may provide a solid basis for the
development of therapeutic solutions that can arrest or even reverse
the structural and functional alterations of the diabetic kidney.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

CX’s research is funded by Euronanomed (an ERA-NET grant;
736/8221) and the Associazione per la Ricerca sul Diabete
Italia.

ACKNOWLEDGMENTS

The authors are indebted to Giuseppe Remuzzi for reviewing the
manuscript. The authors are also grateful to Kerstin Mierke for
English language editing, to Manuela Passera for helping with the
manuscript and Antonella Piccinelli for helping to prepare the
figures.

REFERENCES

Aaltonen, P., Luimula, P., Astrom, E., Palmen, T., Gronholm, T., Palojoki, E., et al.
(2001). Changes in the expression of nephrin gene and protein in experimental
diabetic nephropathy. Lab. Invest. 81, 1185–1190. doi:10.1038/labinvest.3780332

Ahn, B. H., Kim, H. S., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., et al. (2008).
A role for the mitochondrial deacetylase Sirt3 in regulating energy
homeostasis. Proc. Natl. Acad. Sci. U A 105, 14447–14452. doi:10.1073/
pnas.0803790105

Ali Rajab, N. M., Ukropina, M., and Cakic-Milosevic, M. (2017). Histological and
ultrastructural alterations of rat thyroid gland after short-term treatment with
high doses of thyroid hormones. Saudi J. Biol. Sci. 24, 1117–1125. doi:10.1016/j.
sjbs.2015.05.006

Alicic, R. Z., Neumiller, J. J., Johnson, E. J., Dieter, B., and Tuttle, K. R. (2019).
Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease.
Diabetes 68, 248–257. doi:10.2337/dbi18-0007

Aste-Amezaga, M., Zhang, N., Lineberger, J. E., Arnold, B. A., Toner, T. J., Gu, M.,
et al. (2010). Characterization of Notch1 antibodies that inhibit signaling of
both normal and mutated Notch1 receptors. PLoS One 5, e9094. doi:10.1371/
journal.pone.0009094

Batlle, D., Wysocki, J., Soler, M. J., and Ranganath, K. (2012). Angiotensin-
converting enzyme 2: enhancing the degradation of angiotensin II as a
potential therapy for diabetic nephropathy. Kidney Int. 81, 520–528. doi:10.
1038/ki.2011.381

Benedetti, V., Lavecchia, A. M., Locatelli, M., Brizi, V., Corna, D., Todeschini, M.,
et al. (2019). Alteration of thyroid hormone signaling triggers the diabetes-
induced pathological growth, remodeling, and dedifferentiation of podocytes.
JCI Insight 4, e130249. doi:10.1172/jci.insight.130249

Benigni, A., Cassis, P., Conti, S., Perico, L., Corna, D., Cerullo, D., et al. (2019). Sirt3
deficiency shortens life span and impairs cardiac mitochondrial function
rescued by Opa1 gene transfer. Antioxidants Redox Signal. 31, 1255–1271.
doi:10.1089/ars.2018.7703

Benigni, A., Gagliardini, E., Tomasoni, S., Abbate, M., Ruggenenti, P., Kalluri, R.,
et al. (2004). Selective impairment of gene expression and assembly of nephrin
in human diabetic nephropathy. Kidney Int. 65, 2193–2200. doi:10.1111/j.1523-
1755.2004.00636.x

Benigni, A., Perico, L., and Macconi, D. (2016). Mitochondrial dynamics is linked
to longevity and protects from end-organ injury: the emerging role of sirtuin 3.
Antioxidants Redox Signal. 25, 185–199. doi:10.1089/ars.2016.6682

Bernstein, K. E., Shen, X. Z., Gonzalez-Villalobos, R. A., Billet, S., Okwan-Duodu,
D., Ong, F. S., et al. (2011). Different in vivo functions of the two catalytic

domains of angiotensin-converting enzyme (ACE). Curr. Opin. Pharmacol. 11,
105–111. doi:10.1016/j.coph.2010.11.001

Bessho, R., Takiyama, Y., Takiyama, T., Kitsunai, H., Takeda, Y., Sakagami, H.,
et al. (2019). Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2
inhibitor for diabetic nephropathy. Sci. Rep. 9, 14754. doi:10.1038/s41598-019-
51343-1

Bossi, F., Bernardi, S., De Nardo, D., Bramante, A., Candido, R., Carretta, R., et al.
(2016). Angiotensin 1-7 significantly reduces diabetes-induced leukocyte
recruitment both in vivo and in vitro. Atherosclerosis 244, 121–130. doi:10.
1016/j.atherosclerosis.2015.11.017

Brent, G. A. (2012). Mechanisms of thyroid hormone action. J. Clin. Invest. 122,
3035–3043. doi:10.1172/JCI60047

Broekhuizen, L. N., Lemkes, B. A., Mooij, H. L., Meuwese, M. C., Verberne, H.,
Holleman, F., et al. (2010). Effect of sulodexide on endothelial glycocalyx and
vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53,
2646–2655. doi:10.1007/s00125-010-1910-x

Cao, Z. (2002). Angiotensin type 2 receptor antagonism confers renal protection in
a rat model of progressive renal injury. J. Am. Soc. Nephrol. 13, 1773–1787.
doi:10.1097/01.ASN.0000019409.17099.33

Cassis, P., Locatelli, M., Cerullo, D., Corna, D., Buelli, S., Zanchi, C., et al.
(2018). SGLT2 inhibitor dapagliflozin limits podocyte damage in
proteinuric nondiabetic nephropathy. JCI Insight 3, e98720. doi:10.1172/
jci.insight.98720

Cassis, P., Locatelli, M., Corna, D., Villa, S., Rottoli, D., Cerullo, D., et al. (2019a).
Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme
inhibitor therapy has a positive add-on effect in experimental diabetic
nephropathy. Kidney Int. 96, 906–917. doi:10.1016/j.kint.2019.04.024

Cassis, P., Zoja, C., Perico, L., and Remuzzi, G. (2019b). A preclinical overview of
emerging therapeutic targets for glomerular diseases. Expert Opin. Ther. Targets
23 (7), 593–606. doi:10.1080/14728222.2019.1626827

Cavasin, M. A., Liao, T.-D., Yang, X.-P., Yang, J. J., and Carretero, O. A. (2007).
Decreased endogenous levels of Ac-SDKP promote organ fibrosis.Hypertension
50, 130–136. doi:10.1161/HYPERTENSIONAHA.106.084103

Chow, B. S. M., and Allen, T. J. (2016). Angiotensin II type 2 receptor (AT2R) in
renal and cardiovascular disease. Clin. Sci. 130, 1307–1326. doi:10.1042/
CS20160243

Chuang, P. Y., Dai, Y., Liu, R., He, H., Kretzler, M., Jim, B., et al. (2011). Alteration
of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in
diabetes mellitus. PLoS One 6, e23566. doi:10.1371/journal.pone.0023566

Chuang, P. Y., Xu, J., Dai, Y., Jia, F., Mallipattu, S. K., Yacoub, R., et al. (2014). In
vivo RNA interference models of inducible and reversible Sirt1 knockdown in
kidney cells. Am. J. Pathol. 184, 1940‒1956. doi:10.1016/j.ajpath.2014.03.016

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689216

Zoja et al. Signaling Pathways in Diabetic Nephropathy

101

https://doi.org/10.1038/labinvest.3780332
https://doi.org/10.1073/pnas.0803790105
https://doi.org/10.1073/pnas.0803790105
https://doi.org/10.1016/j.sjbs.2015.05.006
https://doi.org/10.1016/j.sjbs.2015.05.006
https://doi.org/10.2337/dbi18-0007
https://doi.org/10.1371/journal.pone.0009094
https://doi.org/10.1371/journal.pone.0009094
https://doi.org/10.1038/ki.2011.381
https://doi.org/10.1038/ki.2011.381
https://doi.org/10.1172/jci.insight.130249
https://doi.org/10.1089/ars.2018.7703
https://doi.org/10.1111/j.1523-1755.2004.00636.x
https://doi.org/10.1111/j.1523-1755.2004.00636.x
https://doi.org/10.1089/ars.2016.6682
https://doi.org/10.1016/j.coph.2010.11.001
https://doi.org/10.1038/s41598-019-51343-1
https://doi.org/10.1038/s41598-019-51343-1
https://doi.org/10.1016/j.atherosclerosis.2015.11.017
https://doi.org/10.1016/j.atherosclerosis.2015.11.017
https://doi.org/10.1172/JCI60047
https://doi.org/10.1007/s00125-010-1910-x
https://doi.org/10.1097/01.ASN.0000019409.17099.33
https://doi.org/10.1172/jci.insight.98720
https://doi.org/10.1172/jci.insight.98720
https://doi.org/10.1016/j.kint.2019.04.024
https://doi.org/10.1080/14728222.2019.1626827
https://doi.org/10.1161/HYPERTENSIONAHA.106.084103
https://doi.org/10.1042/CS20160243
https://doi.org/10.1042/CS20160243
https://doi.org/10.1371/journal.pone.0023566
https://doi.org/10.1016/j.ajpath.2014.03.016
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Clarke, N. E., Belyaev, N. D., Lambert, D. W., and Turner, A. J. (2014). Epigenetic
regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under
conditions of cell energy stress. Clin. Sci. 126, 507–516. doi:10.1042/
CS20130291

Collet, T. H., Gussekloo, J., Bauer, D. C., den Elzen, W. P., Cappola, A. R., Balmer,
P., et al. (2012). Subclinical hyperthyroidism and the risk of coronary heart
disease and mortality. Arch. Intern. Med. 172, 799–809. doi:10.1001/
archinternmed.2012.402

Conti, S., Perico, L., Grahammer, F., and Huber, T. B. (2017). The long journey through
renal filtration: new pieces in the puzzle of slit diaphragm architecture. Curr. Opin.
Nephrol. Hypertens. 26, 148–153. doi:10.1097/MNH.0000000000000322

Conti, S., Perico, N., Novelli, R., Carrara, C., Benigni, A., and Remuzzi, G. (2018).
Early and late scanning electron microscopy findings in diabetic kidney disease.
Sci. Rep. 8, 4909. doi:10.1038/s41598-018-23244-2

Coppolino, G., Leporini, C., Rivoli, L., Ursini, F., di Paola, E. D., Cernaro, V.,
et al. (2018). Exploring the effects of DPP-4 inhibitors on the kidney from
the bench to clinical trials. Pharmacol. Res. 129, 274–294. doi:10.1016/j.
phrs.2017.12.001

de Vries, L., Reitzema-Klein, C. E., Meter-Arkema, A., van Dam, A., Rink, R., Moll,
G. N., et al. (2010). Oral and pulmonary delivery of thioether-bridged
angiotensin-(1-7). Peptides 31, 893–898. doi:10.1016/j.peptides.2010.02.015

DeFronzo, R. A., Norton, L., and Abdul-Ghani, M. (2017). Renal, metabolic and
cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 13,
11–26. doi:10.1038/nrneph.2016.170

Dentice, M., Ambrosio, R., Damiano, V., Sibilio, A., Luongo, C., Guardiola, O., et al.
(2014). Intracellular inactivation of thyroid hormone is a survival mechanism
for muscle stem cell proliferation and lineage progression. Cell Metabol. 20,
1038–1048. doi:10.1016/j.cmet.2014.10.009

Dentice, M., Marsili, A., Ambrosio, R., Guardiola, O., Sibilio, A., Paik, J. H., et al.
(2010). The FoxO3/type 2 deiodinase pathway is required for normal mouse
myogenesis and muscle regeneration. J. Clin. Invest. 120, 4021–4030. doi:10.
1172/JCI43670

Di Girolamo, D., Ambrosio, R., De Stefano, M. A., Mancino, G., Porcelli, T.,
Luongo, C., et al. (2016). Reciprocal interplay between thyroid hormone and
microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis. J. Clin.
Invest. 126, 2308–2320. doi:10.1172/JCI84465

Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., et al.
(2000). A novel angiotensin-converting enzyme-related carboxypeptidase
(ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1–E9.
doi:10.1161/01.res.87.5.e1

Eleftheriadis, T., Antoniadi, G., Pissas, G., Liakopoulos, V., and Stefanidis, I. (2013).
The renal endothelium in diabetic nephropathy. Ren. Fail. 35, 592–599. doi:10.
3109/0886022X.2013.773836

Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J., and Nguyen, T. Q.
(2015). Diverse origins of the myofibroblast—implications for kidney fibrosis.
Nat. Rev. Nephrol. 11, 233–244. doi:10.1038/nrneph.2014.246

Fogo, A. B. and Kon, V. (2010). The glomerulus--a view from the inside--the
endothelial cell. Int. J. Biochem. Cell Biol. 42, 1388–1397. doi:10.1016/j.biocel.
2010.05.015

Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V.,
et al. (2018). Angiotensin II signal transduction: an update on mechanisms of
physiology and pathophysiology. Physiol. Rev. 98, 1627–1738. doi:10.1152/
physrev.00038.2017

Fox, C. S., Coady, S., Sorlie, P. D., Levy, D., Meigs, J. B., D’Agostino, R. B., et al.
(2004). Trends in cardiovascular complications of diabetes. JAMA 292,
2495–2499. doi:10.1001/jama.292.20.2495

Fu, J., Lee, K., Chuang, P. Y., Liu, Z., and He, J. C. (2015). Glomerular endothelial
cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Ren. Physiol.
308, F287–F297. doi:10.1152/ajprenal.00533.2014

Fuchs, S., Xiao, H. D., Cole, J. M., Adams, J. W., Frenzel, K., Michaud, A., et al.
(2004). Role of the N-terminal catalytic domain of angiotensin-converting
enzyme investigated by targeted inactivation in mice. J. Biol. Chem. 279,
15946–15953. doi:10.1074/jbc.M400149200

Fuchs, S., Xiao, H. D., Hubert, C., Michaud, A., Campbell, D. J., Adams, J. W., et al.
(2008). Angiotensin-converting enzyme C-terminal catalytic domain is the
main site of angiotensin I cleavage in vivo. Hypertension 51, 267–274. doi:10.
1161/HYPERTENSIONAHA.107.097865

Furuya, F., Shimura, H., Yamashita, S., Endo, T., and Kobayashi, T. (2010).
Liganded thyroid hormone receptor-alpha enhances proliferation of
pancreatic beta-cells. J. Biol. Chem. 285, 24477–24486. doi:10.1074/jbc.M109.
100222

Gagliardini, E., Perico, N., Rizzo, P., Buelli, S., Longaretti, L., Perico, L., et al. (2013).
Angiotensin II contributes to diabetic renal dysfunction in rodents and humans
via Notch1/Snail pathway. Am. J. Pathol. 183, 119–130. doi:10.1016/j.ajpath.
2013.03.025

Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Front. Endocrinol. 10, 389.
doi:10.3389/fendo.2019.00389

Gangadharan Komala, M., Gross, S., Zaky, A., Pollock, C., and Panchapakesan, U.
(2015). Linagliptin limits high glucose induced conversion of latent to active
TGFß through interaction with CIM6PR and limits renal tubulointerstitial
fibronectin. PLoS One 10, e0141143. doi:10.1371/journal.pone.0141143

Gao, F., Yao, M., Cao, Y., Liu, S., Liu, Q., and Duan, H. (2016). Valsartan
ameliorates podocyte loss in diabetic mice through the Notch pathway. Int.
J. Mol. Med. 37, 1328–1336. doi:10.3892/ijmm.2016.2525

Garsen, M., Lenoir, O., Rops, A. L. W. M. M., Dijkman, H. B., Willemsen, B., van
Kuppevelt, T. H., et al. (2016). Endothelin-1 induces proteinuria by heparanase-
mediated disruption of the glomerular glycocalyx. J. Am. Soc. Nephrol. 27,
3545–3551. doi:10.1681/ASN.2015091070

Gembardt, F., Bartaun, C., Jarzebska, N., Mayoux, E., Todorov, V. T., Hohenstein,
B., et al. (2014). The SGLT2 inhibitor empagliflozin ameliorates early features of
diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without
hypertension. Am. J. Physiol. Ren. Physiol. 307, F317–F325. doi:10.1152/
ajprenal.00145.2014

Giani, J. F., Burghi, V., Veiras, L. C., Tomat, A., Munoz, M. C., Cao, G., et al. (2012).
Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats.
Am. J. Physiol. Ren. Physiol. 302, F1606–F1615. doi:10.1152/ajprenal.00063.2012

Gu, J., Yang,M., Qi, N., Mei, S., Chen, J., Song, S., et al. (2016). Olmesartan prevents
microalbuminuria in db/db diabetic mice through inhibition of angiotensin II/
p38/SIRT1-Induced podocyte apoptosis. Kidney Blood Press. Res. 41, 848–864.
doi:10.1159/000452588

Guarente, L. (2011). Franklin H. Epstein lecture: sirtuins, aging, and medicine. N.
Engl. J. Med. 364, 2235–2244. doi:10.1056/NEJMra1100831

Gupta, S., and Sen, U. (2019). More than just an enzyme: dipeptidyl peptidase-4
(DPP-4) and its association with diabetic kidney remodelling. Pharmacol. Res.
147, 104391. doi:10.1016/j.phrs.2019.104391

Haase, V. H. (2006). Hypoxia-inducible factors in the kidney. Am. J. Physiol. Ren.
Physiol. 291, F271–F281. doi:10.1152/ajprenal.00071.2006

Haigis, M. C., and Sinclair, D. A. (2010). Mammalian sirtuins: biological insights
and disease relevance. Annu. Rev. Pathol. 5, 253–295. doi:10.1146/annurev.
pathol.4.110807.092250

Hamming, I., Cooper, M. E., Haagmans, B. L., Hooper, N. M., Korstanje, R.,
Osterhaus, A. D., et al. (2007). The emerging role of ACE2 in physiology and
disease. J. Pathol. 212, 1–11. doi:10.1002/path.2162

Hanssen, N. M. and Jandeleit-Dahm, K. A. (2019). Dipeptidyl peptidase-4
inhibitors and cardiovascular and renal disease in type 2 diabetes: what
have we learned from the CARMELINA trial? Diabetes Vasc. Dis. Res. 16,
303–309. doi:10.1177/1479164119842339

Haraldsson, B., and Nystrom, J. (2012). The glomerular endothelium: new insights
on function and structure. Curr. Opin. Nephrol. Hypertens. 21, 258–263. doi:10.
1097/MNH.0b013e3283522e7a

Hasegawa, K., Wakino, S., Simic, P., Sakamaki, Y., Minakuchi, H., Fujimura, K.,
et al. (2013). Renal tubular Sirt1 attenuates diabetic albuminuria by
epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med.
19, 1496–1504. doi:10.1038/nm.3363

He, Y., Zhang, M., Wu, Y., Jiang, H., Fu, H., Cai, Y., et al. (2018). Aberrant
activation of Notch-1 signaling inhibits podocyte restoration after islet
transplantation in a rat model of diabetic nephropathy. Cell Death Dis. 9,
950. doi:10.1038/s41419-018-0985-z

Hesp, A. C., Schaub, J. A., Prasad, P. V., Vallon, V., Laverman, G. D., Bjornstad, P.,
et al. (2020). The role of renal hypoxia in the pathogenesis of diabetic kidney
disease: a promising target for newer renoprotective agents including SGLT2
inhibitors? Kidney Int. 98, 579–589. doi:10.1016/j.kint.2020.02.041

Higgins, D. F., Kimura, K., Bernhardt, W. M., Shrimanker, N., Akai, Y.,
Hohenstein, B., et al. (2007). Hypoxia promotes fibrogenesis in vivo via

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689217

Zoja et al. Signaling Pathways in Diabetic Nephropathy

102

https://doi.org/10.1042/CS20130291
https://doi.org/10.1042/CS20130291
https://doi.org/10.1001/archinternmed.2012.402
https://doi.org/10.1001/archinternmed.2012.402
https://doi.org/10.1097/MNH.0000000000000322
https://doi.org/10.1038/s41598-018-23244-2
https://doi.org/10.1016/j.phrs.2017.12.001
https://doi.org/10.1016/j.phrs.2017.12.001
https://doi.org/10.1016/j.peptides.2010.02.015
https://doi.org/10.1038/nrneph.2016.170
https://doi.org/10.1016/j.cmet.2014.10.009
https://doi.org/10.1172/JCI43670
https://doi.org/10.1172/JCI43670
https://doi.org/10.1172/JCI84465
https://doi.org/10.1161/01.res.87.5.e1
https://doi.org/10.3109/0886022X.2013.773836
https://doi.org/10.3109/0886022X.2013.773836
https://doi.org/10.1038/nrneph.2014.246
https://doi.org/10.1016/j.biocel.2010.05.015
https://doi.org/10.1016/j.biocel.2010.05.015
https://doi.org/10.1152/physrev.00038.2017
https://doi.org/10.1152/physrev.00038.2017
https://doi.org/10.1001/jama.292.20.2495
https://doi.org/10.1152/ajprenal.00533.2014
https://doi.org/10.1074/jbc.M400149200
https://doi.org/10.1161/HYPERTENSIONAHA.107.097865
https://doi.org/10.1161/HYPERTENSIONAHA.107.097865
https://doi.org/10.1074/jbc.M109.100222
https://doi.org/10.1074/jbc.M109.100222
https://doi.org/10.1016/j.ajpath.2013.03.025
https://doi.org/10.1016/j.ajpath.2013.03.025
https://doi.org/10.3389/fendo.2019.00389
https://doi.org/10.1371/journal.pone.0141143
https://doi.org/10.3892/ijmm.2016.2525
https://doi.org/10.1681/ASN.2015091070
https://doi.org/10.1152/ajprenal.00145.2014
https://doi.org/10.1152/ajprenal.00145.2014
https://doi.org/10.1152/ajprenal.00063.2012
https://doi.org/10.1159/000452588
https://doi.org/10.1056/NEJMra1100831
https://doi.org/10.1016/j.phrs.2019.104391
https://doi.org/10.1152/ajprenal.00071.2006
https://doi.org/10.1146/annurev.pathol.4.110807.092250
https://doi.org/10.1146/annurev.pathol.4.110807.092250
https://doi.org/10.1002/path.2162
https://doi.org/10.1177/1479164119842339
https://doi.org/10.1097/MNH.0b013e3283522e7a
https://doi.org/10.1097/MNH.0b013e3283522e7a
https://doi.org/10.1038/nm.3363
https://doi.org/10.1038/s41419-018-0985-z
https://doi.org/10.1016/j.kint.2020.02.041
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117,
3810–3820. doi:10.1172/JCI30487

Hohenstein, B., Hausknecht, B., Boehmer, K., Riess, R., Brekken, R. A., and Hugo,
C. P. M. (2006). Local VEGF activity but not VEGF expression is tightly
regulated during diabetic nephropathy in man. Kidney Int. 69, 1654–1661.
doi:10.1038/sj.ki.5000294

Hong, Q., Zhang, L., Das, B., Li, Z., Liu, B., Cai, G., et al. (2018). Increased podocyte
Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343.
doi:10.1016/j.kint.2017.12.008

Horiuchi, M., Akishita, M., and Dzau, V. J. (1999). Recent progress in angiotensin
II type 2 receptor research in the cardiovascular system. Hypertension 33,
613–621. doi:10.1161/01.hyp.33.2.613

Horn, S., and Heuer, H. (2010). Thyroid hormone action during brain
development: more questions than answers. Mol. Cell. Endocrinol. 315,
19–26. doi:10.1016/j.mce.2009.09.008

Jiao, X., Li, Y., Zhang, T., Liu, M., and Chi, Y. (2016). Role of Sirtuin3 in high
glucose-induced apoptosis in renal tubular epithelial cells. Biochem. Biophys.
Res. Commun. 480, 387–393. doi:10.1016/j.bbrc.2016.10.060

Jiao, Y., Jiang, H., Lu, H., Yang, Y., Zhang, Y., Zhang, K., et al. (2018). Deficiency of
hypoxia inducible factor-1α promoted progression of diabetic nephropathy
with hypertension. Exp. Ther. Med. 16, 3658‒3662. doi:10.3892/etm.2018.6621

Jones, E. S., Vinh, A., McCarthy, C. A., Gaspari, T. A., and Widdop, R. E. (2008).
AT2 receptors: functional relevance in cardiovascular disease. Pharmacol. Ther.
120, 292–316. doi:10.1016/j.pharmthera.2008.08.009

Jourde-Chiche, N., Fakhouri, F., Dou, L., Bellien, J., Burtey, S., Frimat, M., et al.
(2019). Endothelium structure and function in kidney health and disease. Nat.
Rev. Nephrol. 15, 87–108. doi:10.1038/s41581-018-0098-z

Kanasaki, K. (2018). The role of renal dipeptidyl peptidase-4 in kidney disease:
renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin.
Clin. Sci. 132, 489–507. doi:10.1042/CS20180031

Kanasaki, K., Shi, S., Kanasaki, M., He, J., Nagai, T., Nakamura, Y., et al. (2014).
Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in
streptozotocin-induced diabetic mice by inhibiting endothelial-to-
mesenchymal transition in a therapeutic regimen. Diabetes 63, 2120–2131.
doi:10.2337/db13-1029

Kanduri, S. R., Kovvuru, K., Hansrivijit, P., Thongprayoon, C., Vallabhajosyula, S.,
Pivovarova, A. I., et al. (2020). SGLT2 inhibitors and kidney outcomes in
patients with chronic kidney disease. J. Clin. Med. 9, 2723. doi:10.3390/
jcm9092723

Kaschina, E., Namsolleck, P., and Unger, T. (2017). AT2 receptors in
cardiovascular and renal diseases. Pharmacol. Res. 125, 39–47. doi:10.1016/j.
phrs.2017.07.008

Kida, Y., Zullo, J. A., and Goligorsky, M. S. (2016). Endothelial sirtuin 1
inactivation enhances capillary rarefaction and fibrosis following kidney
injury through Notch activation. Biochem. Biophys. Res. Commun. 478,
1074–1079. doi:10.1016/j.bbrc.2016.08.066

Kluskens, L. D., Nelemans, S. A., Rink, R., de Vries, L., Meter-Arkema, A., Wang,
Y., et al. (2009). Angiotensin-(1-7) with thioether bridge: an angiotensin-
converting enzyme-resistant, potent angiotensin-(1-7) analog. J. Pharmacol.
Exp. Therapeut. 328, 849–854. doi:10.1124/jpet.108.146431

Kölling, M., Kaucsar, T., Schauerte, C., Hübner, A., Dettling, A., Park, J.-K., et al.
(2017). Therapeutic miR-21 silencing ameliorates diabetic kidney disease in
mice. Mol. Ther. 25, 165–180. doi:10.1016/j.ymthe.2016.08.001

Kong, L., Wu, H., Zhou, W., Luo, M., Tan, Y., Miao, L., et al. (2015). Sirtuin 1: a
target for kidney diseases.Mol Med 21, 87–97. doi:10.2119/molmed.2014.00211

Kopan, R., and Ilagan,M. X. (2009). The canonical Notch signaling pathway: unfolding
the activation mechanism. Cell 137, 216–233. doi:10.1016/j.cell.2009.03.045

Koshizaka, M., Takemoto, M., Sato, S., Tokuyama, H., Fujimoto, M., Okabe, E.,
et al. (2012). An angiotensin II type 1 receptor blocker prevents renal injury via
inhibition of the Notch pathway in Ins2 Akita diabetic mice. Exp. Diabetes Res.,
159874. doi:10.1155/2012/159874

Kramann, R., Schneider, R. K., DiRocco, D. P., Machado, F., Fleig, S., Bondzie, P.
A., et al. (2015). Perivascular Gli1+ progenitors are key contributors to injury-
induced organ fibrosis. Cell Stem Cell 16, 51–66. doi:10.1016/j.stem.2014.11.004

Kuipers, A., Moll, G. N., Wagner, E., and Franklin, R. (2019). Efficacy of
lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse
models. Peptides 112, 78–84. doi:10.1016/j.peptides.2018.10.015

Kumar, N., Nakagawa, P., Janic, B., Romero, C. A., Worou, M. E., Monu, S. R., et al.
(2016). The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4
by renal meprin-α and prolyl oligopeptidase. Am. J. Physiol. Ren. Physiol. 310,
F1026–F1034. doi:10.1152/ajprenal.00562.2015

Kumar, S., Kim, Y.-R., Vikram, A., Naqvi, A., Li, Q., Kassan, M., et al. (2017).
Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced
vascular oxidative stress and endothelial dysfunction. Proc. Natl. Acad. Sci.
U.S.A. 114, 1714–1719. doi:10.1073/pnas.1614112114

Kuwabara, A., Satoh, M., Tomita, N., Sasaki, T., and Kashihara, N. (2010).
Deterioration of glomerular endothelial surface layer induced by oxidative
stress is implicated in altered permeability of macromolecules in Zucker fatty
rats. Diabetologia 53, 2056–2065. doi:10.1007/s00125-010-1810-0

Lazzeri, C., Sori, A., Picariello, C., Chiostri, M., Gensini, G. F., and Valente, S.
(2012). Nonthyroidal illness syndrome in ST-elevation myocardial infarction
treated with mechanical revascularization. Int. J. Cardiol. 158, 103–104. doi:10.
1016/j.ijcard.2012.03.100

LeBleu, V. S., Taduri, G., O’Connell, J., Teng, Y., Cooke, V. G., Woda, C., et al.
(2013). Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19,
1047–1053. doi:10.1038/nm.3218

Lee, H. W., Khan, S. Q., Khaliqdina, S., Altintas, M. M., Grahammer, F., Zhao, J. L.,
et al. (2017). Absence of miR-146a in podocytes increases risk of diabetic
glomerulopathy via up-regulation of ErbB4 and notch-1. J. Biol. Chem. 292,
732–747. doi:10.1074/jbc.M116.753822

Lemley, K. V., Abdullah, I., Myers, B. D., Meyer, T. W., Blouch, K., Smith, W. E.,
et al. (2000). Evolution of incipient nephropathy in type 2 diabetes mellitus.
Kidney Int. 58, 1228–1237. doi:10.1046/j.1523-1755.2000.00223.x

Lennon, R., and Hosawi, S. (2016). Glomerular cell crosstalk. Curr. Opin. Nephrol.
Hypertens. 25, 187–193. doi:10.1097/MNH.0000000000000221

Li, Q., Kim, Y.-R., Vikram, A., Kumar, S., Kassan, M., Gabani, M., et al. (2016).
P66Shc-Induced MicroRNA-34a causes diabetic endothelial dysfunction by
downregulating Sirtuin1. Arterioscler. Thromb. Vasc. Biol. 36, 2394–2403.
doi:10.1161/ATVBAHA.116.308321

Lin, C. L., Wang, F. S., Hsu, Y. C., Chen, C. N., Tseng, M. J., Saleem, M. A., et al.
(2010). Modulation of notch-1 signaling alleviates vascular endothelial growth
factor-mediated diabetic nephropathy. Diabetes 59, 1915–1925. doi:10.2337/
db09-0663

Lin, J. S., and Susztak, K. (2016). Podocytes: the weakest link in diabetic kidney
disease? Curr. Diabetes Rep. 16, 45. doi:10.1007/s11892-016-0735-5

Lin, Y. and Sun, Z. (2011). Thyroid hormone ameliorates diabetic nephropathy in a
mouse model of type II diabetes. J. Endocrinol. 209, 185–191. doi:10.1530/JOE-
10-0340

Liu, G., Cao, M., Xu, Y., and Li, Y. (2015). SIRT3 protects endothelial cells from
high glucose-induced cytotoxicity. Int. J. Clin. Exp. Pathol. 8, 353–360.

Liu, M., Liang, K., Zhen, J., Zhou, M., Wang, X., Wang, Z., et al. (2017). Sirt6
deficiency exacerbates podocyte injury and proteinuria through targeting Notch
signaling. Nat. Commun. 8, 413. doi:10.1038/s41467-017-00498-4

Liu, R., Zhong, Y., Li, X., Chen, H., Jim, B., Zhou, M. M., et al. (2014). Role of
transcription factor acetylation in diabetic kidney disease. Diabetes 63,
2440–2453. doi:10.2337/db13-1810

Liu, X. D., Zhang, L. Y., Zhu, T. C., Zhang, R. F., Wang, S. L., and Bao, Y. (2015).
Overexpression of miR-34c inhibits high glucose-induced apoptosis in
podocytes by targeting Notch signaling pathways. Int. J. Clin. Exp. Pathol. 8,
4525–4534.

Liu, Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nat. Rev.
Nephrol. 7, 684–696. doi:10.1038/nrneph.2011.149

Locatelli, M., Zoja, C., Zanchi, C., Corna, D., Villa, S., Bolognini, S., et al. (2020).
Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental
diabetes. Sci. Rep. 10, 8418. doi:10.1038/s41598-020-65423-0

Lovisa, S., Zeisberg, M., and Kalluri, R. (2016). Partial epithelial-to-mesenchymal
transition and other new mechanisms of kidney fibrosis. Trends Endocrinol.
Metab. 27, 681–695. doi:10.1016/j.tem.2016.06.004

Macconi, D. Benigni, A., and Remuzzi, G. (2016). “The onset and resolution of
renal fibrosis: a human perspective.” in Kidney development, disease, repair and
regeneration. Amsterdam, The Netherlands: Elsevier, 351–366.

Macconi, D., Remuzzi, G., and Benigni, A. (2014). Key fibrogenic mediators: old
players. Renin-angiotensin system. Kidney Int. Suppl. 4, 58–64. doi:10.1038/
kisup.2014.11

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689218

Zoja et al. Signaling Pathways in Diabetic Nephropathy

103

https://doi.org/10.1172/JCI30487
https://doi.org/10.1038/sj.ki.5000294
https://doi.org/10.1016/j.kint.2017.12.008
https://doi.org/10.1161/01.hyp.33.2.613
https://doi.org/10.1016/j.mce.2009.09.008
https://doi.org/10.1016/j.bbrc.2016.10.060
https://doi.org/10.3892/etm.2018.6621
https://doi.org/10.1016/j.pharmthera.2008.08.009
https://doi.org/10.1038/s41581-018-0098-z
https://doi.org/10.1042/CS20180031
https://doi.org/10.2337/db13-1029
https://doi.org/10.3390/jcm9092723
https://doi.org/10.3390/jcm9092723
https://doi.org/10.1016/j.phrs.2017.07.008
https://doi.org/10.1016/j.phrs.2017.07.008
https://doi.org/10.1016/j.bbrc.2016.08.066
https://doi.org/10.1124/jpet.108.146431
https://doi.org/10.1016/j.ymthe.2016.08.001
https://doi.org/10.2119/molmed.2014.00211
https://doi.org/10.1016/j.cell.2009.03.045
https://doi.org/10.1155/2012/159874
https://doi.org/10.1016/j.stem.2014.11.004
https://doi.org/10.1016/j.peptides.2018.10.015
https://doi.org/10.1152/ajprenal.00562.2015
https://doi.org/10.1073/pnas.1614112114
https://doi.org/10.1007/s00125-010-1810-0
https://doi.org/10.1016/j.ijcard.2012.03.100
https://doi.org/10.1016/j.ijcard.2012.03.100
https://doi.org/10.1038/nm.3218
https://doi.org/10.1074/jbc.M116.753822
https://doi.org/10.1046/j.1523-1755.2000.00223.x
https://doi.org/10.1097/MNH.0000000000000221
https://doi.org/10.1161/ATVBAHA.116.308321
https://doi.org/10.2337/db09-0663
https://doi.org/10.2337/db09-0663
https://doi.org/10.1007/s11892-016-0735-5
https://doi.org/10.1530/JOE-10-0340
https://doi.org/10.1530/JOE-10-0340
https://doi.org/10.1038/s41467-017-00498-4
https://doi.org/10.2337/db13-1810
https://doi.org/10.1038/nrneph.2011.149
https://doi.org/10.1038/s41598-020-65423-0
https://doi.org/10.1016/j.tem.2016.06.004
https://doi.org/10.1038/kisup.2014.11
https://doi.org/10.1038/kisup.2014.11
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Macconi, D., Tomasoni, S., Romagnani, P., Trionfini, P., Sangalli, F., Mazzinghi, B.,
et al. (2012). MicroRNA-324-3p promotes renal fibrosis and is a target of ACE
inhibition. J. Am. Soc. Nephrol. 23, 1496–1505. doi:10.1681/ASN.2011121144

Majumder, S., Thieme, K., Batchu, S. N., Alghamdi, T. A., Bowskill, B. B., Kabir, M.
G., et al. (2018). Shifts in podocyte histone H3K27me3 regulate mouse and
human glomerular disease. J. Clin. Invest. 128, 483–499. doi:10.1172/JCI95946

Maki, T., Maeno, S., Maeda, Y., Yamato, M., Sonoda, N., Ogawa, Y., et al. (2019).
Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its
glucose-lowering effect: a possible role of SGLT2 in mesangial cells. Sci. Rep. 9,
4703. doi:10.1038/s41598-019-41253-7

Marquez, A., and Batlle, D. (2019). Angiotensin-(1-7) for diabetic kidney disease:
better than an angiotensin-converting enzyme inhibitor alone?. Kidney Int. 96,
815–817. doi:10.1016/j.kint.2019.05.028

Matoba, K., Kawanami, D., Nagai, Y., Takeda, Y., Akamine, T., Ishizawa, S., et al.
(2017). Rho-kinase blockade attenuates podocyte apoptosis by inhibiting the
notch signaling pathway in diabetic nephropathy. Int. J. Mol. Sci. 18, 1795.
doi:10.3390/ijms18081795

Matsui, I., Ito, T., Kurihara, H., Imai, E., Ogihara, T., and Hori, M. (2007). Snail, a
transcriptional regulator, represses nephrin expression in glomerular epithelial
cells of nephrotic rats. Lab. Invest. 87, 273–283. doi:10.1038/labinvest.3700518

Meyer, T. W., Bennett, P. H., and Nelson, R. G. (1999). Podocyte number predicts
long-term urinary albumin excretion in Pima Indians with Type II diabetes and
microalbuminuria. Diabetologia 42, 1341–1344. doi:10.1007/s001250051447

Moin, A. S. M., and Butler, A. E. (2019). Alterations in beta cell identity in type 1
and type 2 diabetes. Curr. Diabetes Rep. 19, 83. doi:10.1007/s11892-019-1194-6

Mori, J., Patel, V. B., Ramprasath, T., Alrob, O. A., DesAulniers, J., Scholey, J. W.,
et al. (2014). Angiotensin 1-7 mediates renoprotection against diabetic
nephropathy by reducing oxidative stress, inflammation, and lipotoxicity.
Am. J. Physiol. Ren. Physiol. 306, F812–F821. doi:10.1152/ajprenal.00655.2013

Morigi, M., Perico, L., and Benigni, A. (2018). Sirtuins in renal health and disease.
J. Am. Soc. Nephrol. 29, 1799–1809. doi:10.1681/ASN.2017111218

Morito, N., Yoh, K., Ojima, M., Okamura, M., Nakamura, M., Hamada, M., et al.
(2014). Overexpression of Mafb in podocytes protects against diabetic
nephropathy. J. Am. Soc. Nephrol. 25, 2546–2557. doi:10.1681/ASN.
2013090993

Mortuza, R., Feng, B., and Chakrabarti, S. (2015). SIRT1 reduction causes renal and
retinal injury in diabetes through endothelin 1 and transforming growth factor
β1. J. Cell Mol. Med. 19, 1857–1867. doi:10.1111/jcmm.12557

Motonishi, S., Nangaku, M., Wada, T., Ishimoto, Y., Ohse, T., Matsusaka, T., et al.
(2015). Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in
injured podocytes. J. Am. Soc. Nephrol. 26, 1939–1959. doi:10.1681/ASN.
2014030289

Mourouzis, I., Giagourta, I., Galanopoulos, G., Mantzouratou, P., Kostakou, E.,
Kokkinos, A. D., et al. (2013). Thyroid hormone improves the mechanical
performance of the post-infarcted diabetic myocardium: a response associated
with up-regulation of Akt/mTOR and AMPK activation. Metabolism 62,
1387–1393. doi:10.1016/j.metabol.2013.05.008

Mourouzis, I., Lavecchia, A. M., and Xinaris, C. (2020). Thyroid hormone
signalling: from the dawn of life to the bedside. J. Mol. Evol. 88, 88–103.
doi:10.1007/s00239-019-09908-1

Mukherjee, M., Fogarty, E., Janga, M., and Surendran, K. (2019). Notch signaling in
kidney development, maintenance, and disease. Biomolecules 9, 692. doi:10.
3390/biom9110692

Murea, M., Park, J. K., Sharma, S., Kato, H., Gruenwald, A., Niranjan, T., et al.
(2010). Expression of Notch pathway proteins correlates with albuminuria,
glomerulosclerosis, and renal function. Kidney Int. 78, 514–522. doi:10.1038/ki.
2010.172

Nadarajah, R., Milagres, R., Dilauro, M., Gutsol, A., Xiao, F., Zimpelmann, J., et al.
(2012). Podocyte-specific overexpression of human angiotensin-converting
enzyme 2 attenuates diabetic nephropathy in mice. Kidney Int. 82, 292–303.
doi:10.1038/ki.2012.83

Nagai, T., Kanasaki, M., Srivastava, S. P., Nakamura, Y., Ishigaki, Y., Kitada, M.,
et al. (2014). N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated
kidney fibrosis and endothelial-mesenchymal transition. BioMed Res. Int. 2014,
1–12. doi:10.1155/2014/696475

Nagata, M. (2016). Podocyte injury and its consequences. Kidney Int. 89,
1221–1230. doi:10.1016/j.kint.2016.01.012

Naito, T., Ma, L.-J., Yang, H., Zuo, Y., Tang, Y., Han, J. Y., et al. (2010). Angiotensin
type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects
on kidney fibrosis. Am. J. Physiol. Ren. Physiol. 298, F683–F691. doi:10.1152/
ajprenal.00503.2009

Nakatani, Y., and Inagi, R. (2016). Epigenetic regulation through SIRT1 in podocytes.
Curr. Hypertens. Rev. 12, 89–94. doi:10.2174/1573402112666160302102515

Nayak, B. K., Shanmugasundaram, K., Friedrichs, W. E., Cavaglierii, R. C., Patel,
M., Barnes, J., et al. (2016). HIF-1 mediates renal fibrosis in OVE26 type 1
diabetic mice. Diabetes 65, 1387–1397. doi:10.2337/db15-0519

Niranjan, T., Bielesz, B., Gruenwald, A., Ponda, M. P., Kopp, J. B., Thomas, D. B.,
et al. (2008). The Notch pathway in podocytes plays a role in the development of
glomerular disease. Nat. Med. 14, 290–298. doi:10.1038/nm1731

Packer, M. (2020). Mechanisms leading to differential hypoxia-inducible factor
signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia
mimetics. Am. J. Kidney Dis. doi:10.1053/j.ajkd.2020.04.016

Padia, S. H., and Carey, R. M. (2013). AT2 receptors: beneficial counter-regulatory
role in cardiovascular and renal function. Pflueg. Arch. Eur. J. Physiol. 465,
99–110. doi:10.1007/s00424-012-1146-3

Pagtalunan, M. E., Miller, P. L., Jumping-Eagle, S., Nelson, R. G., Myers, B. D.,
Rennke, H. G., et al. (1997). Podocyte loss and progressive glomerular injury in
type II diabetes. J. Clin. Invest. 99, 342–348. doi:10.1172/JCI119163

Pantos, C., and Mourouzis, I. (2014). The emerging role of TRalpha1 in cardiac
repair: potential therapeutic implications. Oxid. Med. Cell Longev. 2014,
481482. doi:10.1155/2014/481482

Pantos, C., and Mourouzis, I. (2018). Thyroid hormone receptor alpha1 as a novel
therapeutic target for tissue repair. Ann. Transl. Med. 6, 254. doi:10.21037/atm.
2018.06.12

Pantos, C., Xinaris, C., Mourouzis, I., Malliopoulou, V., Kardami, E., and Cokkinos,
D. V. (2007). Thyroid hormone changes cardiomyocyte shape and geometry via
ERK signaling pathway: potential therapeutic implications in reversing cardiac
remodeling? Mol. Cell. Biochem. 297 (1–2), 65–72. doi:10.1007/s11010-006-
9323-3

Pantos, C., Xinaris, C., Mourouzis, I., Perimenis, P., Politi, E., Spanou, D.,
Cokkinos, D. V., et al. (2008). Thyroid hormone receptor alpha 1: a switch
to cardiac cell “metamorphosis”? J. Physiol. Pharmacol. 59 (2), 253–269.

Patten, D. A., Lafleur, V. N., Robitaille, G. A., Chan, D. A., Giaccia, A. J., and
Richard, D. E. (2010). Hypoxia-inducible factor-1 activation in nonhypoxic
conditions: the essential role of mitochondrial-derived reactive oxygen species.
Mol. Biol. Cell 21, 3247–3257. doi:10.1091/mbc.e10-01-0025

Penno, G., Garofolo, M., and Del Prato, S. (2016). Dipeptidyl peptidase-4
inhibition in chronic kidney disease and potential for protection against
diabetes-related renal injury. Nutr. Metabol. Cardiovasc. Dis. 26, 361–373.
doi:10.1016/j.numecd.2016.01.001

Perico, L., Conti, S., Benigni, A., and Remuzzi, G. (2016a). Podocyte-actin
dynamics in health and disease. Nat. Rev. Nephrol. 12, 692–710. doi:10.
1038/nrneph.2016.127

Perico, L., Morigi, M., and Benigni, A. (2016b). Mitochondrial sirtuin 3 and renal
diseases. Nephron 134, 14–19. doi:10.1159/000444370

Perico, N., Amuchastegui, S. C., Colosio, V., Sonzogni, G., Bertani, T., and
Remuzzi, G. (1994). Evidence that an angiotensin-converting enzyme
inhibitor has a different effect on glomerular injury according to the
different phase of the disease at which the treatment is started. J. Am. Soc.
Nephrol. 5, 1139–1146.

Perico, N., Ruggenenti, P., and Remuzzi, G. (2017). ACE and SGLT2 inhibitors: the
future for non-diabetic and diabetic proteinuric renal disease. Curr. Opin.
Pharmacol. 33, 34–40. doi:10.1016/j.coph.2017.03.006

Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F.,
et al. (2007). SIRT1 controls endothelial angiogenic functions during vascular
growth. Genes Dev. 21, 2644–2658. doi:10.1101/gad.435107

Povlsen, A. L., Grimm, D., Wehland, M., Infanger, M., and Kruger, M. (2020). The
vasoactive Mas receptor in essential hypertension. J. Clin. Med. 9, 267. doi:10.
3390/jcm9010267

Rajagopalan, V., and Gerdes, A. M. (2015). Role of thyroid hormones in ventricular
remodeling. Curr. Heart Fail. Rep. 12, 141–149. doi:10.1007/s11897-014-0246-0

Remuzzi, G., Schieppati, A., and Ruggenenti, P. (2002). Clinical practice.
Nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 346,
1145–1151. doi:10.1056/NEJMcp011773

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689219

Zoja et al. Signaling Pathways in Diabetic Nephropathy

104

https://doi.org/10.1681/ASN.2011121144
https://doi.org/10.1172/JCI95946
https://doi.org/10.1038/s41598-019-41253-7
https://doi.org/10.1016/j.kint.2019.05.028
https://doi.org/10.3390/ijms18081795
https://doi.org/10.1038/labinvest.3700518
https://doi.org/10.1007/s001250051447
https://doi.org/10.1007/s11892-019-1194-6
https://doi.org/10.1152/ajprenal.00655.2013
https://doi.org/10.1681/ASN.2017111218
https://doi.org/10.1681/ASN.2013090993
https://doi.org/10.1681/ASN.2013090993
https://doi.org/10.1111/jcmm.12557
https://doi.org/10.1681/ASN.2014030289
https://doi.org/10.1681/ASN.2014030289
https://doi.org/10.1016/j.metabol.2013.05.008
https://doi.org/10.1007/s00239-019-09908-1
https://doi.org/10.3390/biom9110692
https://doi.org/10.3390/biom9110692
https://doi.org/10.1038/ki.2010.172
https://doi.org/10.1038/ki.2010.172
https://doi.org/10.1038/ki.2012.83
https://doi.org/10.1155/2014/696475
https://doi.org/10.1016/j.kint.2016.01.012
https://doi.org/10.1152/ajprenal.00503.2009
https://doi.org/10.1152/ajprenal.00503.2009
https://doi.org/10.2174/1573402112666160302102515
https://doi.org/10.2337/db15-0519
https://doi.org/10.1038/nm1731
https://doi.org/10.1053/j.ajkd.2020.04.016
https://doi.org/10.1007/s00424-012-1146-3
https://doi.org/10.1172/JCI119163
https://doi.org/10.1155/2014/481482
https://doi.org/10.21037/atm.2018.06.12
https://doi.org/10.21037/atm.2018.06.12
https://doi.org/10.1007/s11010-006-9323-3
https://doi.org/10.1007/s11010-006-9323-3
https://doi.org/10.1091/mbc.e10-01-0025
https://doi.org/10.1016/j.numecd.2016.01.001
https://doi.org/10.1038/nrneph.2016.127
https://doi.org/10.1038/nrneph.2016.127
https://doi.org/10.1159/000444370
https://doi.org/10.1016/j.coph.2017.03.006
https://doi.org/10.1101/gad.435107
https://doi.org/10.3390/jcm9010267
https://doi.org/10.3390/jcm9010267
https://doi.org/10.1007/s11897-014-0246-0
https://doi.org/10.1056/NEJMcp011773
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Rhee, C. M. (2016). The interaction between thyroid and kidney disease: an
overview of the evidence. Curr. Opin. Endocrinol. Diabetes Obes. 23,
407–415. doi:10.1097/MED.0000000000000275

Rice, G. I., Thomas, D. A., Grant, P. J., Turner, A. J., and Hooper, N. M. (2004).
Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and
neprilysin in angiotensin peptide metabolism. Biochem. J. 383, 45–51. doi:10.
1042/BJ20040634

Rodrigues Prestes, T. R., Rocha, N. P., Miranda, A. S., Teixeira, A. L., and Simoes, E.
S. A. C. (2017). The anti-inflammatory potential of ACE2/angiotensin-(1-7)/
mas receptor Axis: evidence from basic and clinical research. Curr. Drug Targets
18, 1301–1313. doi:10.2174/1389450117666160727142401

Röhrborn, D. (2015). DPP4 in diabetes. Front. Immunol. 6, 386. doi:10.3389/
fimmu.2015.00386

Romero, C. A., Kumar, N., Nakagawa, P., Worou, M. E., Liao, T.-D., Peterson, E. L.,
et al. (2019). Renal release of N -acetyl-seryl-aspartyl-lysyl-proline is part of an
antifibrotic peptidergic system in the kidney. Am. J. Physiol. Ren. Physiol. 316,
F195–F203. doi:10.1152/ajprenal.00270.2018

Ruggenenti, P., Cravedi, P., and Remuzzi, G. (2010). The RAAS in the pathogenesis
and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330. doi:10.
1038/nrneph.2010.58

Salmon, A. H., and Satchell, S. C. (2012). Endothelial glycocalyx dysfunction in
disease: albuminuria and increased microvascular permeability. J. Pathol. 226,
562–574. doi:10.1002/path.3964

Santos, R. A., Simoes e Silva, A. C., Maric, C., Silva, D. M., Machado, R. P., de Buhr,
I., et al. (2003). Angiotensin-(1-7) is an endogenous ligand for the G protein-
coupled receptor Mas. Proc. Natl. Acad. Sci. U A 100, 8258–8263. doi:10.1073/
pnas.1432869100

Satchell, S. C. (2012). The glomerular endothelium emerges as a key player in
diabetic nephropathy. Kidney Int. 82, 949–951. doi:10.1038/ki.2012.258

Schell, C., and Huber, T. B. (2017). The evolving complexity of the podocyte
cytoskeleton. J. Am. Soc. Nephrol. 28, 3166–3174. doi:10.1681/ASN.
2017020143

Sharkovska, Y., Reichetzeder, C., Alter, M., Tsuprykov, O., Bachmann, S., Secher,
T., et al. (2014). Blood pressure and glucose independent renoprotective effects
of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic
nephropathy. J. Hypertens. 32, 2211–2223. doi:10.1097/HJH.
0000000000000328

Shi, S., Kanasaki, K., and Koya, D. (2016). Linagliptin but not Sitagliptin inhibited
transforming growth factor-β2-induced endothelial DPP-4 activity and the
endothelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 471,
184–190. doi:10.1016/j.bbrc.2016.01.154

Shi, S., Srivastava, S. P., Kanasaki, M., He, J., Kitada, M., Nagai, T., et al. (2015).
Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal
transition. Kidney Int. 88, 479–489. doi:10.1038/ki.2015.103

Shi, Y., Lo, C. S., Padda, R., Abdo, S., Chenier, I., Filep, J. G., et al. (2015).
Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress
and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting
enzyme 2 andMas receptor expression in diabetic mice. Clin. Sci. 128, 649–663.
doi:10.1042/CS20140329

Shin, D. H., Lee, M. J., Kim, S. J., Oh, H. J., Kim, H. R., Han, J. H., et al. (2012).
Preservation of renal function by thyroid hormone replacement therapy in
chronic kidney disease patients with subclinical hypothyroidism. J. Clin.
Endocrinol. Metab. 97, 2732–2740. doi:10.1210/jc.2012-1663

Shin, D. H., Lee, M. J., Lee, H. S., Oh, H. J., Ko, K. I., Kim, C. H., et al. (2013).
Thyroid hormone replacement therapy attenuates the decline of renal function
in chronic kidney disease patients with subclinical hypothyroidism. Thyroid 23,
654–661. doi:10.1089/thy.2012.0475

Siddiqi, F. S., and Advani, A. (2013). Endothelial-podocyte crosstalk: the missing
link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62,
3647–3655. doi:10.2337/db13-0795

Simoes e Silva, A. C., Silveira, K. D., Ferreira, A. J., and Teixeira, M. M. (2013).
ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis.
Br. J. Pharmacol. 169, 477–492. doi:10.1111/bph.12159

Simoes E Silva, A. C., and Teixeira, M. M. (2016). ACE inhibition, ACE2 and
angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis.
Pharmacol. Res. 107, 154–162. doi:10.1016/j.phrs.2016.03.018

Skrtic, M., and Cherney, D. Z. (2015). Sodium-glucose cotransporter-2
inhibition and the potential for renal protection in diabetic

nephropathy. Curr. Opin. Nephrol. Hypertens. 24, 96–103. doi:10.1097/
MNH.0000000000000084

Soler, M. J., Wysocki, J., Ye, M., Lloveras, J., Kanwar, Y., and Batlle, D. (2007).
ACE2 inhibition worsens glomerular injury in association with increased ACE
expression in streptozotocin-induced diabetic mice. Kidney Int. 72, 614–623.
doi:10.1038/sj.ki.5002373

Srivastava, P., Badhwar, S., Chandran, D. S., Jaryal, A. K., Jyotsna, V. P., and
Deepak, K. K. (2019). Imbalance between Angiotensin II - angiotensin (1-7)
system is associated with vascular endothelial dysfunction and inflammation in
type 2 diabetes with newly diagnosed hypertension. Diabetes Metab Syndr 13,
2061–2068. doi:10.1016/j.dsx.2019.04.042

Srivastava, S. P., Goodwin, J. E., Kanasaki, K., and Koya, D. (2020a). Inhibition of
angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4
level and restoring antifibrotic MicroRNAs. Genes 11, 211. doi:10.3390/
genes11020211

Srivastava, S. P., Goodwin, J. E., Kanasaki, K., and Koya, D. (2020b). Metabolic
reprogramming by N-acetyl-seryl-aspartyl-lysyl-proline protects against
diabetic kidney disease. Br. J. Pharmacol. 177, 3691–3711. doi:10.1111/bph.
15087

Srivastava, S. P., Hedayat, A. F., Kanasaki, K., and Goodwin, J. E. (2019).
microRNA crosstalk influences epithelial-to-mesenchymal, endothelial-to-
mesenchymal, and macrophage-to-mesenchymal transitions in the kidney.
Front. Pharmacol. 10, 904. doi:10.3389/fphar.2019.00904

Srivastava, S. P., Koya, D., and Kanasaki, K. (2013). MicroRNAs in kidney fibrosis
and diabetic nephropathy: roles on EMT and EndMT. BioMed Res. Int. 2013,
1–10. doi:10.1155/2013/125469

Srivastava, S. P., Li, J., Kitada, M., Fujita, H., Yamada, Y., Goodwin, J. E., et al.
(2018). SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic
kidney with fibrosis. Cell Death Dis. 9, 997. doi:10.1038/s41419-018-1057-0

Sumners, C., Peluso, A. A., Haugaard, A. H., Bertelsen, J. B., and Steckelings, U. M.
(2019). Anti-fibrotic mechanisms of angiotensin AT 2 -receptor stimulation.
Acta Physiol. 10, e13280. doi:10.1111/apha.13280

Sun, J., Zhao, F., Zhang, W., Lv, J., and Yin, A. (2018). BMSCs and miR-124a
ameliorated diabetic nephropathy via inhibiting notch signalling pathway.
J. Cell Mol. Med. 22, 4840–4855. doi:10.1111/jcmm.13747

Surendran, K., Boyle, S., Barak, H., Kim, M., Stomberski, C., McCright, B., et al.
(2010). The contribution of Notch1 to nephron segmentation in the
developing kidney is revealed in a sensitized Notch2 background and can
be augmented by reducing mint dosage. Dev. Biol. 337, 386–395. doi:10.1016/
j.ydbio.2009.11.017

Sweetwyne, M. T., Gruenwald, A., Niranjan, T., Nishinakamura, R., Strobl, L. J.,
and Susztak, K. (2015). Notch1 and Notch2 in podocytes play differential roles
during diabetic nephropathy development. Diabetes 64, 4099–4111. doi:10.
2337/db15-0260

Takashima, S., Fujita, H., Fujishima, H., Shimizu, T., Sato, T., Morii, T., et al.
(2016). Stromal cell–derived factor-1 is upregulated by dipeptidyl peptidase-4
inhibition and has protective roles in progressive diabetic nephropathy. Kidney
Int. 90, 783–796. doi:10.1016/j.kint.2016.06.012

Tanaka, E., Asanuma, K., Kim, E., Sasaki, Y., Oliva Trejo, J. A., Seki, T., et al. (2014).
Notch2 activation ameliorates nephrosis. Nat. Commun. 5, 3296. doi:10.1038/
ncomms4296

Tang, S. C. W., and Yiu, W. H. (2020). Innate immunity in diabetic kidney disease.
Nat. Rev. Nephrol. 16, 206–222. doi:10.1038/s41581-019-0234-4

Taylor, O. M., and Lam, C. (2020). The effect of dipeptidyl peptidase-4 inhibitors on
macrovascular and microvascular complications of diabetes mellitus: a systematic
review. Curr. Ther. Res. 93, 100596. doi:10.1016/j.curtheres.2020.100596

Tejera, N., Gomez-Garre, D., Lazaro, A., Gallego-Delgado, J., Alonso, C., Blanco, J.,
et al. (2004). Persistent proteinuria up-regulates angiotensin II type 2 receptor
and induces apoptosis in proximal tubular cells. Am. J. Pathol. 164, 1817–1826.
doi:1016/S0002-9440(10)63740-6

Terami, N., Ogawa, D., Tachibana, H., Hatanaka, T., Wada, J., Nakatsuka, A., et al.
(2014). Long-term treatment with the sodium glucose cotransporter 2 inhibitor,
dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/
db mice. PLoS One 9, e100777. doi:10.1371/journal.pone.0100777

Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., and Turner, A. J.
(2000). A human homolog of angiotensin-converting enzyme. Cloning and
functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem.
275, 33238–33243. doi:10.1074/jbc.M002615200

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689220

Zoja et al. Signaling Pathways in Diabetic Nephropathy

105

https://doi.org/10.1097/MED.0000000000000275
https://doi.org/10.1042/BJ20040634
https://doi.org/10.1042/BJ20040634
https://doi.org/10.2174/1389450117666160727142401
https://doi.org/10.3389/fimmu.2015.00386
https://doi.org/10.3389/fimmu.2015.00386
https://doi.org/10.1152/ajprenal.00270.2018
https://doi.org/10.1038/nrneph.2010.58
https://doi.org/10.1038/nrneph.2010.58
https://doi.org/10.1002/path.3964
https://doi.org/10.1073/pnas.1432869100
https://doi.org/10.1073/pnas.1432869100
https://doi.org/10.1038/ki.2012.258
https://doi.org/10.1681/ASN.2017020143
https://doi.org/10.1681/ASN.2017020143
https://doi.org/10.1097/HJH.0000000000000328
https://doi.org/10.1097/HJH.0000000000000328
https://doi.org/10.1016/j.bbrc.2016.01.154
https://doi.org/10.1038/ki.2015.103
https://doi.org/10.1042/CS20140329
https://doi.org/10.1210/jc.2012-1663
https://doi.org/10.1089/thy.2012.0475
https://doi.org/10.2337/db13-0795
https://doi.org/10.1111/bph.12159
https://doi.org/10.1016/j.phrs.2016.03.018
https://doi.org/10.1097/MNH.0000000000000084
https://doi.org/10.1097/MNH.0000000000000084
https://doi.org/10.1038/sj.ki.5002373
https://doi.org/10.1016/j.dsx.2019.04.042
https://doi.org/10.3390/genes11020211
https://doi.org/10.3390/genes11020211
https://doi.org/10.1111/bph.15087
https://doi.org/10.1111/bph.15087
https://doi.org/10.3389/fphar.2019.00904
https://doi.org/10.1155/2013/125469
https://doi.org/10.1038/s41419-018-1057-0
https://doi.org/10.1111/apha.13280
https://doi.org/10.1111/jcmm.13747
https://doi.org/10.1016/j.ydbio.2009.11.017
https://doi.org/10.1016/j.ydbio.2009.11.017
https://doi.org/10.2337/db15-0260
https://doi.org/10.2337/db15-0260
https://doi.org/10.1016/j.kint.2016.06.012
https://doi.org/10.1038/ncomms4296
https://doi.org/10.1038/ncomms4296
https://doi.org/10.1038/s41581-019-0234-4
https://doi.org/10.1016/j.curtheres.2020.100596
https://doi.org/1016/S0002-9440(10)63740-6
https://doi.org/10.1371/journal.pone.0100777
https://doi.org/10.1074/jbc.M002615200
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Toto, R. D. (2017). SGLT-2 inhibition: a potential new treatment for diabetic
kidney disease? Nephron 137, 64–67. doi:10.1159/000450895

Toyoda, M., Najafian, B., Kim, Y., Caramori, M. L., and Mauer, M. (2007).
Podocyte detachment and reduced glomerular capillary endothelial
fenestration in human type 1 diabetic nephropathy. Diabetes 56, 2155–2160.
doi:10.2337/db07-0019

Valcourt, D. M., Dang, M. N., Scully, M. A., and Day, E. S. (2020). Nanoparticle-
mediated Co-delivery of notch-1 antibodies and ABT-737 as a potent treatment
strategy for triple-negative breast cancer. ACS Nano 14, 3378–3388. doi:10.
1021/acsnano.9b09263

Vallon, V., Gerasimova, M., Rose, M. A., Masuda, T., Satriano, J., Mayoux, E., et al.
(2014). SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria
in proportion to hyperglycemia and prevents glomerular hyperfiltration in
diabetic Akita mice. Am. J. Physiol. Ren. Physiol. 306, F194–F204. doi:10.1152/
ajprenal.00520.2013

Vallon, V., and Thomson, S. C. (2017). Targeting renal glucose reabsorption to
treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia
60, 215–225. doi:10.1007/s00125-016-4157-3

van Es, J. H., van Gijn, M. E., Riccio, O., van den Born, M., Vooijs, M., Begthel, H.,
et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in
intestinal crypts and adenomas into goblet cells. Nature 435, 959–963. doi:10.
1038/nature03659

Wang, W., Sun, W., Cheng, Y., Xu, Z., and Cai, L. (2019). Role of sirtuin-1 in diabetic
nephropathy. J. Mol. Med. Berl. 97, 291–309. doi:10.1007/s00109-019-01743-7

Wang, X., Shen, E., Wang, Y., Li, J., Cheng, D., Chen, Y., et al. (2016). Cross talk
between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic
conditions. Sci. Rep. 6, 31506. doi:10.1038/srep31506

Wang, X.M., Yao,M., Liu, S. X., Hao, J., Liu, Q. J., andGao, F. (2014). Interplay between
theNotch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis.Am.
J. Physiol. Ren. Physiol. 306, F205–F213. doi:10.1152/ajprenal.90005.2013

Wang, X. X., Edelstein, M. H., Gafter, U., Qiu, L., Luo, Y., Dobrinskikh, E., et al.
(2016). G protein-coupled bile acid receptor TGR5 activation inhibits kidney
disease in obesity and diabetes. J. Am. Soc. Nephrol. 27, 1362–1378. doi:10.1681/
ASN.2014121271

Wang, X. X., Levi, J., Luo, Y., Myakala, K., Herman-Edelstein, M., Qiu, L., et al.
(2017). SGLT2 protein expression is increased in human diabetic nephropathy:
SGLT2 protein inhibition decreases renal lipid accumulation, inflammation,
and the development of nephropathy in diabetic mice. J. Biol. Chem. 292,
5335–5348. doi:10.1074/jbc.M117.779520

Waters, A. M., Wu, M. Y., Huang, Y. W., Liu, G. Y., Holmyard, D., Onay, T., et al.
(2012). Notch promotes dynamin-dependent endocytosis of nephrin. J. Am.
Soc. Nephrol. 23, 27–35. doi:10.1681/ASN.2011010027

Weil, E. J., Lemley, K. V., Mason, C. C., Yee, B., Jones, L. I., Blouch, K., et al. (2012).
Podocyte detachment and reduced glomerular capillary endothelial
fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney
Int. 82, 1010–1017. doi:10.1038/ki.2012.234

Wolf, G., Chen, S., Ziyadeh, F. N., et al. (2005). From the periphery of the
glomerular capillary wall toward the center of disease: podocyte injury
comes of age in diabetic nephropathy. Diabetes 54, 1626–1634. doi:10.2337/
diabetes.54.6.1626

Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., et al.
(2004). Chronic treatment with the gamma-secretase inhibitor LY-411,575
inhibits beta-amyloid peptide production and alters lymphopoiesis and
intestinal cell differentiation. J. Biol. Chem. 279, 12876–12882. doi:10.1074/
jbc.M311652200

Wu, J., Li, X., Tao, Y., Wang, Y., and Peng, Y. (2015). Free triiodothyronine levels
are associated with diabetic nephropathy in euthyroid patients with type 2
diabetes. Internet J. Endocrinol. 2015, 204893. doi:10.1155/2015/204893

Wu, X., Gao, Y., Xu, L., Dang, W., Yan, H., Zou, D., et al. (2017). Exosomes from
high glucose-treated glomerular endothelial cells trigger the epithelial-
mesenchymal transition and dysfunction of podocytes. Sci. Rep. 7. doi:10.
1038/s41598-017-09907-6

Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T. J., de Leon, G. P., Chen, Y., et al.
(2010). Therapeutic antibody targeting of individual Notch receptors. Nature
464, 1052–1057. doi:10.1038/nature08878

Wysocki, J., Schulze, A., and Battle, D. (2019). Novel variants of angiotensin
converting enzyme-2 of shorter molecular size to target the kidney renin
angiotensin system. Biomolecules 9, 886. doi:10.3390/biom9120886

Wysocki, J., Ye, M., Khattab, A. M., Fogo, A., Martin, A., David, N. V., et al. (2017).
Angiotensin-converting enzyme 2 amplification limited to the circulation does
not protect mice from development of diabetic nephropathy. Kidney Int. 91,
1336–1346. doi:10.1016/j.kint.2016.09.032

Yamada, K., Iyer, S. N., Chappell, M. C., Ganten, D., and Ferrario, C. M. (1998).
Converting enzyme determines plasma clearance of angiotensin-(1-7).
Hypertension 32, 496–502. doi:10.1161/01.hyp.32.3.496

Ye, M., Wysocki, J., Naaz, P., Salabat, M. R., LaPointe, M. S., and Batlle, D. (2004).
Increased ACE 2 and decreased ACE protein in renal tubules from diabetic
mice: a renoprotective combination? Hypertension 43, 1120–1125. doi:10.1161/
01.HYP.0000126192.27644.76

Ye, M., Wysocki, J., William, J., Soler, M. J., Cokic, I., and Batlle, D. (2006).
Glomerular localization and expression of Angiotensin-converting enzyme 2
and Angiotensin-converting enzyme: implications for albuminuria in diabetes.
J. Am. Soc. Nephrol. 17, 3067–3075. doi:10.1681/ASN.2006050423

Zanchi, C., Macconi, D., Trionfini, P., Tomasoni, S., Rottoli, D., Locatelli, M., et al.
(2017). MicroRNA-184 is a downstream effector of albuminuria driving renal
fibrosis in rats with diabetic nephropathy. Diabetologia 60, 1114–1125. doi:10.
1007/s00125-017-4248-9

Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M., and Kalluri, R. (2008).
Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
J. Am. Soc. Nephrol. 19, 2282–2287. doi:10.1681/ASN.2008050513

Zhang, K., Meng, X., Li, D., Yang, J., Kong, J., Hao, P., et al. (2015).
Angiotensin(1-7) attenuates the progression of streptozotocin-induced
diabetic renal injury better than angiotensin receptor blockade. Kidney
Int. 87, 359–369. doi:10.1038/ki.2014.274

Zhang, X., Song, S., and Luo, H. (2016). Regulation of podocyte lesions in diabetic
nephropathy via miR-34a in the Notch signaling pathway. Med. Baltim. 95,
e5050. doi:10.1097/MD.0000000000005050

Zhao, L., Zou, Y., and Liu, F. (2020). Transforming growth factor-beta1 in diabetic
kidney disease. Front. Cell Dev. Biol. 8, 187. doi:10.3389/fcell.2020.00187

Zhou, L., Deng, W., Fang, P., He, D., Zhang, W., Liu, K., et al. (2009). Prevalence,
incidence and risk factors of chronic heart failure in the type 2 diabetic
population: systematic review. Curr. Diabetes Rev. 5, 171–184. doi:10.2174/
157339909788920938

Ziyadeh, F. N. (2004). Mediators of diabetic renal disease: the case for tgf-Beta as
the major mediator. J. Am. Soc. Nephrol. 15 (Suppl. 1), S55–S57. doi:10.1097/01.
asn.0000093460.24823.5b

Zoccali, C., Mallamaci, F., Tripepi, G., Cutrupi, S., and Pizzini, P. (2006). Low
triiodothyronine and survival in end-stage renal disease. Kidney Int. 70,
523–528. doi:10.1038/sj.ki.5001566

Zuo, Y., Chun, B., Potthoff, S. A., Kazi, N., Brolin, T. J., Orhan, D., et al. (2013).
Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative
factors in renal fibrosis. Kidney Int. 84, 1166–1175. doi:10.1038/ki.2013.209

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zoja, Xinaris and Macconi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 58689221

Zoja et al. Signaling Pathways in Diabetic Nephropathy

106

https://doi.org/10.1159/000450895
https://doi.org/10.2337/db07-0019
https://doi.org/10.1021/acsnano.9b09263
https://doi.org/10.1021/acsnano.9b09263
https://doi.org/10.1152/ajprenal.00520.2013
https://doi.org/10.1152/ajprenal.00520.2013
https://doi.org/10.1007/s00125-016-4157-3
https://doi.org/10.1038/nature03659
https://doi.org/10.1038/nature03659
https://doi.org/10.1007/s00109-019-01743-7
https://doi.org/10.1038/srep31506
https://doi.org/10.1152/ajprenal.90005.2013
https://doi.org/10.1681/ASN.2014121271
https://doi.org/10.1681/ASN.2014121271
https://doi.org/10.1074/jbc.M117.779520
https://doi.org/10.1681/ASN.2011010027
https://doi.org/10.1038/ki.2012.234
https://doi.org/10.2337/diabetes.54.6.1626
https://doi.org/10.2337/diabetes.54.6.1626
https://doi.org/10.1074/jbc.M311652200
https://doi.org/10.1074/jbc.M311652200
https://doi.org/10.1155/2015/204893
https://doi.org/10.1038/s41598-017-09907-6
https://doi.org/10.1038/s41598-017-09907-6
https://doi.org/10.1038/nature08878
https://doi.org/10.3390/biom9120886
https://doi.org/10.1016/j.kint.2016.09.032
https://doi.org/10.1161/01.hyp.32.3.496
https://doi.org/10.1161/01.HYP.0000126192.27644.76
https://doi.org/10.1161/01.HYP.0000126192.27644.76
https://doi.org/10.1681/ASN.2006050423
https://doi.org/10.1007/s00125-017-4248-9
https://doi.org/10.1007/s00125-017-4248-9
https://doi.org/10.1681/ASN.2008050513
https://doi.org/10.1038/ki.2014.274
https://doi.org/10.1097/MD.0000000000005050
https://doi.org/10.3389/fcell.2020.00187
https://doi.org/10.2174/157339909788920938
https://doi.org/10.2174/157339909788920938
https://doi.org/10.1097/01.asn.0000093460.24823.5b
https://doi.org/10.1097/01.asn.0000093460.24823.5b
https://doi.org/10.1038/sj.ki.5001566
https://doi.org/10.1038/ki.2013.209
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Non-Coding RNAs as Biomarkers and
Therapeutic Targets for Diabetic
Kidney Disease
Yue-Yu Gu1,2, Fu-Hua Lu1, Xiao-Ru Huang2,3,4, Lei Zhang1, Wei Mao1, Xue-Qing Yu3,
Xu-Sheng Liu1* and Hui-Yao Lan2,3,4*

1Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial
Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China,
2Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong
Kong, China, 3Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy
of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China, 4Guangdong-Hong Kong Joint Laboratory for
Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China

Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading
cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not
only by many classical signaling pathways but also by epigenetic mechanisms involving
chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this
review, we focus on our current understanding of the role and mechanisms of ncRNAs,
including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis
of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in
DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic
targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic
approach for combating diabetic nephropathy is also discussed.

Keywords: diabetic kidney disease, micro RNAs, long non-coding RNAs, TGF-β, fibrosis, inflammation, biomarker,
therapeutic target

INTRODUCTION

Diabetic kidney disease (DKD) is one of the most predominant diabetic complications and is a
leading cause of chronic kidney disease (CKD). It is reported that up to 20–50% of living diabetes,
including type 1 (T1DM) and type 2 (T2DM) diabetes, would eventually develop into DKD (Selby
and Taal, 2020), which contributes to the high mortality of patients with DKD (Braunwald, 2019).
The established DKD is characterized by the onset of persistent albuminuria and progressive decline
of estimated glomerular filtration rate (eGFR) (Magee et al., 2017). Pathologically, the histological
features of DKD include the thickening of the glomerular basement membrane (GBM), glomerular
capillary hypertension, mesangial expansion, nodular sclerosis, glomerulosclerosis, interstitial
fibrosis, inflammation, and tubular atrophy (Raval et al., 2020).

In patients with diabetes, hyperglycemia may trigger oxidative stress, renal inflammation, and
fibrosis in kidneys (Matoba et al., 2019; Patel et al., 2020). Among those pathogenic factors, renal
fibrogenesis is the major driving force in the development of DKD (Hills and Squires, 2011; Lan,
2012a). It is well-established that transforming growth factor β (TGF-β) as the master regulator for
the fibrotic and inflammatory process in CKD (Meng et al., 2016). Hyperglycemic factors such as
advanced glycation end products (AGEs) and angiotensin II (AngII) may trigger the activation of
TGF-β signaling via Smad dependent or independent pathway, therefore promoting fibrosis in
kidneys (Lan, 2011; Meng et al., 2016; Gu et al., 2020) (Figure 1).
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The emerging field of epigenetic regulation by ncRNAs has
focused on the pathogenic pathways to halt the progression of
DKD. With no function in protein-coding, ncRNAs were
implicated as therapeutic targets or biomarkers for DKD
(Loganathan et al., 2020). Interestingly, these ncRNAs could
also be regulated by TGF-β (Meng et al., 2015). In this review,
we will focus on the regulatory role of miRNAs and lncRNAs in
the progression of DKD, and their potentials as therapeutic
targets and biomarkers for DKD are highlighted. Moreover,
the mechanisms of ncRNAs on renal fibrosis and inflammation
in DKD based on the TGF-β/Smad-mediated signaling pathway
will also be discussed.

THE EMERGING ROLE OF NON-CODING
RNAS IN DKD

miRNAs are single-stranded endogenous RNAs (20–22
nucleotides in length) that regulate gene expression on the
post-transcriptional or transcriptional level (Wahid et al.,
2010). LncRNAs are RNA transcripts over 200 nucleotides in

length, which are able to modulate gene expression by binding to
either DNAs, RNAs, or proteins (Yao et al., 2019). The roles of
miRNAs and lncRNAs in kidney development and disease have
been reviewed (Kaucsár et al., 2010; Moghaddas Sani et al., 2018;
Zhou et al., 2019). Thus, we mainly focus on the roles and
underlying mechanisms of miRNAs and lncRNAs relevant to
DKD pathogenesis (as shown in Figure 2).

Non-Smad-dependent miRNAs in DKD
The functional relevance of miRNA in renal diseases has caught
our attention since the rapid development of RNA sequencing
strategy. In most cases, miRNAs hybridize to the 3’UTRs
(untranslated regions) of the target mRNAs and hence
silencing the expression of target genes. Up to date, the
function and underlying mechanisms of many miRNAs in
renal diseases have been well-demonstrated and reviewed
(Hou and Zhao, 2013). These miRNAs are of great
importance to the epigenetic regulation on DKD.

Renal tubulointerstitial fibrosis (TIF) is one of the
predominant features of DKD. A group of miRNAs have been
shown to be profibrotic in DKD (Table 1). The expression of

FIGURE 1 | The crosstalk of canonical and noncanonical TGF-β signaling pathways associated with renal fibrosis and inflammation in diabetic nephropathy. TGF-
β/Smad and NF-κB signaling pathway are highly activated under hyperglycemic conditions. AGEs, Ang II, IL-1β and TNF-α etc, may trigger these two pathways to
promote fibrosis and inflammation in diabetic kidneys. Abbreviations: AGEs, advanced glycation end products; RAGE, receptor for AGE; Ang II, angiotensin II; AT1/2,
Ang II receptor 1 and 2; BMP, bone morphogenic protein; TNF-α, tumor necrosis factor α; TNFR, TNF receptor; IL-1β, interleukin 1β; IL-1R, IL-1 receptor; ERK,
extracellular-signal regulated kinase; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α. (Figure created with BioRender.com).
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FIGURE 2 | Potential role of miRNAs and lncRNAs in the pathogenesis of diabetic kidney disease. Under hyperglycemic conditions, the expression of TGF-β,
growth factors such as CTGF, FGF, and cytokines may induce ECM accumulation, EMT, ER stress, oxidative stress, insulin resistance, glucose toxicity, fibrosis, and
inflammatory response. These pathogenic processes are positively or negatively regulated by ncRNAs (miRNAs and lncRNAs) to promote cell apoptosis, autophagy,
hypertrophy, fibrosis, inflammation in the diabetic kidney. Abbreviations: GFs, growth factors; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition;
ER, endoplasmic reticulum. (Figure created with BioRender.com).

TABLE 1 | Non-Smad-dependent miRNAs in DKD.

miRNA Target Pathological output(s) References

miR-22 PTEN Pro-fibrosis (Zhang et al., 2018)
miR-23a SnoN (Xu et al., 2018a)
miR-34a-5p SIRT1 (Xue et al., 2018)
miR-133b SIRT1 (Sun et al., 2018b)
miR-199b
miR-135a TRPC1 (He et al., 2014)
miR-184 LPP3 (Zanchi et al., 2017)
miR-370 CNPY1 (Yu et al., 2019)
miR-30c JAK1; Snail1 Anti-fibrosis (Zhao et al., 2017; Gao et al., 2020)
miR-98-5p HMGA2 (Zhu et al., 2019c)
miR-302a-3p ZEB1 (Tang et al., 2018b)
miR-342 SOX6 (Jiang et al., 2020b)
miR-379-5p LIN28B (Li et al., 2019b)
miR-455-3p ROCK2 Anti-fibrosis (Wu et al., 2018a; Zhu et al., 2019b)
miR-544 FASN Anti-inflammation (Sun et al., 2020)
miR-217 SIRT1/HIF-1α Pro-fibrosis (Shao et al., 2016)

Pro-inflammation
miR-770-5p TIMP3 Pro-inflammation (Zhang et al., 2019c; Wang and Li, 2020)
miR-15b-5p Sema3A Anti-inflammation (Fu et al., 2019)
miR-34b IL-6R (Lv et al., 2019)
miR-140-5p TLR4 (Su et al., 2020)
miR-146a NOX4 (Wan and Li, 2018)
miR-218 IKK-β (Li et al., 2020a)
miR-374a MCP-1 (Yang et al., 2018)
miR-423-5p NOX4 (Xu et al., 2018c)
miR-451 LMP7 (Sun et al., 2016b)
miR-485 NOX5 (Wu et al., 2020)
miR-874 TLR4 (Yao et al., 2018)
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miR-22 was increased in streptozotocin (STZ)-induced DKD
model and in high glucose (HG)-treated tubular epithelial cells
(TECs). miR-22 targets phosphatase and tensin homolog
(PTEN), therefore suppressing autophagy and inducing the
expression of collagen IV and α-smooth muscle actin (α-SMA)
(Zhang et al., 2018). A high level of miR-23a was also observed in
diabetic patients and HG-cultured TECs. It directly targets the
nuclear transcription co-repressor Ski-related novel protein N
(SnoN) (Tan et al., 2006), a crucial negative regulator to TGF-
β/Smad3-mediated signaling pathway, to induce fibrosis in DKD
(Xu et al., 2018a). Sirtuin 1 (SIRT1) expression in the nucleus and
the cytoplasm has also been shown as a renoprotective regulator
by inhibiting TGF-β/Smad-induced fibrosis and downstream
hypoxia-inducible factor-1α (HIF-1α). miR-34a-5p, miR-217,
miR-133b, and miR-199b may dcirectly or indirectly target
and suppress the expression of SIRT1 under hyperglycemic
conditions (Shao et al., 2016; Sun et al., 2018b; Xue et al.,
2018). The transient receptor potential cation channel
subfamily C member 1 (TRPC1) is downregulated in diabetic
patients and animal models, which may contribute to the
development of DKD (Zhang et al., 2009a). miR-135a targets
TRPC1 to promote the fibrotic process in diabetic renal injury
(He et al., 2014). Interestingly, diabetic-induced albumin triggers
the expression of miR-184 in the tubular cells to promote TIF,
which is associated with decreased expression of lipid phosphate
phosphatase 3 (LPP3) (Zanchi et al., 2017). The canopy 1
(CNPY1) is a target of miR-370 to modulate fibroblast growth
element signaling (Matsui et al., 2011). Overexpression of miR-
370 significantly increases the accumulation of extracellular
matrix (ECM) and promotes the proliferation of mesangial
cells (MCs) (Yu et al., 2019). On the other hand, the anti-
fibrotic miR-342 binds to the 3’UTR of SRY-box 6 (SOX6),
therefore inhibiting SOX6 expression and the level of fibrotic
biomarkers (Jiang et al., 2020b). miR-379 is also involved in the
pathogenesis of DKD. It is reported that miR-379 triggers miR-
let-7, which prevents ECM accumulation and proliferation of
MCs (Li et al., 2019b). Nevertheless, some miRNAs exert
protective effects by inhibiting the epithelial-to-mesenchymal
transition (EMT). Notably, miR-30c, miR-98-5p and miR-
302a-3p target the fibrosis-related JAK1, Snail1, HMGA2, and
ZEB1, respectively, thus blocking the fibrotic process in DKD by
inhibiting EMT (Zhao et al., 2017; Tang et al., 2018b; Zhu et al.,
2019c; Gao et al., 2020). Furthermore, miR-455-3p also inhibits
renal fibrosis by targeting ROCK2, together with the reduction of
anti-inflammatory cytokines such as tumor necrosis factor-α
(TNF-α) and monocyte chemotactic protein 1 (MCP-1) (Wu
et al., 2018a). Interestingly, miR-455-3p also serves as a sponge
for pathogenic lncRNA Hottip. Hottip is upregulated under HG
conditions, while miR-455-3p may reverse Hottip-mediated
fibrosis and inflammation (Zhu et al., 2019b). Fatty acid
accumulation (FAC) was also induced by DKD, fatty acid
synthase (FASN) is not only the vital lipogenic enzyme to
FAC, but also an upregulated molecule that contributes to
glomerulosclerosis and renal inflammation. miR-544 binds
to the 3’UTR of FASN thus attenuating the infiltration of
inflammatory cells, the activation of NF-κB signaling and
renal fibrosis (Sun et al., 2020). All these findings have

suggested a crucial role of miRNAs in DKD-induced renal
fibrosis based on the epigenetic regulation level.

Hyperglycemia triggers the inflammatory response by
recruiting immune infiltration and inducing the production of
pro-inflammatory cytokines. Of note, podocyte is the barrier to
maintain glomerular filtration, and it also functions as the
receptor and producer of various cytokines. The dysfunction
of podocyte is an essential event in lesion development and
glomerulonephritis. This process promotes the progression of
DKD (Lal and Patrakka, 2018). Stimulated by HG, miR-770-5p is
upregulated and promotes podocyte injury by targeting
metalloproteinase 3 (TIMP3), and Tp53 regulated inhibitor of
apoptosis 1 (TRIAP1), knocking down of miR-770-5p reverse the
apoptosis and inflammation induced by HG in kidney biopsy and
mouse podocytes (Zhang et al., 2019c; Wang and Li, 2020). On
the other hand, more anti-inflammation related miRNAs have
been identified. Overexpression of miR-15b-5p significantly
restrained HG-induced apoptosis, oxidative stress and
inflammation in podocytes, it also directly targets Sema3A,
suggesting that miR-15b-5p could be a therapeutic target for
DKD (Fu et al., 2019). miR-34b targets to the interleukin-6 (IL-6)
receptor and downstream JAK2/STAT3 signaling, thus reducing
the expression of TNF-α, IL-6, interleukin-1β (IL-1β), and
caspase-3 in TECs (Lv et al., 2019). The nicotinamide adenine
dinucleotide phosphate (NAPDH) oxidase (NOX)-derived
reactive oxygen species (ROS) may induce inflammation,
implying that NOX enzymes as novel targets for DKD
(Lambeth et al., 2008). Of note, miR-146a (Wan and Li, 2018),
miR-423-5p (Xu et al., 2018c), and miR-485 (Wu et al., 2020)
target NOX4 and NOX5, respectively, to reduce the production of
pro-inflammatory cytokines. NF-κB signaling pathway is the
classical player in inflammation, which is activated in a wide
range of kidney diseases, including DKD. miR-218 targets the
IKK-β to regulate NF-κB signaling, as well as reducing the
expression of TNF-α, IL-6, IL-1β, and MCP-1 (Li et al.,
2020a). miR-451 also targets large multifunctional protease
(LMP7) to modulate NF-κB-mediated renal inflammation,
which is confirmed by the downregulating level of pro-
inflammatory molecules (Sun et al., 2016a). In addition, miR-
140-5p and miR-874 also function as anti-inflammatory
modulators in suppressing the expression of TNF-α, IL-6, IL-
1β in TECs by directly binding to toll like receptor 4 (TLR4), the
upstream molecule of NF-κB signaling (Yao et al., 2018; Su et al.,
2020). These reports suggest that miRNA-mediated renal fibrosis
and inflammation have critical functions in DKD.

Non-Smad-dependent lncRNAs in DKD
As promising candidates, some miRNA drugs have been
approved to proceed toward phase III or IV trials in the
coming future. However, the toxicity and off-target effects of
miRNA are somehow inevitable (Seok et al., 2018; Hanna et al.,
2019). The emerging studies on lncRNAs have shed light on
their characteristics of tissue-and-cell-type-specificity and
regulation on both transcriptional and translational levels,
making lncRNA as the promising therapeutic targets and
attractive drugs for DKD treatment (Table 2) (Kato, 2018;
Guo et al., 2019).
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LncRNA zinc finger E-box binding homeobox 1 antisense 1
(ZEB1-AS1) plays a protective role in DKD by targeting
profibrotic miR-216a-5p to inhibit HK-induced EMT and
renal fibrosis. Besides, the anti-fibrotic function of ZEB1-
AS1 is also verified that it may bind to H3K4
methyltransferase myeloid and lymphoid or mixed-lineage
leukemia 1 (MLL1) and p53 in patients with DKD (Wang
et al., 2018a; Meng et al., 2020). lncRNA NR_038323 exerts an
anti-fibrotic effect by interacting with miR-324-3p. miR-324-
3p is verified to induce dual-specificity protein phosphatase-1
(DUSP1) and the activation of p38/MAPK and ERK1/2
signaling (Ge et al., 2019b). Moreover, the expression of
lncRNA 1700020I14Rik is decreased in db/db mice.
Bioinformatic method and RNA binding protein
immunoprecipitation assay have confirmed the interaction of
1700020I14Rik and miR-34a-5p, which may then modulate the
SIRT1/HIF-1α signaling to prohibit renal fibrosis (Li et al.,
2018a). Nucleolin is a nuclear protein that expresses on the
surface of endothelial cells. CYP4B1-PS1-001 is the lncRNA
that upregulated in early DKD. By direct interaction with
Nucleolin, CYP4B1-PS1-001 inhibits fibrosis in MCs (Wang
et al., 2016b; Wang et al., 2018c). Nevertheless, some lncRNAs
interact with miRNAs to trigger and promote the fibrotic
process. (Yang et al., 2019a; Jiang et al., 2020a; Fu et al.,
2020; Zhong et al., 2020). Interestingly, LINC00968 inhibits
p21 by recruiting EZH2 to enhance proliferation and fibrosis of
MCs (Li et al., 2018b). ASncmtRNA-2 is upregulated by ROS,
and it promotes the expression of TGF-β1 and other fibrotic
factors (Gao et al., 2017b).

As shown in Table 2, by direct interaction with miRNAs or
inflammatory molecules, lncRNAs play as sponges, inhibitors, or
activators to influence either fibrogenesis or inflammatory

response. All these findings have demonstrated a critical role
of lncRNAs therapeutic targets in the pathogenesis of DKD.

TGF-β/SMAD-DEPENDENT NON-CODING
RNAS IN DKD

TGF-β signaling is highly activated under diabetic conditions and
has been shown to be a major pathway leading to DKD. It has
been well established that DKD-associated fibrosis and
inflammation are mediated by TGF-β via Smad-dependent or
-independent signaling pathways (Chung and Lan, 2015; Tang
et al., 2018a). Active TGF-β1 binds and activates TGF-β receptor
II (TβRII) and receptor I (TβRI) which induces phosphorylation
of Smad2/3 to form a complex with Smad4 that translocate into
the nucleus to regulate transcription of target genes. In general,
Smad3 is pathogenic, while Smad2 and Smad7 are protective.
Smad4 plays diverse roles in renal fibrosis and inflammation,
suggesting Smad4may not serve as the ideal therapeutic target for
DKD (Chung et al., 2013; Li et al., 2014). Many ncRNAs are
induced by TGF-β to regulate renal fibrosis and inflammation via
Smad-dependent mechanisms in DKD as highlighted in Table 3.

TGF-β/Smad-dependent miRNAs in Renal
Fibrosis and Inflammation in DKD
miR-192 is the first landmark found in DKD (Kato et al., 2007).
TGF-β upregulated miR-192 in MCs and glomeruli from db/db
mice, STZ-induced mice model as well as in DKD patients (Kato
et al., 2007; Krupa et al., 2010; Putta et al., 2012; Ma et al., 2016;
Liu et al., 2018). Indeed, these studies have shown the high
correlation between miR-192 and diabetic kidneys.

TABLE 2 | Non-Smad-dependent lncRNAs and their mechanisms in DKD.

lncRNA Target Pathological
output(s)

References

ZEB1-AS1 miR-216a-5p; MLL1; p53 Anti-fibrosis (Wang et al., 2018a; Meng et al., 2020)
NR_038323 miR-324-3p; DUSP1 (Ge et al., 2019b)
1700020I14Rik miR-34a-5p (Li et al., 2018a)
CYP4B1-PS1-001 Nucleolin (Wang et al., 2016b; Wang et al., 2018c)
ENSMUST00000147869 Cyp4a12a (Wang et al., 2016c)
XIST miR-93-5p; CDKN1A Pro-fibrosis (Yang et al., 2019a)
PVT1 miR-23b-3p; WT1 (Zhong et al., 2020)
SNHG16 miR-141-3p; CCND1 (Jiang et al., 2020a)
OIP5-AS1 miR-30c-5p (Fu et al., 2020)
LINC00968 p21/EZH2 (Li et al., 2018b)
ASncmtRNA-2 ROS (Gao et al., 2017a)
MEG3 miR-181a; Egr-1; TLR4; miR-145 Pro-fibrosis (Li et al., 2019a; Zha et al., 2019)
BLNC1 NRF2/HO-1; NF-κB (Feng et al., 2019)
NEAT1 Klotho/ERK1/2; miR-23c; Akt/mTOR; miR-

27b-3p/ZEB1
(Ma et al., 2019a; Huang et al., 2019b; Wang et al., 2019b; Li et al.,
2020b; Yang et al., 2020)

MALAT1 Wnt/β-catenin; miR-145/ZEB2; SRSF1; IL-
6; TNF-α

(Puthanveetil et al., 2015; Hu et al., 2017; Liu et al., 2019a; Zhang et al.,
2019a)

Hottip miR-455-3p; Wnt2B (Zhu et al., 2019b)
Gm4419 NF-κB/NLRP3; p50 (Yi et al., 2017)
GAS5 MMP9; miR-221; SIRT1 Anti-fibrosis (Ge et al., 2019a; Zhang et al., 2020)

Anti-inflammation
Rpph1 Gal-3/Mek/Erk Pro-inflammation (Zhang et al., 2019b)
HOXA-AS2 miR-302b-3p; TIMP3 Anti-inflammation (Li and Yu, 2020)
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Mechanistically, miR-192 may promote the expression of
collagens by targeting the E-box repressor Smad-1 interacting
protein (SIP1 or Zeb2) (Kato et al., 2007; Putta et al., 2012). Also,
activation of Akt may lead to MCs proliferation and hypertrophy
in DKD. miR-192 upregulates miR-216a and miR-217, inhibiting
PTEN to induce Akt activation under diabetic conditions.
Nevertheless, miR-192 also plays a complex and diverse role
in DKD depending on different models or time points. One study
has observed a correlation between miR-192 level,
tubulointerstitial fibrosis, and eGFR. TGF-β treatment
decreases the expression of miR-192 in TECs, resulting in the
promotion of fibrosis and the decline of eGFR (Krupa et al.,
2010). Similarly, by targeting Egr1, miR-192 decreases the
expression of TGF-β1 and fibronectin in glucose-treated TECs
and Otsuka-Long-Evans-Tokushima-Fatty rats, a diabetic
murine model (Liu et al., 2018). These studies have reported
the complexity of miRNA in mediating the fibrotic process
in DKD.

miR-200 family (miR-200a, miR-200b, miR-200c) is well-
studied miRNA clusters that maintain the epithelial
differentiation in cells. Induced by TGF-β or hyperglycemia,
the expression of miR-200a are downregulated in TECs. miR-
200a functions as a suppressor to EMT, thus protecting kidney
from diabetic insults by inhibiting the TGF-β-mediated fibrotic

process. Mechanistic study has further revealed that miR-200a
downregulates TGF-β2 expression by directly targeting the
3’UTR of TGF-β2 (Wang et al., 2011). However, the
expression of miR-200b/c are elevated in glomeruli from type
1 diabetes (T1DM) and type 2 diabetes (T2DM) mice model and
in MCs treated with TGF-β1 (Kato et al., 2011b), implying that
difference on the miR-200 expression may due to cell type
specificity and individual variability. miR-200 family may serve
as the therapeutic targets specific to certain cell types response to
DKD process.

miR-21 is another well-studied miRNA in renal disease.
Although the expression of miR-21 is downregulated in early
DKD (Zhang et al., 2009b), it is upregulated in TECs and MCs
stimulated by TGF-β1 or HG and in the renal biopsies of DKD
patients (Zhong et al., 2011; Wang et al., 2013; Zhong et al., 2013;
Wang et al., 2014; Lai et al., 2015; Mcclelland et al., 2015; Kölling
et al., 2017; Chen et al., 2018). The mechanism of miR-21
participates in DKD may be related to its activation on both
canonical and noncanonical TGF-β signaling. miR-21 not only
suppresses the inhibitory Smad7 of TGF-β signaling to promote
fibrosis (Zhong et al., 2013; Wang et al., 2014) but also targeting
the Sprouty (SPRY) to activate the Ras/MEK/ERK signaling to
activate fibrogenesis of TGF-β signaling (Xu et al., 2014). In
addition, miR-21 also exerts profibrotic and pro-inflammatory

TABLE 3 | TGF-β/Smad3-dependent miRNAs and lncRNAs in renal fibrotic and inflammatory response of DKD.

miRNA Mechanism/target Pathological
output(s)

References

miR-192 p53; Zeb1/2; E-cadherin; Egr1 Anti/pro-fibrosis (Kato et al., 2007; Chung et al., 2010; Krupa et al., 2010; Kato et al., 2011b;
Putta et al., 2012; Deshpande et al., 2013; Ma et al., 2016; Liu et al., 2018)

miR-200 TGF-β1/2 (Kato et al., 2011a; Wang et al., 2011)
miR-29c Spry1; TPM1 (Long et al., 2011; Shao et al., 2019; Huang et al., 2020)
miR-21 Smad7; Spry; PPARα; PTEN; CDC25a; CDK6;

MMP9; TIMP1; TIMP3
Pro-fibrosis (Zhong et al., 2011;Wang et al., 2013; Zhong et al., 2013;Wang et al., 2014;

Lai et al., 2015; Mcclelland et al., 2015; Kölling et al., 2017; Chen et al.,
2018)

Pro-inflammation

miR-27a SFRP1; PRKAA2; PPARγ Pro-fibrosis (Hou et al., 2016; Wu et al., 2018b; Shi et al., 2020)
miR-130b TGF-β1; Smad2/3; Smad4 (Castro et al., 2014; Lv et al., 2015; Liu et al., 2019b; Ma et al., 2019b)
miR-215 CTNNBIP1 (Mu et al., 2013a)
miR-216a Ybx1; FoxO1 (Huang et al., 2019a; Meng et al., 2020)
miR-382 HSPD1; FoxO1 (Fang et al., 2017; Wang et al., 2018d)
miR-488 TGF-β1 (Sun et al., 2019)
miR-26a CTGF; Smad4 Anti-fibrosis (Koga et al., 2015; Cai et al., 2018; Dong, 2019; Gao et al., 2019)
miR-29a,b TGF-β1/2; Spry; Col; MMP; Fos; Adams;

HDAC4
(Qin et al., 2011; Winbanks et al., 2011; Lan, 2012b; Wang et al., 2012;
Chen et al., 2014; Srivastava et al., 2019; Tung et al., 2019)

miR-93 Orai1 (Ma et al., 2018; Yang et al., 2019a; Yang et al., 2019b)
miR-136 SYK; TGF-β/Smad3 (Liu et al., 2020)
miR-let-7 TβR1 (Srivastava et al., 2020)
lncRNA
Erbb4-IR miR-29b; Smad7 Pro-fibrosis (Sun et al., 2018a; Feng et al., 2018; Xu et al., 2020)
NR_033515 miR-743b-5p (Gao et al., 2018)
Arid2-IR Egr1; Smad3 Pro-fibrosis (Zhou et al., 2015; Yang et al., 2019c)

Pro-inflammation

NONHSAG053901
Egr-1 Pro-inflammation (Peng et al., 2019)

LRNA9884 MCP-1 (Zhang et al., 2019d)
TUG1 TGF-β1; PI3K/AKT; miR-21; miR-377; PGC-

1α; TRAF5;
Anti-fibrosis (Li and Susztak, 2016; Long et al., 2016; Duan et al., 2017; Lei et al., 2018;

Wang et al., 2019a; Shen et al., 2019; Zang et al., 2019)
PRINS Smad7 Anti-fibrosis (Jiao et al., 2019)

Anti-inflammation
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effects by targeting PTEN, tissue inhibitor of matrix
metalloproteinases (TIMPs), and other molecules, as shown in
Table 3.

miR-29 family is demonstrated to be protective miRNAs that
are highly expressed in kidneys but significantly reduced under
diabetic conditions. The expression of miR-29 family in various
renal cells is decreased when they are stimulated with TGF-β1 or
treated with HG (Qin et al., 2011; Chen et al., 2014). The
protective role of miR-29 family has been supported by the
evidence that overexpression of miR-29 may inhibit the
transcription of collagen genes while suppression of miR-29
promotes ECM accumulation. Many studies have identified
fibrosis-related targets of miR-29 under hyperglycemic
conditions, demonstrating the anti-fibrotic role of miR-29 in
DKD. Insterestingly, studies also revealed that miR-29c, serves as
a signature miRNA that promotes the progression of DN and
fibrosis (Long et al., 2011; Shao et al., 2019; Huang et al., 2020).
More and more studies are revealing the functions and
mechanisms of miRNAs in fibrosis and inflammation during
diabetic conditions, these miRNAs may play as potential
therapeutic targets to combat DKD.

TGF-β/Smad-Dependent lncRNAs in Renal
Fibrosis and Inflammation in DKD
Under hyperglycemic condition, the expression of profibrotic and
pro-inflammatory lncRNAs are usually upregulated, suggesting
their regulatory role in DKD. TGF-β-mediated lncRNA Erbb4-IR
is highly expressed in diabetic db/db mice and AGEs-treated
MCs. It is regulated by Smad3 as Smad3 deficiency inhibits the
transcription of Erbb4 (Feng et al., 2018; Xu et al., 2020). The
upregulation of Erbb4-IR is consistent with the elevation of
albuminuria, serum creatinine, and fibrotic biomarkers. The
mechanistic role of Erbb4-IR may be the binding of Erbb4-IR
with the 3’UTR of miR-29b, therefore suppressing anti-fibrotic
miR-29b expression. Moreover, Erbb4-IR may also bind with
Smad7 to promote renal fibrosis (Sun et al., 2018a; Feng et al.,
2018).

lncRNA NR_033515 is found to be significantly increased in
the serum of DKD patients, which has shown a positive
correlation with KIM-1 and NGAL, diagnostic markers of
DKD. The mechanistic study has further confirmed the
fibrotic role of NR_033515 by revealing the binding of
NR_033515 and miR-743b-5p, resulting in the proliferation,
EMT, and fibrosis increasing level of proliferation-related
proliferating cell nuclear antigen (PCNA), Cyclin D1, and the
fibrotic proteins during DKD (Gao et al., 2018).

Arid2-IR is regulated by Smad3, knockdown of Arid2-IR in
TECs has no effect on TGF-β/Smad-mediated fibrosis but
promotes IL-1β-induced NF-κB-driven renal inflammation in
obstructive kidney disease (Zhou et al., 2015). However, a recent
study has reported the profibrotic effect of Arid2-IR by
interacting with early growth response protein-1 (Egr1) in
high-fat-diet and STZ-induced mice. Arid2-IR induces the
expression of collagens and α-SMA in mouse MCs,
contributing to the ECM accumulation in DKD (Yang et al.,
2019c).

Interestingly, lncRNA NONHSAG053901 also targets Egr1 in
mouse MCs, but their interaction has promoted inflammation by
upregulating pro-inflammatory cytokines (Peng et al., 2019). The
pathogenic role of Smad3-regulated LRNA9884 is observed in db/
db mice with more severe albuminuria, histological injuries, and a
decline of eGFR. LRNA9884 is induced by AGEs, and it targets
MCP-1 to promote MCP-1-driven renal inflammation (Zhang
et al., 2019d).

lncRNAs taurine upregulated gene 1 (TUG1) is an anti-
fibrotic lncRNA mediated by TGF-β with multiple functions
in DKD. In response to metabolic alterations of DKD, the
expression of TUG1 is downregulated in podocytes.
Overexpression of TUG1 can reverse the mitochondrial
dysfunction in podocytes by targeting the transcription factor
peroxisome proliferator-activated receptor γ (PPARγ)
coactivator 1α (PGC-1α) (Li and Susztak, 2016; Shen et al.,
2019). In consistence with previous results, TUG1 can also
modulate mitochondrial bioenergetics in podocytes by binding
with PGC-1α (Long et al., 2016). These findings have highlighted
the connection between lncRNAs and DKD. By interacting with
TNF receptor-associated factor 5 (TRAF5), TUG1 can suppress
TRAF5-mediated podocyte apoptosis (Lei et al., 2018) and
negatively downregulate the PI3K/Akt signaling to inhibit
proliferation and ECM deposit in MCs (Zang et al., 2019).
TUG1 is also able to interact with miR-21, thus promoting the
expression of TIMP3 to alleviate renal fibrosis in HG-stimulated
TECs and in db/db mice (Wang et al., 2019a). Furthermore,
TUG1 sponges for miR-377 to regulate PPARγ and ECM in MCs
(Duan et al., 2017). All these protective effects of lncRNA TUG1
in various cell types has supported its therapeutic potential in
treating DKD. Besides, some lncRNAs may play diverse roles in
the pathogenesis of DKD. lncRNA psoriasis-susceptibility related
RNA gene induced by stress (PRINS)may exert both anti-fibrotic,
anti-inflammatory but pro-apoptotic effects by regulating Smad7
in DKD. It has been demonstrated that there is a positive
correlation between PRINS and Smad7 in DKD patients. As
overexpression of Smad7 inhibits renal fibrosis and inflammation
but also induces apoptosis in podocytes (Schiffer et al., 2001; Ka
et al., 2012), thus, overexpression of PRINS upregulates Smad7
expression and promotes apoptosis in mouse podocytes (Jiao
et al., 2019). lncRNA PRINS may be a therapeutic target of DKD-
induced renal fibrosis and inflammation. But the underlying
mechanisms of interaction between PRINS and Smad7 remain
unexplored. In conclusion, the connection of TGF-β-mediated
lncRNA and DKD is well-defined. Further studies on revealing
the therapeutic targets and underlying mechanisms of these
lncRNAs remain to be further explored.

NON-CODING RNAS AS NOVEL
BIOMARKERS FOR DKD

The diagnosis and monitoring of renal injuries in DKD are now
dependent on the detection of urinary albumin or serum
creatinine. However, some patients may not present
microalbuminuria or creatinine alterations during the
progression of DKD, suggesting that none of these measures
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can accurately indicate the severity and type of injury induced by
hyperglycemia (Magee et al., 2017; Lin et al., 2018). In addition,
urinary albumin is not specific to DKD, which may also occur in
other diseases. Besides, the diagnostic and prognostic test of renal
biopsy is invasive and may not be a reliable way to establish the
full patterns of DKD. Thus, the availability of sensitive and
specific biomarkers will provide therapeutic benefits in the
control of DKD.

Non-coding RNAs in body fluids could facilitate
communication between cells. Non-coding RNAs may exist in
a stable form in serum and urine. As biomarkers, they may form a
complex with proteins or be stored in transporters, including
exosomes, microparticles, and apoptotic bodies. Based on the
tissue- and cell type-specific characteristics of lncRNAs,
significant differences in expression of novel lncRNAs in DKD
(as shown inTables 2 and 3) havemapped the signaling pathways
in the pathogenesis of diabetic nephropathy (Guo et al., 2019).
Indeed, a recent study has reported a novel lncRNA, PANDAR,
related to T2DM DKD patients. The expression of PANDAR is
upregulated in diabetic patients and higher in DKD patients with
massive proteinuria, demonstrating its potential as biomarker
and predictor for prognosis and progression of DKD (Zhao et al.,
2020). The expression of lncRNA CASC2 is downregulated in
T2DM patients with chronic renal failure but not T2DM patients
with other complications, suggesting that lncRNA cancer
susceptibility candidate 2 (CASC2) could also serve as a renal
specific biomarker for DKD. Moreover, the study has further
followed up for 5 years and found out that serum level of lncRNA
CASC2 is negatively correlated with the incidence of chronic
renal failure, supporting that serum level of lncRNA CASC2 may
be a specific and reliable biomarker for diagnosis in DKD
progression (Wang et al., 2018b). These studies have shown
that lncRNAs are of high relevance in the development and
progression of DKD, however, further mechanistic
investigations on lncRNAs as therapeutic targets are warranted.

Some circulating miRNAs may also serve as sensitive and
useful biomarkers for early detection and diagnosis for DKD
(Zhang et al., 2016; Nascimento and Domingueti, 2019). For
instance, in the early stage of T2DMDKD, the expression of miR-
377 is positive, while miR-192 is negatively correlated with renal
function (Tayel et al., 2020). In addition, circulating miRNA of
miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p,
miR-5010-5p, and miR-150-3p are significantly upregulated in
DKD patients compared with healthy volunteers (Kim et al.,
2019). Moreover, the expression of miR-126 is decreased in DKD
patients, which is negatively associated with albuminuria, level of
fasting glucose, and glycated hemoglobin but positively correlated
with eGFR (Al-Kafaji et al., 2016). The level of serum miR-21 is
also consistent with tissue miR-21 that closely reflects renal
function in DKD (Wang et al., 2016a). Up to date, many
studies have reported the expression profiles of circulating
miRNAs in diabetic nephropathy, making miRNAs as one of
the promising candidates for DKD diagnosis and therapeutic
targets.

The urinary exosomal miRNAs are called as “liquid biopsy”
(La Marca and Fierabracci, 2017), which are typically secreted by
cells from renal segments. They carry proteins, RNAs, and

biomarkers that may reflect renal injury and dysfunction (Xu
et al., 2018b). For example, miR-200b is a novel urinary
biomarker that negatively correlates with the degree of renal
fibrosis in CKD and DKD (Yu et al., 2018). One study has
suggested that the expression of miR-27b-3p and miR-1228-3p
in urine may be useful indicators for the degrees of renal fibrosis
of DKD patients (Conserva et al., 2019). Notably, the expression
of miR-126 in urine is increased in DKD patients compared to
diabetic patients without renal disease. Interestingly, the urinary
level of miR-126 is significantly decreased in DKD patients with a
better diabetic control, implying that miR-126 may be a
biomarker in DKD and monitor for DKD treatment response
(Liu et al., 2014).

Although the clinical relevance in urinary miRNAs have been
well studied (Lv et al., 2013; Cheng et al., 2014), there is still no
consensus on the normalization of miRNAs isolated from urine,
as the levels of urinary miRNAs may be high veriable and affected
by urinary contents and concentrations. Neverthless, the better
normalizer strategies should be encouraged (Blondal et al., 2013;
Lekchnov et al., 2016; Corral-Vazquez et al., 2017), as the
normalization of the validated data may help to provide
statistically significant results without causing unwanted bias.

NON-CODING RNAS AS PROMISING
THERAPEUTIC TARGETS FOR DKD

The regulatory role of non-coding RNAs in the pathogenesis of
DKD has highlighted their potential as therapeutic targets for
DKD. Restoring expression or inhibition of non-coding RNAs in
renal or inflammatory cells under diabetic conditions may halt
renal fibrosis and inflammation (Figure 3). Besides, rebalancing
the overactivated TGF-β signaling induced by hyperglycemia
could be another strategy that controls renal complication.

The delivery of synthetic non-coding RNA oligonucleotides,
plasmids, or inhibitors may alter pathogenic signaling pathways
related to DKD. Antagonism of miR-21 not only reduces the loss
of podocytes and albuminuria but also inhibits renal fibrotic
response by inhibition of collagen and fibronectin in vivo and
in vitro (Wang et al., 2013; Kölling et al., 2017; Roy et al., 2020).
Silencing miR-215 with specific antagomir increases the
expression of CTNNBIP1, reduces of β-catenin activity, and
accumulation of fibrotic proteins in db/db mice (Mu et al.,
2013b). We have established the non-invasive ultrasound
microbubble-mediated gene transfer to knock down renal
expression of miR-21, thus suppressing the activation of the
TGF-β and NF-κB signaling pathways by targeting Smad7 in
the diabetic mouse model (Zhong et al., 2013). In addition,
restoring the expression of miR-29b by delivery of
doxycycline-inducible pre-miR-29b into the kidney, could
significantly reverse the pathological changes of progressive
DKD (Chen et al., 2014). Moreover, kidney-specific silencing
of lncRNA Erbb4-IR and LRNA9884 with ultrasound technique
can convert plasmids into the damaged kidney to ameliorate
injuries, albuminuria, fibrosis, and inflammation (Sun et al.,
2018a; Zhang et al., 2019d). Notably, exosomes secreted by
cells contain non-coding RNAs that may have a regulatory
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role in DKD. Injection of exosomes from HG-treated
macrophages induces MCs proliferation, fibrotic, and
inflammatory factors activation in vivo as well as in vitro.
Intriguingly, exosomes from TGF-β1 knockdown macrophages
may reverse pathogenic changes in MCs (Zhu et al., 2019a),
underscoring the importance of TGF-β signaling in the
pathogenesis of DKD.

The rapid development of the field of non-coding RNAs has
helped these RNA-based biopharmaceuticals to enter clinical
trials before market approval. However, non-coding RNA
treatments remain to be explored. The low expression, low
conservation between species, time specificity, toxicity, and
off-target effect of non-coding RNA are obstacles waiting to be
solved in the development of RNA therapy (Yang et al., 2014; Ard
et al., 2017). Up to date, the number of non-coding RNAs related
to clinical trials on DKD is limited (Sankrityayan et al., 2019).
Nevertheless, some ongoing miRNA-based therapies may be the
potential next-generation medicine for DKD (Chakraborty et al.,
2017). For example, Remlarsen, a miR-29 mimic that is
undergoing in the clinical test (https://clinicaltrials.gov/ct2/
show/NCT03601052) and could be the promising drug to
combat renal fibrosis in DKD. Hopefully, new technologies

such as clustered regularly interspaced short palindromic
repeats (CRISPR) and CRISPR-associated (Cas) gene editing
may represent novel strategies to modulate the expression and
function of non-coding RNAs in DKD (Miano et al., 2019).
Further studies are needed to reveal the therapeutic potential of
ncRNAs in the clinical treatment of DKD.

CONCLUSION AND FUTURE
PERSPECTIVES

Non-coding RNAs have garnered the major attention of
researchers in the past few decades. We are now shifting
toward their regulatory role and mutual relationship in the
pathogenesis of DKD. Reports in this review and available
literature have drawn the patterns of ncRNAs profiles in the
process of diabetic nephropathy, but further investigation into the
crucial mechanisms of ncRNAs in epigenetic regulation is
warranted. Moreover, as biomarkers, the expression of renal
ncRNAs may reflect the cellular response to hyperglycemic
injuries, thus contributing to the early diagnosis and prognosis
of DKD. The discovery of miRNAs and lncRNAs also represents a

FIGURE 3 | The summary of TGF-β/Smad-dependent and non-TGF-β/Smad-dependent miRNAs and lncRNAs in diabetic renal fibrosis and inflammation. Non-coding
RNAs are classified as pro/anti-fibrosis, pro/anti-inflammation in regard with their mechanistic funcions in diabetic nephropathy. (Figure created with BioRender.com).
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new field of molecular therapy into DKD treatment. Together
these findings are expected to yield novel insights into the
complex pathogenesis of DKD and could be incorporated in
the clinical settings.
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Epidermal Growth Factor Receptor:
A Potential Therapeutic Target for
Diabetic Kidney Disease
Lili Sheng1, George Bayliss2 and Shougang Zhuang1,2*

1Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China, 2Department of
Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease worldwide and
the major cause of renal failure among patients on hemodialysis. Numerous studies have
demonstrated that transient activation of epidermal growth factor receptor (EGFR)
pathway is required for promoting kidney recovery from acute injury whereas its
persistent activation is involved in the progression of various chronic kidney diseases
including DKD. EGFR-mediated pathogenesis of DKD is involved in hemodynamic
alteration, metabolic disturbance, inflammatory response and parenchymal cellular
dysfunction. Therapeutic intervention of this receptor has been available in the
oncology setting. Targeting EGFR might also hold a therapeutic potential for DKD.
Here we review the functional role of EGFR in the development of DKD, mechanisms
involved and the perspective about use of EGFR inhibitors as a treatment for DKD.

Keywords: Epidermal growth factor receptor, diabetic nephropathy, hemodynamic alternation, metabolic
disturbance, inflammation, multicellular dysfunction

INTRODUCTION

Diabetic kidney disease (DKD) is a complication of diabetes mellitus and one of the leading causes of
end-stage renal disease (ESRD) worldwide. DKD places a heavy personal burden on the many people
world-wide who need hemodialysis and heavy economic burden on health care systems. It is urgent
to find ways to slow the progression of DKD. However, its pathogenesis is complex and the
mechanism is still poorly understood.

Increasing evidence indicates that various signaling pathways are activated and involved in the
pathogenesis of DKD. Among them, the role of epidermal growth factor receptor (EGFR) has been
extensively studied (Matrougui 2010; Advani et al., 2011; Zhang et al., 2014; Koya 2015). The EGFR
belongs to a family of receptors that harbor tyrosine kinase activity and is composed of four
members: EGFR (ErbB1), ErbB2, ErbB3, and ErbB4. They can be activated by several ligands,
including epidermal growth factor (EGF), transforming growth factor-α (TGF-α), amphiregulin,
heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epigulin and epigen (Higashiyama
et al., 2008; Schneider and Wolf 2009; Rayego-Mateos et al., 2018b). Upon ligand binding, the
receptors form homodimers or heterodimers, leading to phosphorylation of some specific tyrosine
residues in intracellular domains. These residues act as docking sites for initiating activation of
multiple intracellular signaling pathways (Forrester et al., 2016).

Activation of EGFR signaling has been implicated in numerous physiological and
pathophysiological processes, including embryonic development, cell proliferation, cell survival,
and tumorigenesis. In the mammalian kidney, EGFR is widely expressed in glomeruli and proximal
tubules, including renal epithelial cells, glomerular endothelial cells, podocytes, tubular cells,

Edited by:
Valeria Mas,

University of Tennessee Health
Science Center (UTHSC),

United States

Reviewed by:
Onkar Prakash Kulkarni,

Birla Institute of Technology and
Science, India

Orestes Foresto-Neto,
University of São Paulo, Brazil

*Correspondence:
Shougang Zhuang

szhuang@lifespan.org

Specialty section:
This article was submitted to

Renal Pharmacology,
a section of the journal

Frontiers in Pharmacology.

Received: 25 August 2020
Accepted: 30 November 2020
Published: 26 January 2021

Citation:
Sheng L, Bayliss G and Zhuang S
(2021) Epidermal Growth Factor

Receptor: A Potential Therapeutic
Target for Diabetic Kidney Disease.

Front. Pharmacol. 11:598910.
doi: 10.3389/fphar.2020.598910

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 5989101

REVIEW
published: 26 January 2021

doi: 10.3389/fphar.2020.598910

122

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.598910&domain=pdf&date_stamp=2021-01-26
https://www.frontiersin.org/articles/10.3389/fphar.2020.598910/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.598910/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.598910/full
http://creativecommons.org/licenses/by/4.0/
mailto:szhuang@lifespan.org
https://doi.org/10.3389/fphar.2020.598910
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.598910


mesangial cells and medullary interstitial cells (Gesualdo et al.,
1996; Harskamp et al., 2016). In the past decade, many studies
have investigated the role of EGFR signaling in the progression of
chronic kidney disease (CKD) (Chen et al., 2012; Harskamp et al.,
2016; Rayego-Mateos et al., 2018b). In this review, we will discuss
the role and the mechanism of EGFR in the development of DKD
and consider the potential use of EGFR inhibitors as a treatment
of this disease.

Diabetic Kidney Disease
Chronic hyperglycemia in diabetes mellitus can induce
dysfunction of all types of cells in the kidney. DKD is mainly
manifested by proteinuria, which varies in several stages,
including the silent stage, the microalbuminuria stage
(30–300 mg/day) and the macroalbuminuria stage (>300 mg/
day) (Papadopoulou-Marketou et al., 2017). Proteinuria occurs
along with morphological changes in the glomerulus and
interstitium (Qi H. et al., 2017.). From the onset of diabetes
mellitus to nearly 5 years, kidney size increases along with an
increase in renal plasma flow and hyperfiltration, with thickened
glomerular basement membrane and mild or severe mesangial
expansion. After 5–10 years, glomerular damage progresses with
the occurrence of microalbuminuria and nodular accumulation
of mesangial matrix. As glomerulosclerosis advances, extra-
glomerular lesions also form. Proteinuria is irreversible at this
stage as the glomerular filtration rate (GRF) drops below 60 ml/
min/1.73 m2 and ultimately reaches end-stage levels below 15 ml/
min/1.73 m2 (Sulaiman 2019; Han et al., 2017; Kanwar et al.,
2011; Papadopoulou-Marketou et al., 2017; Qi C. et al., 2017).
During the progression of DKD, mitochondria generate excess
reactive oxidative species (ROS) or reactive nitrogen species
(RNS), resulting in the activation of several signaling
pathways, transcription factors and cytokines, such as TGF-
β/smad/MAPK signaling, JAK/STAT signaling, VEGF, EGFR.
Activation of these signaling pathways and transcription factors is
associated with cell growth, angiogenesis, and apoptosis, leading
to DKD ultimately (Kanwar et al., 2011; Magee et al., 2017;
Papadopoulou-Marketou et al., 2017; VR et al., 2019).

Epidermal Growth Factor Receptor
Transactivation in Diabetic Kidney Disease
Renal EGFR phosphorylation levels were significantly increased
in animal models of diabetes mellitus and in cultured cells treated
with high glucose (Konishi and Berk 2003; Saad et al., 2005;
Portik-Dobos et al., 2006; Uttarwar et al., 2011; Li R. et al., 2015).
EGFR inhibition slowed the progression of DKD, including the
improvement of proteinuria and morphologic changes (Wassef
et al., 2004; Chen et al., 2012; Zhang et al., 2014). The
concentration of EGFR ligands in plasma and kidneys, such as
EGF, TGF-α and HB-EGF, was also increased in DKD (Uttarwar
et al., 2011; Miyazawa et al., 2013; Perlman et al., 2015). Some
reports suggested that connective tissue growth factor (CTGF) is
a novel EGFR ligand and that blocking CTGF-mediated
profibrotic effects could also be a potential therapeutic option
to treat fibrotic renal diseases (Rayego-Mateos et al., 2013;
Rayego-Mateos et al., 2018a).

Besides direct activation by its ligands, EGFR transactivation
has been recognized as another important mechanism for signal
transduction. The process of EGFR transactivation is not
mediated through direct ligand binding, but through other
second messengers. Several stimuli known to be involved in
the pathogenesis of DKD were found capable of
transactivating EGFR, such as ROS, TGF-β and PKC. In
streptozotocin-induced diabetes and in cultured cells exposed
to high glucose, ROS inhibition with superoxide dismutase (SOD)
or an NADPH oxidase inhibitor attenuated the upregulation of
EGFR phosphorylation (Chen et al., 2015; Sheng et al., 2016).
Endothelin-1 (ET-1) mediated activation of endothelin A (ETA)
receptor also contributed to EGFR transactivation in diabetic
animals (Portik-Dobos et al., 2006). The mechanism by which
EGFR transactivation occurs upon stimulation with these active
factors remains unclear. A well-accepted hypothesis is that these
substances act on their own receptors and then induce release of
EGFR ligands (Konishi and Berk 2003; Higashiyama et al., 2008;
Chen et al., 2012). EGFR ligands including EGF, HB-EGF and
TNF-α are synthesized as precursors anchored on the cell
membrane. Upon stimulation, they are released from the
membrane in soluble bioactive forms by specific
metalloproteases such as ADAM17 (Ohtsu et al., 2006;
Uttarwar et al., 2011) (Uttarwar et al., 2011; Li T. et al., 2015;
Morgado-Pascual et al., 2015). In diabetes, several second
messengers, such as ROS and protein kinases can induce
activation of ADAMs, leading to shedding of EGFR ligands.
The shed ligands can bind to EGFR in an autocrine or
paracrine-dependent manner (Schreier et al., 2014). In
addition, Src, a non-receptor tyrosine kinase, can also mediate
EGFR transactivation initiated by activation of G-protein-
coupled receptors (GPCRs) (Taniguchi et al., 2013; Forrester
et al., 2016).

Epidermal Growth Factor Receptor and the
Pathogenesis of Diabetic Kidney Disease
The pathogenesis of DKD is a complex process involving many
factors, including hemodynamic alteration, metabolic
disturbance, inflammatory response and parenchymal cellular
dysfunction (Tung et al., 2018; VR et al., 2019). EGFR
transactivation by high glucose causes multicellular
dysfunction, which initiates and accelerates kidney injury.
Studies have found that EGFR inhibition can reduce kidney
size after in STZ treated diabetic mice, without affecting body
weight, blood glucose or blood pressure (Wassef et al., 2004).
Inhibition of EGFR with erlotinib also markedly reduces
albuminuria and renal expression of CTGF, collagen I,
collagen IV in diabetic mice (Zhang et al., 2014).

Hemodynamic Alteration
Hemodynamic alteration plays an important role in the
pathogenesis of DKD. Chronic hyperglycemia induces
metabolic alteration and dysfunction in endothelial and
vascular smooth muscle cells, leading to vascular dysfunction
and hemodynamic alteration in kidneys and other organs
(Matrougui 2010; Li T. et al., 2015). Glomerular hemodynamic
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alterations such as hyperfiltration and hyper-perfusion are found
in the early stages of DKD. Hyperfiltration is a result of a decrease
in glomerular afferent and efferent arteriolar resistance; dilation
of the efferent arteriole is relatively less than dilation of the
afferent arteriole, causing a relative increase in glomerular
transcapillary hydraulic pressure (Hostetter 2003; Wolf and
Ziyadeh 2007; Ziyadeh and Wolf 2008). This facilitates the
development of albumin leakage from the glomerular capillary
compartment to Bowman’s space. Many factors, especially
angiotensin Ⅱ (AngⅡ), have been implicated as important
biologically active agents that cause hyperperfusion and
hyperfiltration. (Cooper 2001; Wolf 2004; Forbes et al., 2007).
Since Ang II can induce transactivation of EGFR, it has been
suggested that blockade of EGFR can reduce Ang Ⅱ-mediated
hemodynamic alteration (Krishna et al., 2007; Akhtar et al.,
2012).

In diabetic animal models, treatment with EGFR inhibitors
results in a significant normalization of the altered
vasoconstrictor and vasodilator response without effecting
blood glucose levels (Benter et al., 2005; Yousif et al., 2005;
Benter et al., 2009; Akhtar et al., 2012; Schreier et al., 2014).
Mechanistic studies showed that EGFR inhibition mediated
vascular response to different stimuli occurs through
reduction of ROS generation in mesenteric resistance
arteries (Kassan et al., 2015). This may involve the
correction of diabetes-induced reduction in nitric oxide
synthase (eNOS) activity and nitric oxide (NO) generation
in vascular smooth muscle cells (VSMC) (Benter et al., 2015).
Despite disturbed vascular response, EGFR also mediates
vascular remolding in diabetes. Akhtar and others found
that inhibition of EGFR activation results in a remarkable
reduction in blood vessels thickening both in intima and
media, and attenuates vascular hyper-responsiveness via
ERK1/2-ROCK pathway (Palen and Matrougui 2008; Akhtar
et al., 2019). Thus, EGFR inhibition could help restore some
vascular endothelial functions, independent of glucose
lowering, providing considerable therapeutic strategy for
vascular protection in DKD.

Metabolic Disturbance
Diabetic kidneys are highly sensitive to metabolic alteration.
Patients with diabetes mellitus experience chronic
hyperglycemia. Glucose was translocated into cells by
various transporters including glucose transporter (GLUT)-
1, GLUT-4, and sodium-glucose-linked transporters. Excess
glucose influx into cells leads to glucose transport along
various metabolic pathways, along with the generation of
reactive oxygen species (ROS) and advanced glycation end
product (AGEs) (Magee et al., 2017). These metabolic
derangements induced activation of several signaling
pathways related to proliferation and fibrosis, such as the
transforming growth factor-β (TGF-β) and the protein
kinase C (PKC) signaling pathways (Cooper 2001; Forbes
et al., 2007; Kanwar et al., 2011). In addition, researchers
found activation of GLUT1 synthesis itself was associated
with growth factor upregulation and extracellular matrix
secretion (Heilig et al., 2013).

EGFR has been implied in the regulation of the metabolic
pathways. In a diabetes model with eNOS knockout, inhibition of
EGFR attenuated albuminuria, glomerulosclerosis and
tubulointerstitial fibrosis, along with a decreased urinary
excretion of F2-isoprostane, a marker of oxidative stress
(Portero-Otin et al., 2002; Li et al., 2018). In addition,
inhibition of EGFR tyrosine increased glucose tolerance and
ameliorated insulin resistance (Li et al., 2018). In STZ-induced
diabetes models, EGFR inhibition markedly reduced renal
oxidative stress and endoplasmic reticulum stress (ERS), and
attenuated renal fibrosis and apoptosis (Xu et al., 2017). In
another study, inhibition of EGFR reversed the accumulation
of ROS and superoxide levels, probably by improving p-eNOS
expression and inhibiting Nox4 expression (Wang et al., 2020).
Advanced glycation end product receptors (AGERs) are receptors
that mediate AGEs-induced toxicity to cells. AGER can interact
with EGFR and mediate oxidative species generation, as
characterized by H2O2 formation in mesangial cells and in
human embryonic kidney epithelium-like cells (Cai et al.,
2006). AGE product precursors could also impair EGFR
signaling (Portero-Otin et al., 2002). EGFR activation along
with alteration of these metabolic pathways leads to disturbed
signaling and mediates kidney injury.

Inflammation
Low-grade systemic inflammation seems to play a critical role in
the pathogenesis of DKD (Rivero et al., 2009; Matoba et al., 2019;
Vasanth et al., 2019). Scurt et al. found that serum markers of
inflammation such as CXCL-16, MCP-1, ANGP-2 could predict
the onset of microalbminuria in patients with diabetes mellitus
type 2 (Scurt et al., 2019). Other studies indicate that serum IL-18
and TNF-α levels were increased in diabetic patients, especially in
those with kidney impairment (Moriwaki et al., 2003; Mora and
Navarro 2004). In the onset of diabetic mellitus, excess AGEs and
ROS, and activation of several signaling pathways, induced
transcription of various adhesion molecules and pro-
inflammatory cytokines, and mediated macrophage infiltration
and the progression of DKD (Matoba et al., 2019). EGFR
inhibition decreases renal T-cell infiltration and islet
macrophage infiltration in diabetic glomeruli and the
interstitium (Li et al., 2018). Aldosterone-induced
proinflammatory gene (CCL-2 and CCL-5) expression in
cultured tubular epithelial cells was also shown to occur
through the ADAM-17/TGF-α/EGFR pathway (Morgado-
Pascual et al., 2015). Zhang et al. also found that treatment
with erlotinib, an EGFR inhibitor, reduced kidney macrophage
infiltration and oxidative stress in the tubular interstitium (Zhang
et al., 2014). Thus, EGFR may be involved in renal inflammatory
responses in DKD.

Multicellular Dysfunction in Diabetic Kidney
Disease
It has been thought that pathologic changes to mesangial cells
represent the central feature of glomerulosclerosis in DKD.
However, damage to other cell types, including endothelial
cells, podocytes, tubular epithelial cells and fibroblasts, also
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contributes to progression of DKD (Qian et al., 2008; Magee et al.,
2017).

Mesangial Cell
Mesangial proliferation and expansion is considered the hallmark
of DKD.Mesangial cells are mesenchymal in origin, and are easily
activated to undergo proliferation and matrix secretion.
Activation of growth factors promotes different signaling
pathways that mediate proliferation of mesangial cells.
Research by Wu and colleagues indicated that high glucose
induced collagen production in mesangial cells through EGFR-
mediated activation of the PI3K-Akt signaling pathway (Wu
et al., 2007; Wu et al., 2009). Another study also indicated
that high glucose induced collagen accumulation in mesangial
cells through the Src/TACE/HB-EGF signaling pathway
(Taniguchi et al., 2013). EGFR transactivation by high glucose
does not require PKC, ROS, or AngII, but HB-EGF release is
essential for transactivation of EGFR in mesangial cells to induce
mesangial cell proliferation and matrix secretion (Uttarwar et al.,
2011).

Endothelial Cell
Endothelial cells can produce NO and regulate platelet adhesion,
immune function, control of volume. Endothelial dysfunction is
the inability of vasculature to dilate in response to certain stimuli
acting on the endothelium (Goligorsky 2015). It is always
associated with a deficiency of eNOS activity and NO release
(Rivero et al., 2009; Kolluru et al., 2012; Sharma et al., 2012).
Wang et al. applied a novel rhynchophylline analogue, Y396, to
study the role of EGFR on endothelial function. They found that
Y396 inhibits the tyrosine kinase activity of EGFR by directly
targeting EGFR and restores endothelium-dependent vascular
relaxation without affecting vascular structure (Wang et al.,
2020). This effect of EGFR inhibition may be mediated by
downregulation of Nox2 and Nox4 expression and ROS
suppression (Galan et al., 2012). Similarly, Belmadani et al.
also demonstrated that EGFR activation is elevated and
induces resistance artery dysfunction and endothelium-
dependent relaxation in diabetic mice without interfering
blood pressure (Belmadani et al., 2008).

Another mechanism that regulates vascular dysfunction is the
endothelial-to- mesenchymal transition (EndoMT) (Piera-
Velazquez et al., 2016; Pardali et al., 2017; Piera-Velazquez
and Jimenez 2019). EndoMT is known as endothelial cells
transition into a mesenchymal cell type. In 2013, LeBleu et al.
employed cell linage tracing and found that approximately
10–15% of myofibroblasts were derived from EndoMT (LeBleu
et al., 2013). Since then, much attention has been paid to the
EndoMT in DKD, especially the renal interstitial fibrosis (Li et al.,
2009; Li and Bertram 2010). The role of EGFR in EndoMT in the
kidney was less extensively investigated. In an animal model of
cardiac fibrosis, Liu et al. observed that EGFR mediated EndoMT
promotes several fibrosis-related events post myocardial
infarction, (Liu et al., 2020). These events include acquisition
by endothelial cells of a spindle-like shape and the ability to
migrate. Although glomerular endothelial mitochondrial
dysfunction plays a key role in the pathogenesis of DKD as

evidenced by podocyte depletion and proteinuria (Qi H. et al.,
2017), the role of EGFR in glomerular endothelial cell
pathophysiology has not been well investigated.

Podocyte
Podocyte injury is an early event in DKD and is a hallmark of
glomerulopathy. Studies have suggested that podocyte injury is
associated with the early stage of proteinuria in patients with
diabetes (Wolf and Ziyadeh 2007; Bose et al., 2017; Dai et al.,
2017). As terminally differentiated cells, podocytes are vulnerable
to injury and may not be able to regenerate or repair themselves
after injury. They could undergo hypertrophy, epithelial-
mesenchymal transition, detachment and apoptosis under
certain stimuli, leading to depletion of these cells within the
glomerulus, characterized by foot process effacement on biopsy
(Han et al., 2017). In DKD, podocytes are involved in the
development of glomerular hypertrophy, proteinuria and
glomerulosclerosis (Li et al., 2007; Dai et al., 2017; Maestroni
and Zerbini 2018) and promote the development of interstitial
fibrosis. High concentrations of glucose induce the production of
ROS and initiate podocyte apoptosis and podocyte depletion,
whichmay be an early pathological change in DKD (Susztak et al.,
2006). EGFR also plays an important role in podocyte injury in
DKD. This is evident by the observations that EGFR inhibition
led to less podocyte loss in models of diabetic nephropathy while
podocyte-specific deletion of EGFR attenuated albuminuria and
podocyte loss induced by hyperglycemia (Taniguchi et al., 2013;
Li et al., 2018). This may be mediated by activation of TGF-
β-SMAD2/3 signaling pathway and enhanced ability of
mitochondrial NADPH oxidase to increase ROS production
(Chen et al., 2015).

Tubular Epithelial Cell
The tubular epithelial cell has been implicated in interstitial
fibrosis. Tubular epithelial cells are also vulnerable to
pathologic stress due to high glucose levels and can undergo
epithelial-mesenchymal-transition and apoptosis (VR et al.,
2019). Upon injury, epithelial cells can secrete growth factors
and inflammatory cytokines to induce fibroblast activation and
renal fibrosis (Sheng and Zhuang 2020). EGFR is highly expressed
in proximal tubules. Its transactivation mediates sodium and
water transport by regulation of NHE3 and serum glucocorticoid
regulated kinase-1 (sgk1) (Panchapakesan et al., 2011). Erlotinib
treatment decreased tubular injury and tubulointerstitial fibrosis
in db/db mice (Li et al., 2018). EGFR inhibition also attenuated
renal tubular epithelial cell proliferation and apoptosis in diabetic
rats (Wassef et al., 2004). In addition, erlotinib treatment
decreased ER stress and increased autophagy in tubular cells
in diabetes (Zhang et al., 2014). The protective effect of some
other interventions may be also partly through EGFR. For
example, histone deacetylase inhibition can attenuate tubular
cell proliferation and early diabetic renal enlargement in
response to high glucose by downregulation of EGFR (Gilbert
et al., 2011).

EGFR also participated in epithelial-mesenchymal transition
(EMT). EMT, a process by which injured renal tubular cells
undergo a phenotype change and acquire mesenchymal
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characteristics, is widely recognized as a critical mediator of
fibrogenesis in chronic kidney diseases. EGFR has been
thought to mediate EMT. Sustained EGFR activation in the
tubule induces epithelial dedifferentiation and cell cycle arrest
with an increase in the mesenchymal marker and decreases in the
epithelial marker (Overstreet et al., 2017). Administration of
CTGF in cultured tubular epithelial cells caused G2/M cell
cycle arrest and EMT via EGFR pathways. The cells lost the
typical cobblestone pattern and showed a spindle-shaped pattern,
along with the elevation of mesenchymal marker and a decrease
in epithelial marker. EGFR inhibition attenuated these changes
(Rayego-Mateos et al., 2018a). It is possible that the activation of
EGFR in diabetic kidney disease may mediate EMT, thus
promoting interstitial fibrosis.

Non-Renal Effects of Epidermal Growth
Factor Receptor Inhibitor in Diabetes
Two groups have reported that patients who suffered from
non-small-cell lung cancer (NSCLC) experienced an
improvement in diabetes after erlotinib (an EGFR inhibitor)
treatment (Portero-Otin et al., 2002; Costa and Huberman
2006; Brooks 2012). This improvement may be due to
erlotinib-elicited reduction of insulin resistance by
inhibition of TNF-α and the T-cell mediated immune
response (Brooks 2012). These interesting clinical reports
are supported by a striking finding in animal studies
showing that erlotinib-treated mice had a relatively slow
increase in body weight, a decrease in fasting blood glucose
levels, and improved glucose disposition and insulin

sensitivity. EGFR inhibition with erlotinib also decreased
islet macrophage infiltration and increased autophagy,
leading to preservation of pancreatic β-cell function and
subsequent improvement of metabolic status. Moreover,
EGFR blockade increases circulating levels of the adipokine
adiponectin, an adipocyte-derived hormone that has insulin-
sensitizing, anti-inflammatory, and kidney-protective effects
(Fang et al., 2015; Ding et al., 2016; Li et al., 2018). In addition,
treatment with EGFR inhibitor PD153035 reduces low-grade
inflammation, macrophage infiltration in adipocytes and
improves glucose tolerance and insulin actions (Prada et al.,
2009). These studies suggest that EGFR inhibitors may also
ameliorate the progression of DKD through improving insulin
sensitivity and pancreatic beta cell functions.

Role of Other Epidermal Growth Factor
Receptor Family Members in Diabetic
Kidney Disease
Other EGFR tyrosine kinase family members, such as the ErbB2
and ErbB4, may also contribute to the progression of CKD and the
pathogenesis of DKD (Zeng et al., 2018a). It relies on
heterodimerization with other EGFR family members for
signaling. Akhtar et al. investigated the phosphorylation of
ErbB2 in diabetes. They found that high glucose exposure
enhanced activation of ErbB2, induced vascular dysfunction in
VSMCs (Akhtar et al., 2013). ErbB4 expression was increased in
the mild fibrotic kidneys, and decreased as fibrosis progressed
(Zeng et al., 2018a). ErbB4 suppression significantly attenuated
diabetic glomerular injury and albuminuria. Mesangial expansion

FIGURE 1 | Epidermal growth factor receptor and the pathogenesis of DKD. Under the circumstance of diabetes, glucose triggers activation of ADAMs through
several second messengers including ROS and protein kinase C. ADAM-mediated shedding of ligands induces phosphorylation of EGFR and subsequent activation of
cell several signaling pathways and transcription factors. As a result, multiple cellular and tissue responses are initiated and implicated in the pathogenesis of DKD
progression, including hemodynamic alteration, metabolic disturbance, inflammatory response and parenchymal cellular dysfunction. EGFR, epidermal growth
factor receptor; DKD, diabetic kidney disease; ADAM, a disintegrin and metalloprotease; ROS, reactive oxidative species.
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and sclerosis were reduced with ErbB4 inhibition, as well as STZ-
induced podocyte foot process effacement and podocyte loss.
TGF-β1 induced MCP-1 expression in podocytes was also
suppressed by ErbB4 inhibition (Lee et al., 2017). ErbB4 may
also play an important role in glucose homeostasis and
lipogenesis. ErbB4 deficiency-related obesity and adipose tissue
inflammation may contribute to the development of metabolic
syndrome (Zeng et al., 2018b). Some researchers suggest that
increased expression of ErbB4may actually reflect a compensatory
effort to prevent development of tubulointerstitial injury (Zeng
et al., 2018a).

Treatment of Diabetes and Diabetic Kidney
Disease by Targeting Epidermal Growth
Factor Receptor
In the past decades, much attention has been paid on application
of tyrosine kinase inhibitors to treat diabetes, including EGFR
inhibitors in animal models (Fountas et al., 2015; Malek and
Davis 2016).With EGFR inhibitors being extensively used to treat
non-small-cell lung cancer (NSCLC), their efficacy in treating

CKD and DKD have also been explored in animal models and
culture systems. Numerous animal studies and in vitro studies
have provided evidence that EGFR inhibition could attenuate or
prevent development and progression of DKD. This effect may
associate with improvement in β cell function and insulin
resistance (Li et al., 2018).

Although there are no clinical trials designed for treatment of
humanDKDby targeting EGFR, there are two case reports about the
application of EGFR inhibitor erlotinib in diabetes. In 2006, Costa
et al. observed that administration of erlotinib to a lung cancer
patient improved his type 2 diabetes (Costa and Huberman 2006).
When given chemotherapy with erlotinib 100mg daily, the patient
felt frequent episodes of hypoglycemia, and her fasting glucose level
was stabilized as well. After 8 months, her HbA1c had dropped to
6.5% from 8.2%. In another case report, a 73-year-old man with
history of metabolic syndrome, CKD and insulin-dependent type 2
diabetes received erlotinib 150mg daily after being with metastatic
NSCLC. Four weeks after starting erlotinib, the patient’s insulin
requirement began to decline from 90 units daily. After 10 weeks he
was off insulin completely. His HbA1c decreased from to 6.6% from
7.4% in six months. At the same time, an abrupt increase in his
serum creatinine slowed down (Brooks 2012).

The first EGFR tyrosine kinase inhibitor (TKI) was approved
for clinical use in 2003 and was mostly used in patients with non-
small-cell lung cancer (NSCLC) carrying EGFR-activating
mutations and in patients with breast and pancreatic cancers.
Nevertheless, EGFR-TKIs may cause adverse effects. Since EGFR
plays a role in epithelial maintenance, the most frequent and
severe side effects are dermatological reactions and diarrhea.
Other adverse effects include hepatotoxicity, stomatitis,
interstitial lung disease, ocular toxicity and hypomagnesaemia
(Shah and Shah 2019; Xu et al., 2019; Huang et al., 2020). Most of
the data come from patients with cancer. In addition, seven
patients were reported in the literature to develop anti-EGFR-
induced nephrotic/nephritic syndrome after 2–24 weeks of
therapy. All the cases of kidney disease associated with EGFR
inhibitor treatment were identified in patients with cancers and
shown by the variable and often prolonged time course between
drug exposure (2 weeks–6 months) and clinical recognition of
kidney injury (Izzedine and Perazella 2017). Since DKD treatment
needs a long-term application of drugs, it is anticipated that use of
EGFR-TKI inDKDpatients would have additional safety concerns.
As such, future clinical observations and/or clinical trials are
needed to determine the benefit and side effect of EGFR-TKI in
those population of patients.

CONCLUSION

Nearly one third of patients with diabetes develop DKD, which in
many cases progress to end-stage renal disease and the need for
dialysis or kidney transplantation. The underlying mechanisms
mediating DKD remain incompletely understood. In vitro and in
vivo studies have demonstrated that EGFR activation can initiate
multiple pathological processes leading to DKD, such as
hemodynamic and metabolic alterations, chronic inflammation,
and multicellular dysfunction (Figure 1 and Table 1). Given the

TABLE 1 | EGFR and the pathogenesis of DKD.

Factors Main findings References

Hemodynamic alternations Altered
vasoconstrictor and
vasodilator response

Benter et al. (2015);
Akhtar et al. (2019);
Palen and Matrougui
(2008); Kassan et al.
(2015)

Metabolic disturbance Generation of reactive
oxygen species (ROS)
and advanced
glycation end product
(AGEs)

Li et al. (2018); Wang
et al. (2020); Cai et al.
(2006); Portero-Otin
et al. (2002)

Inflammatory response Inflammatory cell
infiltration and
proinflammatory
cytokine expression

Li et al. (2018);
Morgado- Pascual et al.
(2015); Zhang et al.
(2014)

Parenchymal
cellular
dysfunction

Mesangial
cell

Mesangial cell
proliferation and
mesangial expansion

Wu et al. (2007); Wu
et al. (2009); Taniguchi
et al. (2013); Uttarwar
et al. (2011)

Endothelial
cell

Altered endothelium-
dependent relaxation

Wang et al. (2020);
Galan et al. (2012);
Belmadani et al. (2008)

Endothelial-to-
mesenchymal
transition

Liu et al. (2020)

Podocyte Podocyte
hypertrophy,
detachment and
apoptosis

Li et al. (2018);
Taniguchi et al (2013);
Chen et al. (2015)

Tubular
epithelial cell

Increased ER stress,
decreased
autophagy; cell
proliferation and
apoptosis

Li et al. (2018); Wassef
et al. (2004); Gilbert
et al. (2011)

EMT Rayego-Mateos et al.
(2013),
Morgado-Pascual et al.
(2015)
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importance of EGFR in mediating the pathogenesis of DKD,
much work has gone into studying whether EGR inhibition
could slow or stop the development of DKD. EGFR inhibitors
have been extensively used to treat various tumors, in
particular lung carcinoma. This suggests an interesting
possibility that EGFR inhibitors may be repurposed as a
treatment for DKD and CKD caused by other etiologies.
Nevertheless, beside their benefit effects, long-term use of
EGFR inhibitors may result in some adverse effects
including kidney problems. Most of side effects of EGFR
inhibitors in patients with tumor are tolerable. But it is
uncertain whether they are also applicable and tolerable in
patients with CKD, in particular DKD. Therefore, clinical
trials are needed to determine the efficacy and adverse
effects of EGFR inhibitors in patients with DKD.
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Effects of Sodium-Glucose
Co-transporter 2 Inhibitors on
Hemoglobin Levels: A Meta-analysis
of Randomized Controlled Trials
Wei Qu, Li Yao*, Xiaodan Liu, Tianhua Xu and Binyao Tian

Department of Nephrology, the First Hospital of China Medical University, Shenyang, China

Background: This study aimed to explore the effects of sodium-glucose co-transporter 2
(SGLT2) on hemoglobin levels in patients with type 2 diabetes mellitus (T2DM) and chronic
kidney disease.

Methods: PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the
China National Knowledge Infrastructure database, Wanfang Digital Periodicals Database
(WFDP) and the Chinese Biological and Medical database (CBM) were searched for
randomized trials of SGLT2 inhibitors in patients with T2DM and chronic kidney disease up
to July 25, 2020. A total of four studies that included 19,259 patients were identified.

Results: Compared to control patients, SGLT2 inhibitors were shown to increase
hemoglobin levels in patients with T2DM and chronic kidney disease (standard mean
difference � 0.70, 95% CI, 0.59–0.82, p < 0.0001).

Conclusion: SGLT2 inhibitors may bring additional benefits to patients with T2DM and
chronic kidney disease.

Keywords: meta-analysis, SGLT2 inhibitors, type 2 diabetes, chronic kidney disease, hemoglobin

INTRODUCTION

In the past ten years, the incidence of type 2 diabetes mellitus (T2DM) has been
increasing (International Diabetes Federation, 2017) which indicates a massive increase
in end-stage renal disease on a global scale. One of the most common complications of
chronic kidney disease is renal anemia (Sugahara et al., 2017). The presence of anemia
significantly increases the risk of micro- and macrovascular complications. Patients who are
not properly treated have significantly reduced quality of life and a poor prognosis (Sugahara
et al., 2017).

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a newly approved class of oral
hypoglycemic agents that increase the excretion of glucose in the urine by inhibiting the
reabsorption of urine glucose in the proximal tubules of the kidney, thereby reducing blood
glucose levels, weight and blood pressure (Polidori et al., 2014; Inagaki et al., 2015). In addition,
SGLT2 inhibitors also have a protective effect on the kidney (Xu et al., 2017) as evidence has
shown that after treatment with SGLT2, hemoglobin levels are increased (Maruyama et al.,
2019).

In this study, we aimed to ascertain the effects of SGLT2 inhibitors on the hemoglobin levels in
patients with T2DM and chronic kidney disease.
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METHODS

Data Sources and Search Strategies
The PubMed, EMBASE, the Cochrane Central Register of
Controlled Trials, the China National Knowledge
Infrastructure (CNKI) database, Wanfang Digital Periodicals
database (WFDP), the Chinese Biological and Medical
database (CBM) were searched. The following Medical Subject
Headings (MeSH) terms and free-text terms were applied:
“Sodium-Glucose Transporter 2 Inhibitors”, “Sodium Glucose
Transporter 2 Inhibitors”, “SGLT2 Inhibitors”, “SGLT-2
Inhibitors”, “SGLT 2 Inhibitors”, “Gliflozins”, “Renal
Insufficiency, Chronic”, “Chronic Renal Insufficiencies”, “Renal
Insufficiencies, Chronic”, “Chronic Renal Insufficiency”, “Kidney
Insufficiency, Chronic”, “Chronic Kidney Insufficiency”,
“Chronic Kidney Insufficiencies”, “Kidney Insufficiencies,
Chronic”, “Chronic Kidney Diseases”, “Chronic Kidney
Disease”, “Disease, Chronic Kidney”, “Diseases, Chronic
Kidney”, “Kidney Disease, Chronic”, “Kidney Diseases,
Chronic”, “Chronic Renal Diseases”, “Chronic Renal Disease”,
“Disease, Chronic Renal”, “Diseases, Chronic Renal”, “Renal
Disease, Chronic”, “Renal Diseases, Chronic”. All publications
up to July 25, 2020 were selected without the restriction of origins,
countries, languages or article types.

Selection Standards
Published articles that were included in the analysis were required
to meet the following criteria: 1) the eligible subjects were men
and women with T2DM and chronic kidney disease; 2)
interventions involved treatment with SGLT2 inhibitors alone
or with other hypoglycemic agents; 3) studies compared placebo
control or standard of care; 4) outcomes reported changes in
hemoglobin levels from baseline; 5) studies that were randomized
controlled trials (RCTs); 6) studies with follow-up times of

12 weeks or longer. Observational studies, non-randomized
trials and uncontrolled trials were excluded from the analysis.

Data Extraction and Quality Assessment
Two investigators extracted the following data independently
from eligible publications: first author, publication year, study
design, inclusion criteria, sample size, patient characteristics,
interventions (types and doses of SGLT2 inhibitors),
comparison (placebo control or standard care), follow-up
duration and outcomes (changes in hemoglobin levels from
baseline). The unit of hemoglobin levels was uniformly
converted into g/l. Discrepancies were resolved by the
discussion between two investigators. The Cochrane risk-of-
bias tool was adopted to assess randomization, masking of
treatment allocation, blinding, adherence and withdrawals for
each of the RCTs (Higgins et al., 2011).

Statistical Analysis
Data analysis was performed using Stata version 12.0 software.
The effect sizes on scores were presented as the standard mean
difference (SMD) and 95% confidence intervals (CIs). The Chi-
squared test based on Q-statistic and I2 statistics was used to
estimate the heterogeneity (I2 ≤ 25%, low heterogeneity; 25% < I2
< 50%, moderate heterogeneity; I2 ≥ 50%, high heterogeneity)
(Higgins et al., 2003). A fixed-effects model was used to pool the
results when heterogeneity was ≤50%, while a random-effects

FIGURE 1 | Eligibility of the studies for inclusion in the meta-analysis.

FIGURE 2 | Risk of bias in the included studies.
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model was used when heterogeneity was >50% (Mantel and
Haenszel, 1959; DerSimonian and Laird, 1986). A sensitivity
analysis was performed to reveal the influence of a single
study on the overall pooled estimates by deleting one study in
each turn. Publication bias was evaluated using the Begg’s and
Egger’s tests (Begg and Mazumdar, 1994; Egger et al., 1997). p
values (<0.05) were considered to represent statistically
significant publication bias.

RESULTS

Description of the Studies
A total of 579 references were retrieved and finally, four studies
(Yale et al., 2013; Yale et al., 2014;Wanner et al., 2018; Takashima
et al., 2018) met the inclusion criteria for the meta-analysis
(Figure 1). The sample size included 19,259 patients with
T2DM and chronic kidney disease in this meta-analysis
(Table 1 Characteristics of the included studies). Three of the
studies were multi-center, double-blind, placebo-controlled trials
(Yale et al., 2013; Yale et al., 2014; Wanner et al., 2018) in which
white people took up the majority of patients and one was a
single-center, open-label, parallel-group trial conducted in Japan
(Takashima et al., 2018). The types of SGLT2 inhibitors included
canagliflozin (100 mg/300 mg) and enpagliflozin (10 mg/25 mg).
Follow-up duration ranged from 12 to 164 weeks. All included

studies were evaluated in terms of the risk of bias using the
Cochrane risk of bias tool and the details are illustrated in
Figure 2 (Risk of bias in the included studies).

Risk of Bias
With the exception of one open-label study, the other three
studies on random sequence generation were fully considered.
The studies were all double-blind trials but there was no further
explanation on the details of allocation concealment. There were
no incomplete outcomes and selective reporting in the four
studies. Based on the characteristics, we believe that the
included studies had a low risk of bias.

Effects of Interventions on Hemoglobin
Levels
Four studies (Four publications) investigated a total of 19,259
participants (experimental group: 9,668, control group: 9,591)
and reported hemoglobin levels. There was high heterogeneity (I2
� 91.7%, p < 0.0001) and so the random-effects model was used.
The pooled effect size showed significant differences in
hemoglobin levels (SMD � 0.70, 95% CI, 0.59–0.82, p <
0.0001) in favor of the experimental groups compared to the
control groups (Figure 3 Meta-analysis and forest plot of
hemoglobin levels for experimental group compared with the
control group).

FIGURE 3 | Meta-analysis and forest plot of hemoglobin levels in the experimental and the control groups.
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FIGURE 4 | Meta-analysis and forest plot of Hematocrit for experimental group compared with control group.

FIGURE 5 | Meta-analysis and the forest plot data of hemoglobin levels in the subgroup analysis.
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TABLE 1 | Summary of the characteristics of the included studies.

First
author,
Year

RCT or
not

Inclusion
criteria

Age,
Years
(T/C)

SGLT2i
dosing

Comparison Period
of
treatment

Treatment group Control group

Sample
size
(n)

Hemoglobin
outcome
(M ±
SD)

Hematocrit
outcome
(M±SD)

Sample
size
(n)

Hemoglobin
outcome
(M ±
SD)

Hematocrit
Outcome
(M±SD)

Yale et al.
(2013)

Y T2DM; HbA1c ≥ 7.0, while
≤10.5%; eGFR ≥30, while
<50 ml/min/1.73 m2

69.5/68.2 Canagliflozin
100 mg QD

Placebo
control

26-weeks 69 5.3 ± 7.4 6 ± 7.6 62 −0.5 ± 8.1 −0.1 ± 9.1

T2DM; HbA1c ≥ 7.0, while
≤10.5%; eGFR ≥30, while
<50 ml/min/1.73 m2

67.9/68.2 Canagliflozin
300 mg QD

Placebo
control

26-weeks 76 3.1 ± 5.9 4.8 ± 6.9 62 −0.5 ± 8.1 −0.1 ± 9.1

Yale et al.
(2014)

Y T2DM; HbA1c ≥ 7.0, while
≤10.5%; eGFR ≥30, while
<50 ml/min/1.73 m2

69.5/68.2 Canagliflozin
100 mg QD

Placebo
control

52-weeks 62 6.5 ± 7.9 6.6 ± 8.5 57 −1.4 ± 7.8 −0.9 ± 8.4

T2DM; HbA1c ≥ 7.0, while
≤10.5%; eGFR ≥30, while
<50 ml/min/1.73 m2

67.9/68.2 Canagliflozin
300 mg QD

Placebo
control

52-weeks 70 4.2 ± 9.6 5.9 ± 10.9 57 −1.4 ± 7.8 −0.9 ± 8.4

Wanner et al.
(2017)

Y T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥30, while
<60 ml/min/1.73 m2

66.2/66.0 Empagliflozin
10 mg QD

Placebo
control

12-weeks 605 5.7 ± 7.4 —— 607 −0.5 ± 7.4 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥30, while
<60 ml/min/1.73 m2

Empagliflozin
25 mg QD

Placebo
control

12-weeks 607 6.3 ± 7.4 —— 607 −0.5 ± 7.4 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥30, while
<60 ml/min/1.73 m2

66.2/66.0 Empagliflozin
10 mg QD

Placebo
control

164- week 605 6.2 ± 14.8 —— 607 −2 ± 14.8 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥30, while
<60 ml/min/1.73 m2

Empagliflozin
25 mg QD

Placebo
control

164- week 607 5.4 ± 14.8 —— 607 −2 ± 14.8 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥60 ml/min/
1.73 m2

61.6/61.9 Empagliflozin
10 mg QD

Placebo
control

12- week 1740 6 ± 8.3 —— 1726 0 ± 8.3 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥60 ml/min/
1.73 m2

Empagliflozin
25 mg QD

Placebo
control

12- week 1733 7 ± 8.3 —— 1726 0 ± 8.3 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥60 ml/min/
1.73 m2

61.6/61.9 Empagliflozin
10 mg QD

Placebo
control

164- week 1740 5.3 ± 16.7 —— 1726 −2.3 ± 16.6 ——

T2DM; HbA1c ≥ 7.0, while
≤10%; eGFR ≥60 ml/min/
1.73 m2

Empagliflozin
25 mg QD

Placebo
control

164- week 1733 5.9 ± 16.7 —— 1726 −2.3 ± 16.6 ——

Takashima
et al. (2018)

Y T2DM; HbA1c <10.0%; eGFR
≥45, while <90 ml/min/1.73 m2

64.7/65.4 Canagliflozin
100 mg QD

Usual care 52-weeks 21 8 ± 6 —— 21 −2 ± 3 ——

T2DM, type 2 diabetesmellitus; eGFR, estimated glomerular filtration rate; RCT, randomized controlled trial; C, control group; T, treatment group; QD, once a day; SGLT2i, sodium glucose co-transporter 2 inhibitors; HbA1c, hemoglobin A1c;
M ± SD, mean ± standard deviation.
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Effects of Interventions on Hematocrit
We further analyzed the effect of SGLT2 inhibitors on
hematocrit. Two publications investigated 515 participants
(experimental group: 277, control group: 238) reported
Hematocrit. There was no heterogeneity (I2 � 0, p � 0.767);
thus, the fixed-effects model was used. The pooled effect size
showed a significant difference in Hematocrit (SMD � 0.72, 95%
CI 0.55–0.90, p < 0.05) in favor of experimental group, compared
with the control group (Figure 4Meta-analysis and forest plot of
Hematocrit for experimental group compared with control
group).

Subgroup Analysis
To explore the sources of heterogeneity, we conducted a subgroup
analysis of the type and dosage of SGLT2 inhibitors and eGFR.
According to the type and dosage of the drug, treatments were
divided into four subgroups (canagliflozin 100 mg, canagliflozin
300 mg, empagliflozin 10 mg and empagliflozin 25 mg).
Subgroups were divided as to eGFR based on 30 ≤ eGFR
<60 ml/min/1.73 m2 and eGFR ≥60 ml/min/1.73 m2. The
results are summarized in Figure 5. All of the results in the
subgroups were statistically significant compared to those in the
control group, however, heterogeneity was not significantly
reduced following subgroup analysis.

Sensitivity Analysis
A sensitivity analysis was conducted by sequentially removing
one study to observe the influence of each of the included studies
on the overall pooled SMD. No single study was found to
significantly influence the overall pooled SMD indicating that
the results were stable.

Publication Bias
In assessing publication bias, a funnel plot for the four studies
analyzed was constructed. The shape of the funnel plot was
symmetrical indicating the absence of publication bias. No
significant bias was observed using the Begg’s rank correlation
test (Z � 1.4, p � 0.161 (>0.05)) and Egger’s linear regression test
(t � 0.78, p � 0.451 (>0.05)).

DISCUSSION

This article conducted a meta-analysis of four randomized
controlled studies to explore the effects of SGLT2 inhibitors
on hemoglobin levels in diabetic patients with chronic kidney
disease. The results showed that the hemoglobin levels of
patients after treatment with SGLT2 inhibitors increased from
baseline and the differences were statistically significant. The
hematocrit levels of patients after treatment with SGLT2
inhibitors increased from baseline and the differences were
statistically significant. Whether it was different type and
dosage of the drug (canagliflozin 100 mg, canagliflozin
300 mg, empagliflozin 10 mg and empagliflozin 25 mg), or
different eGFR (30 ≤ eGFR <60 ml/min/1.73 m2 and eGFR
≥60 ml/min/1.73 m2), the differences were statistically
significant.

Comparison With Other Published Studies
Most of the observations from previous reports in the literature
and meta-analysis demonstrate the effects of SGLT2 on blood
sugar levels, cardiovascular events and renal outcomes. There are
very few studies that have analyzed the effects of SGLT2
inhibitors on hemoglobin levels or have performed meta-
analyses of these effects across multiple RCTs.

Mechanisms
SGLT2 inhibitors protect patients with T2DM and chronic
kidney disease through several different mechanisms. First, in
diabetic patients, upregulation of SGLT2 increases the
reabsorption of sodium and glucose by the proximal tubules,
SGLT2 inhibitors lower blood sugar by blocking the glucose
reabsorption of SGLT2 in the proximal renal tubules. Second,
SGLT2 inhibitors also have a certain effect on renal
hemodynamics. SGLT2 inhibitors block the reabsorption of
glucose and sodium in the proximal tubules and increase the
transport of sodium to the macula densa, thereby restoring
impaired tubuloglomerular feedback. Thus, SGLT2 inhibitors
can alleviate glomerular filtration in the early stage of diabetic
nephropathy, reduce albuminuria, and delay the decline of renal
function for a long time (Cherney et al., 2014; Škrtić and Cherney,
2015). Besides, the protective effects of SGLT2 inhibitors are also
manifested in the reduction of blood pressure, weight loss,
osmotic diuresis, reduction of inflammation, fibrosis, and
proliferation of proximal renal tubular cells (Panchapakesan
et al., 2013).

The mechanisms by which SGLT2 inhibitors improve
hemoglobin levels in patients with diabetes and chronic kidney
disease are not fully understood. It has been reported that SGLT2
inhibitors have diuretic-like effects and reduce plasma volume
(Lambers Heerspink et al., 2013). It has also been reported that in
diabetic patients with normal renal function, SGLT2 inhibitors
can reduce the load caused by excessive glucose reabsorption in
the proximal tubules, and can improve renal tubular interstitial
hypoxia and restore fibroblasts to produce erythropoietin (EPO)
causing hemoglobin levels to increase (Lambers Heerspink et al.,
2013). In diabetic patients with chronic kidney disease, SGLT2
inhibitors can also increase hemoglobin levels by promoting the
production of EPO. Studies have also shown that SGLT2
inhibitors can upregulate AMPK and SIRT1 (Swe et al., 2019;
Packer 2020), thereby inhibiting HIF-1α and activating HIF-2α
(Treins et al., 2006; Dioum et al., 2009; Lim et al., 2010). HIF-2α is
the isoform responsible for the synthesis of EPO (Eckardt and
Kurtz, 2005). The increase in hematocrit may be due to the
decrease in plasma volume caused by SGLT2 inhibitor-related
diuresis and natriuresis, or it may be due to increased
erythropoiesis after the treatment of SGLT2 inhibitor. The
increase in hematocrit during treatment with SGLT2 inhibitors
may indicate the improvement of hypoxia and oxidative stress in
the tubular interstitial area of the renal cortex, as well as the
recovery of EPO production by interstitial fibroblast-like cells.
SGLT2 inhibitors also inhibit hepcidin, which may lead to
increased iron bioavailability and utilization and increased red
blood cell production (Ghanim et al., 2020). These effects on
erythropoiesis suggest that SGLT2 inhibitors may reduce the

Frontiers in Pharmacology | www.frontiersin.org March 2021 | Volume 12 | Article 6308206

Qu et al. A Meta-Analysis of SGLT2i

136

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


incidence of anemia. The post-hoc analysis of the CREDENCE
trial by Megumi Oshima et al. found that the risk of anemia or the
risk of starting anemia treatment in the anemia group of patients
with type 2 diabetes and chronic kidney disease was significantly
lower than that of the placebo group (Oshima et al., 2020). In the
exploratory analysis of EMPA-REG test data, the increase in
hematocrit during empagliflozin treatment was closely related to
beneficial cardiovascular outcomes (Inzucchi et al., 2018). Studies
have shown that increased expression of HIF-2α in
cardiomyocytes can protect mitochondrial integrity and
prevent experimental ischemic damage (Bautista et al., 2009;
Mastrocola et al., 2016). For the same blood flow, a higher
hematocrit is expected to deliver more oxygen to the tissue
(Testani et al., 2010). It has been suggested that the increase
in hematocrit may contribute to the cardioprotective effect of
these drugs by increasing the oxygen-carrying capacity
(Ferrannini et al., 2016; Lytvyn et al., 2017).

Limitations
Several limitations of this study should be noted. Firstly, a total of
four articles were included in the analysis which is a small sample
size, however, the total number of patients included was nor large.
Secondly, the majority of the subjects were Caucasian and so the
applicability of the data to other races including Asians requires
further investigation. Thirdly, although we concluded that
hemoglobin levels increased after treatment with SGLT2
inhibitors, we did not observe differences in the effects of
different types of SGLT2 inhibitors on hemoglobin levels, the
relationship between the increase in hemoglobin level and the

duration of medication. Fourthly, among the populations
included in the study, some had eGFR ≥ 60 ml/min/1.73 m2.
This meant that a small number of patients with normal renal
function may have been included. In addition, the population
included in the study did not have obvious renal anemia before
SGLT2 inhibitors treatment. Therefore, for patients with
significant renal anemia, the benefits of SGLT2 inhibitors need
to be further investigated.

In summary, patients with T2DM and chronic kidney
disease have increased hemoglobin and hematocrit levels
after treatment with SGLT2 inhibitors. SGLT2 inhibitors
may bring additional benefits to patients with T2DM and
chronic kidney disease.
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Improving the Dysregulation of FoxO1
Activity Is a Potential Therapy for
Alleviating Diabetic Kidney Disease
Yan Wang† and Weichun He*

Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China

A substantial proportion of patients with diabetes will develop kidney disease. Diabetic
kidney disease (DKD) is one of the most serious complications in diabetic patients and
the leading cause of end-stage kidney disease worldwide. Although some mechanisms
have been revealed to contribute to the understanding of the pathogenesis of DKD and
some drugs currently in use have been shown to be beneficial, prevention and
management of DKD remain tricky and challenging. FoxO1 transcriptional factor is
a crucial regulator of cellular homeostasis and posttranslational modification is a major
mechanism to alter FoxO1 activity. There is increasing evidence that FoxO1 is involved
in the regulation of various cellular processes such as stress resistance, autophagy, cell
cycle arrest, and apoptosis, thereby playing an important role in the pathogenesis of
DKD. Improving the dysregulation of FoxO1 activity by natural compounds, synthetic
drugs, or manipulation of gene expression may attenuate renal cell injury and kidney
lesion in the cells cultured under a high-glucose environment and in diabetic animal
models. The available data imply that FoxO1 may be a potential clinical target for the
prevention and treatment of DKD.

Keywords: forkhead box O1, diabetic kidney disease, posttranslational modification, sirtuin-1, oxidative stress

INTRODUCTION

Diabetic kidney disease (DKD), one of the common complications related to both types of
diabetes, occurs in approximately 30–40% of diabetic patients and is the main cause of end-stage
renal disease worldwide (Gnudi et al., 2016; Bonner et al., 2020; Chen et al., 2020). Renal
enlargement and increased glomerular filtration rate are the initial changes of kidneys in
diabetes. The earliest symptom is often albuminuria, which can develop into nephrotic-range
proteinuria with morphological abnormalities such as glomerular hypertrophy, glomerular
basement membrane (GBM) thickening, and extracellular matrix (ECM) expansion. Progressive
glomerulosclerosis from nodular (Kimmelstiel-Wilson lesion) to global and tubulointerstitial
fibrosis contributes to progressive loss of renal function in advanced DKD (Fioretto and Mauer,
2010; Tervaert et al., 2010; Badal and Danesh, 2014). The pathogenesis of DKD is multifactorial.
The major pathophysiologic mechanisms contributing to glomerulopathy and tubulointerstitial
lesions and the related morphological alterations are exhibited in Figure 1. Intensive
management of patients with DKD including control of blood glucose and blood pressure,
blockade of the renin-angiotensin-aldosterone system (RAAS), and inhibition of the sodium-
glucose cotransporter 2 (SGLT2) may slow the progression of the disease. However, owing to the
intricate pathogenesis of DKD, there is still no effective treatment to prevent the onset and to
arrest the progression of the disease (Stanton, 2014; Thomas et al., 2015; Kidney Disease:
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Improving Global Outcomes Diabetes Work, 2020). Therefore,
exploring the underlying mechanisms of renal impairment in
the pathophysiological state of diabetes will be helpful to
identify possible intervention targets and develop promising
therapeutic strategies for DKD.

Forkhead box O (FoxO) transcription factors are essential
modulators of cellular homeostasis. FoxO proteins respond to
various external stimuli, including nutrient deprivation, growth
factor signaling, oxidative stress (OS), and genotoxic stress. These
input signals influence FoxOs intracellular localization, DNA
binding, and interactions with other cofactors via a series of
posttranslational modifications (PTM) containing
phosphorylation, acetylation, ubiquitination, and methylation.
Through integrating these modifications, FoxOs regulate cell-
type-specific gene expression programs to respond to stress,
maintain metabolic homeostasis, and balance redox (Tothova
et al., 2007; Link and Fernandez-Marcos, 2017; Murtaza et al.,
2017; Brown and Webb, 2018). There is growing evidence that,
via the downstream target genes that are involved in the

regulation of a variety of cellular processes such as energy
metabolism, stress resistance, apoptosis, autophagy, and cell
cycle arrest, FoxOs play a crucial role in the molecular
mechanisms of DKD development, among which FoxO1 is the
most extensively studied. This review summarizes our current
perspectives on the regulation of FoxOs activity and the
physiological functions of FoxO1, highlighting evidence to
support the notion that dysregulated FoxO1 activity
contributes toward renal parenchymal cell damage in the
pathogenesis of DKD.

The Regulation of FoxO Activity
There are four different FoxO transcription factors in mammals
including FoxO1, FoxO3a, FoxO4, and FoxO6, which belong to
the family of forkhead proteins. Each FoxO protein consists of
four regions: a DNA-binding domain at N-terminal, a
transactivation domain at C-terminal, a nuclear export
sequence, and a nuclear localization sequence. All FoxO
proteins share a common highly conserved DNA-binding

FIGURE 1 | Major events and morphological changes related to the pathogenesis of glomerulopathy and tubulointerstitial lesion in diabetes. GBM, glomerular
basement membrane; EMT, epithelial-mesenchymal cell transformation; ROS, reactive oxygen species; ECM, extracellular matrix.
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domain, while other domains are enriched in sites for PTM and
protein-protein interactions and are specific for the unique
members (Tothova et al., 2007; Arden, 2008; Link and
Fernandez-Marcos, 2017). In cells receiving survival or
growth factor signal, the activity of FoxO protein is
downregulated, primarily by being sequestered in the
cytoplasm of the cell (Brunet et al., 1999; Brunet et al., 2002).
The decrease in the level of FoxO protein may result from
increased proteasomal degradation (Aoki et al., 2004).
Upregulation of FoxO activity is by increased mRNA stability
and expression as well as chromosomal rearrangement causing
fusion of FoxO transactivation domain with DNA-binding
domain of other transcription factors (Fritz and Radziwill,
2011).

The activity of FoxO protein is largely regulated by PTM that
has been recognized as a crucial mechanism for the alteration of
FoxO activity. Phosphorylation of FoxO by serine/threonine
kinase Akt or serum- and glucocorticoid-induced kinase
(SGK) exposes the nuclear export sequence and increases
FoxO translocation to the cytoplasm, and the cytoplasmic
sequestration or ubiquitination and subsequent proteasomal
degradation inhibit FoxO activity (Brunet et al., 1999; Zhao
et al., 2004; Huang et al., 2005; Huang and Tindall, 2011;
Tzivion et al., 2011; Saline et al., 2019). Conversely, specific
phosphorylation of FoxO by kinase mammalian sterile 20-like
kinase 1 (MST1) or c-Jun N-terminal kinase (JNK) regulates
FoxO activity in the opposite direction (Lehtinen et al., 2006;
Densham et al., 2009; Brown and Webb, 2018). Reversible
acetylation of FoxO regulates its activity as a second
modulation layer. The acetylation of FoxO by cAMP-response
element-binding protein (CREB)-binding protein (CBP), p300 or
p300/CBP-associated factors (PCAF), and the subsequent
deacetylation by class I and II histone deacetylases including
the nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylase sirtuin-1 (Sirt1) alter the transcriptional activity of
FoxO (Imai et al., 2000; Perrot and Rechler, 2005; Haigis and
Sinclair, 2010). Acetylated FoxO is retained in the nucleus for
engaging Sirt1, while deacetylation of FoxO by Sirt1 promotes
FoxO transcriptional activity and accelerates FoxO degradation
(Kitamura et al., 2005). Acetylation reduces the DNA-binding
capacity of FoxO protein and enhances Akt-dependent
phosphorylation of FoxO, suggesting the interplay between
different PTM in regulating FoxO activity. Phosphorylation-
dependent nuclear exclusion and deacetylation-dependent
nuclear retention synergistically regulate the activity of FoxO
protein, and each PTMmay affect another (Matsuzaki et al., 2005;
Qiang et al., 2010).

The Physiological Function of FoxO1
FoxO binds via the DNA-binding domain to the same
consensus binding site (5’-TTGTTTAC-3’) within the
promoter of its target gene. FoxO-DNA affinity differs
between response element and PTM (Brent et al., 2008).
The combination of FoxO with different sets of genes in
different tissues results in a diversity of FoxO-mediated
biological effects. The physiological functions of different

FoxO proteins are not identical (Link and Fernandez-
Marcos, 2017; Murtaza et al., 2017; Brown and Webb, 2018).

FoxO1, highly expressed in insulin-responsive tissues such
as liver, adipose tissue, skeletal muscle, and pancreas,
coordinates transcriptional cascades to modulate glucose
metabolism and is therefore considered as a major governor
of insulin signaling and glucose homeostasis. As a final effector
of the insulin signaling pathway, FoxO1 responds in general to
decreased nutrients by inducing gluconeogenesis in the liver,
inhibiting adipocyte and myocyte differentiation, or shifting
fuel utilization in muscle from glucose to lipids (Dong et al.,
2008; Kousteni, 2012). In the absence of growth factor or
insulin signaling or with stress stimuli, FoxO1 resides in the
nucleus and is active as a transcription factor that governs
apoptosis, autophagy, cell cycle arrest, stress resistance, and
immune response. The program of gene expression
transcriptionally regulated by FoxO1 ordinarily protects
cells from the life-threatening consequences of nutrient,
oxidative, or genotoxic stress (Dong et al., 2008; Murtaza
et al., 2017).

Dysregulation of FoxO1 Activity Is Involved
in the Pathogenesis of Diabetic Kidney
Disease
Several studies suggest that genetic variation in the FoxO1 gene
is a predisposing factor for type 2 diabetes (T2D) or DKD in
humans, revealing that FoxO1 may be involved in the
initiation and development of DKD in patients with T2D,
which provides new insight into the etiology of DKD (Müssig
et al., 2009; Gong et al., 2017; Zhao et al., 2017).

Studies for investigating the protective effects of certain oral
hypoglycemic drugs or natural compounds on the kidneys in
diabetic animal models demonstrate that FoxO1 is an
important target. Xu et al. reported that puerarin, a natural
isoflavone from Pueraria lobata (Wild.), upregulated the
expression of Sirt1, peroxisome proliferator-activated
receptor c coactivator 1α (PGC-1α), and FoxO1 in renal
cortex from type 1 diabetic (T1D) mice. Puerarin reduced
reactive oxygen species (ROS) and increased the activity of
manganese superoxide dismutase (Mn-SOD) and catalase
(CAT), accompanied by attenuated kidney tissue damage.
These findings suggest that puerarin exerts renal protection
effect on DKD through the Sirt1-PGC-1α/FoxO1 pathway (Xu
et al., 2016). In a T2D rat model, liraglutide, a glucagon-like
peptide-1 agonist, markedly reduced renal damage including
the production of ECM proteins. Liraglutide inhibited the
phosphorylation of FoxO1 and increased Mn-SOD
expression in the diabetic kidneys. It seems that liraglutide
exerts a protective effect on early DKD by a FoxO1-mediated
upregulation of renal Mn-SOD (Chen et al., 2018). Hussein
et al. reported that treatment of DKD rats with the Sirt1
agonist resveratrol increased superoxide dismutase (SOD)
activity and reduced malondialdehyde (MDA), collagen
(Col) IV, and fibronectin (FN) expression by increasing
FoxO1 activity (Hussein and Mahfouz, 2016).
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In addition to these in vivo studies, many studies have
investigated the effect of the change in FoxO1 activity on renal
parenchymal cell injury in diabetic conditions by in vitro and in
vivo experiments, as shown below by the different cell types
studied.

Podocyte
Podocyte is one of the components of the glomerular filtration
barrier (GFB) and plays an essential role in maintaining the
integrity of GFB. As a terminal differentiated atypical
epithelial cell, podocyte cannot regenerate after suffering
from injury and apoptosis (Quaggin and Kreidberg, 2008).
Under a diabetic environment, the podocyte often undergoes
hypertrophy, epithelial-mesenchymal cell transformation
(EMT), apoptosis, and detachment, leading to the
impairment and destruction of GFB, which becomes a
crucial constituent in the development of DKD (Figure 1)
(Fioretto andMauer, 2010; Tervaert et al., 2010; Oh et al., 2012;
Dai et al., 2017).

The glomerular insulin signaling is critical for GFB integrity
and normal kidney function (Welsh et al., 2010), and podocyte is
a unique insulin-responsive cell in the GFB (Coward et al., 2005).
The insulin-dependent phosphorylation of Akt was impaired in
the podocytes from diabetic mice at the onset of albuminuria.
Dysregulation of Akt phosphorylation and subsequent FoxO1
phosphorylation in podocytes was associated with its
susceptibility to apoptosis, suggesting that the inability of
podocyte to respond to insulin partially accounts for the
decreased podocyte number seen in early DKD (Tejada et al.,
2008; Katsoulieris et al., 2016).

Several studies investigated the effect of FoxO1 on protecting
podocytes from injury in diabetes. The transcriptional activity of
FoxO1 decreased in the kidney from type 1 diabetic rodents
induced by streptozotocin (STZ) and the podocytes cultured
under high-glucose (HG) condition (Guo et al., 2015; Du
et al., 2016; Li et al., 2016; Li et al., 2017). Guo et al. found
that overexpressing FoxO1 by injection of recombinant lentivirus
into the renal cortex decreased albuminuria and serum urea
nitrogen and creatinine levels, preserved podocalyxin and
nephrin expression, and ameliorated pathological changes in
the glomerulus of diabetic kidneys, suggesting the protective
effect of FoxO1 on podocyte injury (Guo et al., 2015). Li et al.
reported that upregulation of FoxO1 activity reversed HG-
dependent downregulation of PTEN-induced putative kinase 1
(PINK1), an important functional protein in mitophagy, which
suggests that, through downstream PINK1/Parkin pathway,
FoxO1 limits the production of ROS under HG conditions
and maintains mitochondrial morphology and stability, thus
playing a crucial role in the protection against mitochondrial
dysfunction and podocyte apoptosis (Li et al., 2016; Li et al.,
2017). Du et al. found that constitutive FoxO1 activation
suppressed HG-induced activation of the transforming growth
factor (TGF)-β1/Smad3/integrin-linked kinase (ILK) pathway
and thus partially reversed podocyte EMT (Du et al., 2016).

A number of studies have revealed that the renoprotective
effect of certain drugs used to treat diabetes or some protein
molecules is FoxO1-mediated. For example, FoxO1 was

identified as a target of microRNA (miR)-21, and the
upregulation of miR-21 in podocytes cultured under HG
conditions inhibited the expression of FoxO1, thus
attenuating autophagy and promoting apoptosis (Wang
et al., 2019a). While Atrasentan, an endothelin-1 receptor
antagonist (Egido et al., 2017), could enhance FoxO1
expression by downregulating miR-21 and thereby attenuate
HG-induced podocyte injury and hamper the progression of
DKD (Wang et al., 2019a). In another study, progranulin
(PGRN), a secreted glycoprotein, attenuated mitochondrial
damage and dysfunction in the podocytes treated with HG.
Since PGRN induced the expression of Sirt1 and reduced the
acetylation levels of PGC-1α and FoxO1 in HG-treated
podocytes, it suggests that PGRN modulates mitochondrial
biogenesis and mitophagy through Sirt1-PGC-1α/FoxO1
signaling and thus protects against podocyte injury in DKD
(Zhou et al., 2019).

Mesangial Cell
Mesangial cell (MC) plays an important role in maintaining the
structural integrity of glomerular capillary and mesangial matrix
homeostasis. MC also can regulate filtration surface area and
phagocytose apoptotic cells or immune-complexes. MC
hypertrophy and mesangial matrix expansion are among the
earliest pathological features of DKD. MCs are primary targets
of diabetes and they respond differently to a diabetic
environment, where some of them acquire an activated
phenotype undergoing hypertrophy and proliferation with
excessive production of matrix proteins, growth factors,
chemokines, and cytokines, whereas others undergo apoptosis
(Figure 1) (Abboud, 2012).

Das et al. found that HG induced Akt-dependent
phosphorylation of FoxO1, and dominant-negative FoxO1
increased the phosphorylation of Akt. CAT blocks HG-
stimulated Akt phosphorylation to inhibit the inactivation of
FoxO1 and PRAS40, leading to the inhibition of mTORC1
activity. In contrast, HG-inactivated FoxO1 decreased CAT
expression, leading to an increase in ROS production,
mTORC1 activation, MC hypertrophy, and FN and PAI-1
expression. These findings suggest the existence of a positive
feedback loop involving sustained Akt activation, FoxO1
inactivation, decreased CAT expression, and increased ROS,
resulting in mTORC1 activation, MC hypertrophy, and matrix
excessive production (Das et al., 2014).

Wu et al. reported that HG-induced FoxO1 inhibition and
relevant PGC-1α downregulation were accompanied by
mitochondrial dysfunction and increased ROS generation,
whereas constitutive FoxO1 activation increased PGC-1α
expression and partially reversed these changes in MCs. PGC-
1α was identified as a direct transcriptional target of FoxO1.
Overexpression of FoxO1 in diabetic rat kidneys significantly
increased the expression of PGC-1α, mitochondrial-related
transcription factor (Nrf1), and mitochondrial fusion protein
(Mfn2) and decreased MDA production and proteinuria.
These findings suggest that the activation of FoxO1/PGC-1α
attenuated HG-induced mitochondrial dysfunction and MC
injury (Wu et al., 2015).
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Guo et al. found that HG-elevated p-Akt level and subsequent
alleviation of FoxO1 activity were accompanied by the
downregulation of CAT and SOD2 mRNA expression,
activation of TGF-β/Smad signaling, and increases in the
protein expression of FN and Col I in MCs. Conversely,
overexpression of nucleus-localized FoxO1 upregulated the
expression of antioxidative enzymes, accompanied by
inhibition of TGF-β/Smad3 signaling and a decrease in the
expression of ECM proteins. This study suggests that the
antioxidative effect mediated by FoxO1 may play a crucial role
in attenuating TGF-β-induced ECM production in MCs under an
HG environment (Guo et al., 2016).

Fiorentino et al. found that tissue inhibitors ofmetalloproteinase3
(TIMP3), an inhibitor of ADAM metallopeptidase domain 17
(ADAM17), were reduced in the kidneys from type 1 diabetic
mice. In the kidneys of diabetic Timp3-deficient mice, the
expression of FoxO1 and FoxO1-targeted autophagy-related
genes, including Atg5, Atg8, LC3, and Beclin1, was decreased,
and the expression of signal transducers and activator of
transcription 1 (STAT1), a repressor of FoxO1 transcription, was
increased. Renal biopsy of patients with DKD showed similar data.
Knockdown of TIMP3 in the MCs cultured under an HG
environment led to the downregulation of FoxO1 and FoxO1-
targeted autophagy-related genes and an increase in the LC3II/I
ratio. This study suggests that the reduction of autophagy, especially
in MCs, caused by TIMP3 deficiency may deteriorate DKD
(Fiorentino et al., 2013).

Liu et al. reported that overexpression of FoxO1 in MCs
caused upregulation of p27 and downregulation of cyclin D1
and CDK4, which promoted cell cycle arrest at the G0/G1 phase
and attenuated proliferation induced by HG. Degradation of
FoxO1 caused a decrease in p27 and stimulated MCs
proliferation. These findings suggest that FoxO1 is involved in
regulating MCs proliferation induced by HG via FoxO1/p27
signaling (Liu et al., 2014).

In a recent study, metformin effectively attenuated glycolipid
metabolic disorders as well as renal damage in a T2D rat model.
Mechanistically, metformin relieved OS, enhanced autophagy,
and suppressed cell proliferation in cultured MCs stimulated by
HG through AMPK/Sirt1-FoxO1 signaling pathway (Ren et al.,
2020).

Glomerular Endothelial Cell
The glomerular endothelial cell (GEC), which is highly
fenestrated and covered by a rich glycocalyx, participates in
the sieving properties of GFB and in the maintenance of
podocyte structure. Both a reduction in the thickness of the
glycocalyx and a reduction in the fenestration of endothelium
are early characteristics of DKD. GEC injury can occur via
hemodynamic stimuli that cause reduced nitric oxide (NO)
bioavailability via suppression of endothelial nitric oxide
synthase (eNOS), or it can result from growth factor driven
altered metabolism. As GEC is the first cell encountered by
any circulating stimulus relevant to diabetes, it not only is a
direct target of diabetes but also serves as cell sending paracrine
signals to adjacent MC and podocyte (Figure 1) (Dane et al.,
2013; Jourde-Chiche et al., 2019).

Carota et al. reported that the expression of vascular
endothelial protein tyrosine phosphatase (VE-PTP), which can
dephosphorylate tyrosine kinase with Ig and EGF homology
domains 2 (TIE2), was robustly upregulated in the GECs in a
diabetic mouse model. The reduction of TIE2 signaling due to
increased VE-PTP expression under diabetic conditions resulted
in decreased eNOS phosphorylation, as well as increased
FoxO1 levels and its downstream profibrotic and
proinflammatory targets (Carota et al., 2019). In this
study, FoxO1 appears to play an opposite role in GECs
than in other renal parenchymal cells and reduced
transcriptional activity of FoxO1 and subsequent
downstream target genes expression may ameliorate GECs
injury in diabetic rodents. The mechanism of FoxO1 activity
regulation in GEC and the effect of FoxO1 on GEC injury
under diabetic conditions need further studies.

Proximal Tubular Epithelial Cell
Although glomerulosclerosis is a major feature of DKD, the severity
of tubulointerstitial lesions ultimately determines the extent of renal
impairment. Albuminuria, a hallmark of DKD, can activate
proximal tubular epithelial cell (PTEC) to evoke tubulointerstitial
inflammation (Tang et al., 2003). In addition to albumin, several
diabetes-related substrates such as HG, advanced glycation end-
products, and angiotensin II may activate a number of signaling
pathways including nuclear factor kappa B, extracellular signal-
regulated kinase 1/2, p38 mitogen-activated protein kinases,
protein kinase C, STAT1, and ROS generation, leading to the
accumulation of numerous growth factors, cytokines, chemokines,
and adhesion molecules in the interstitium to orchestrate further
inflammation and fibrosis (Figure 1) (Donadelli et al., 2003; Tang
et al., 2003; Tang and Lai, 2012).

Thioredoxin-interacting protein (TXNIP) is a negative regulator
of thioredoxin (TRX). TXNIP-TRX has been shown to be an
important contributor to the enzyme system involved in ROS
production and renal OS (Li et al., 2009; Kibbe et al., 2013). Ji
et al. reported that TXNIP and TXN were identified as the direct
FoxO1 transcriptional targets, and kidney-specific overexpression of
FoxO1 attenuated renal tubular injury by restraining the increase in
TXNIP and the decrease in TRX levels in diabetic mice. The study
suggests that FoxO1 protects against HG-induced renal PTECs
injury through regulating TXNIP-TRX-mediated ROS generation
(Ji et al., 2019).

The activation of STAT1, the phosphorylated form of STAT1
(p-STAT1), has been shown to be involved in tubular EMT and
tubulointerstitial fibrosis (TIF) in animal models including
diabetes (Nakajima et al., 2004; Nightingale et al., 2004).
Huang et al. reported that kidney-specific overexpression of
FoxO1 significantly downregulated p-STAT1, accompanied
by reduced renal damage, apoptosis, and TIF in diabetic mice.
Knockdown of FoxO1 in PTECs enhanced the expression of
p-STAT1, resulting in EMT and apoptosis, whereas
overexpression of FoxO1 markedly inhibited EMT and
apoptosis in PTECs under an HG environment. These
findings suggest that, partially through STAT1 signaling,
FoxO1 plays a protective role against PTECs injury in
DKD (Huang et al., 2019).
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The effects of Sirt1 on suppressing apoptosis induced by kidney
cell injuries, alleviating renal inflammation, improving mitochondrial
function, and repressing OS indicate that it is involved in the
development of DKD (Dong et al., 2014; Wang et al., 2019b).
Zhou et al. reported that HG induced PTECs injury by attenuating
the deacetylase activity of Sirt1 (Zhou et al., 2015). Further study
showed that metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), which belongs to the long noncoding RNA (lncRNA),
was upregulated in the kidney from diabetic mice and in the PTECs
cultured with HG, and the expression of Sirt1 was decreased. The
interaction between MALAT1 and FoxO1 was promoted by HG. By
combination with the promoter of Sirt1, FoxO1 induced Sirt1
transcription, whereas MALAT1 repressed Sirt1 expression by
targeting FoxO1. These findings suggest that the interaction
between lncRNA MALAT1 and FoxO1 represses the transcription

of Sirt1 in PTECs treated with HG and thus promotes HG-induced
PTECs injury (Zhou et al., 2018).

DISCUSSION

Metabolic disturbance, mitochondrial dysfunction, OS,
inflammation, impaired autophagy, and apoptosis may
contribute to diabetic renal cell injury. Data from animal models
and cell experiments suggest that the dysregulation of FoxO1 activity
may be associated with these cellular processes, leading to kidney
damage in the diabetic environment, thereby being involved in the
pathogenesis of DKD. Mechanisms underlying renal cell
damage associated with dysregulation of FoxO1 activity in
HG conditions are summarized in Figure 2.

FIGURE 2 |Mechanisms underlying renal cell damage associated with dysregulation of FoxO1 activity in high-glucose conditions. PINK1, PTEN-induced putative
kinase 1; TGF-β1, transforming growth factor-beta1; ILK, integrin-linked kinase; EMT, epithelial-mesenchymal cell transformation; TIMP3, tissue inhibitors of
metalloproteinase3; CAT, catalase; SOD, superoxide dismutase; MDA, malondialdehyde; ROS, reactive oxygen species; ECM, extracellular matrix; TXNIP, thioredoxin-
interacting protein; TRX, thioredoxin; p-STAT1, phosphorylated STAT1.
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PTM is an important mechanism for regulating FoxO activity,
and the abnormality in PTM in diabetic conditions is the
common reason for FoxO1 dysfunction. Kidney is an
important target organ of insulin action (Lay and Coward,
2018). The disruption of normal insulin signaling owing to
hyperinsulinemia, insulin resistance, or absolute insulin
deficiency associated with diabetes causes dysregulation of

FoxO1 phosphorylation and subcellular localization, leading to
improper FoxO1 activity and its target genes transcription
(Katsoulieris et al., 2016). Furthermore, the inactivation of
FoxO1 owing to Akt-dependent phosphorylation and the
phosphorylation of Akt owing to FoxO1 inactivation are
mutually reinforcing, which results in a positive feedback
between activation of Akt and inactivation of FoxO1 in
diabetic conditions (Das et al., 2014). On the other hand,
the reduced deacetylase activity of Sirt1 by HG inhibits
transcriptional activity of FoxO1 (Wang et al., 2019b),
while the decreased transcriptional activity of FoxO1
causes the reduced Sirt1 transcription and expression,
which seems also to be positive feedback in diabetic
conditions (Zhou et al., 2018) (Figure 3).

Based on the majority of the available evidence,
dysregulation of FoxO1 activity may reduce the
antioxidant effect to respond to OS, leading to apoptosis,
inflammation, and ECM accumulation in diabetic kidneys.
Given that FoxO1 inactivation induced by high glucose may
be enhanced unceasingly even if hyperglycemia is
controlled, it is conceivable that the self-reinforcement
of the FoxO1 activity dysregulation could be one of the
reasons for the progression of kidney damage in patients
with DKD who have well levels of blood glucose. Therefore,
natural compounds or synthetic drugs that can modulate the
activity of FoxO1 could be a novel therapeutic option for
alleviating DKD. Potential FoxO1 modulators, their cellular

targets, and their effects on cell physiology are summarized in
Table 1.
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TABLE 1 | Potential FoxO1 modulators and their effects in DKD.

Modulators Cellular targets Effects on FoxO1-mediated
pathway and cell

physiology

Experimental model of DKD References

Puerarin ↑Sirt1 expression ↑PGC-1α/FoxO1 deacetylation ↓ROS ↑Mn-SOD and CAT
activity

T1D mice Xu et al. (2016)

Liraglutide ↓FoxO1
phosphorylation

↑FoxO1 activity ↑Mn - SOD expression ↓ECM production T2D rats Chen et al. (2018)

Resveratrol ↑Sirt1 activity ↑FoxO1 deacetylation ↑SOD activity ↓MDA expression ↓Col
IV and FN expression

T2D rats Hussein and Mahfouz (2016)

Atrasentan ↓miR-21 expression ↑FoxO1 expression Podocytes cultured in HG, T2D (KK-
Ay) mice

Wang et al. (2019a)

Progranulin ↑Sirt1 expression ↑PGC-1α/FoxO1 deacetylation ↓Mitophagy ↑Mitochondrial
biogenesis

Podocytes cultured in HG, T1D
mice

Zhou et al. (2019)

Metformin ↑AMPK/Sirt1 ↑FoxO1 activity ↓ROS ↑Autophagy ↓Cell proliferation Mesangial cells cultured in HG, T2D
rats

Ren et al. (2020)

T1D, type 1 diabetes; T2D, type 2 diabetes; Mn-SOD, manganese superoxide dismutase; CAT, catalase; SOD, superoxide dismutase; MDA, malondialdehyde; ROS, reactive oxygen
species; Col, collagen; FN, fibronectin.
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