

Towards Autonomic Management of Communications
Networks

Brendan Jennings, Sven van der Meer, Sasitharan Balasubramaniam,
Dmitri Botvich, Mícheál Ó Foghlú, William Donnelly
Waterford Institute of Technology, Ireland

John Strassner
Motorola Labs, USA

Abstract
As communications networks become increasingly dynamic, heterogeneous, less reliable and
larger in scale, it becomes difficult, if not impossible, to effectively manage these networks
using traditional approaches relying on human monitoring and intervention to ensure they
operate within desired bounds. Researchers and practitioners are pursuing the vision of
autonomic network management, which we view as the ability for network entities to self-
govern their behavior within the constraints of the business goals that the network as a whole
seeks to achieve. However, applying autonomic principles to network management is
challenging for a number of reasons, including: (1) a means is needed to enable business rules to
determine the set of resources and/or services to be provided; (2) contextual changes in the
network must be sensed and interpreted, since new management policies may be required when
context changes; (3) as context changes, it may be necessary to adapt the management control
loops used to ensure that system functionality adapts to meet changing user needs, business
goals, and environmental conditions; and (4) we need a means to verify modeled data and add
new data dynamically, so that the system can learn and reason about itself and its environment.
This paper provides an introduction to the FOCALE autonomic network management
architecture, which is designed to address these challenges.

1 Introduction
The telecommunications industry has changed dramatically in recent years. Explosive growth of
the Internet, the proliferation of mobile technologies, and fixed-mobile convergence has led to a
progressively more complex, interconnected networking infrastructure. The ever-increasing
difficulty in managing multi-vendor environments and the services they provide has altered
forever the dynamics of the industry, the expectations of its customers and the business models
with which it operates. In hardware, the impact of Moore’s Law has had a profound effect
across all sectors of the industry, encouraging equipment manufacturers, network operators, and
service providers to continually strive to rapidly deploy the latest technology in order to gain
competitive advantage. We believe that a downside of this rapid technology deployment is that
current communications service offerings are inflexible in nature: they are rigidly defined;
closely coupled to specific network technology; exhibit static functionality; and are often prone
to security breaches. Critically, they are largely manually deployed and managed, requiring
highly labor-intensive support structures, with consequent inflexibility and significant time to
market constraints.

To address this problem, academic researchers and industrial implementers have been moving
away from traditional network management approaches based on centralized control of a
(relatively) small number of managed entities. Observing that networks are becoming more
dynamic, more heterogeneous, less reliable and larger in scale, they are instead actively
investigating the application of autonomic principles, aiming to simplify network management
processes by automating and distributing the decision making processes involved in optimizing
network operation. The goal is to allow expensive human attention focus more on business logic
and less on low-level device configuration processes.

In this paper we introduce our approach to autonomic network management. We contend that
the essence of autonomic management is the ability for a system to self-govern its behavior, but
only within the constraints of the (human-specified) goals that the system as a whole seeks to
achieve. We propose the use of information and ontological modeling to capture knowledge
relating to network capabilities, environmental constraints and business goals/policies, together
with reasoning and learning techniques to enhance and evolve this knowledge. Knowledge
embedded within system models is used by policy-based network management systems [1]
incorporating translation/code generation and policy enforcement processes that automatically
configure network elements in response to changing business goals and/or environmental
context. This realizes an autonomic control loop in which, as depicted in Figure 1, the system
senses changes in itself and its environment, analyses this information to ensure that business
goals and objectives are being met; expedites changes should these goals and objectives be
threatened, and, closing the loop, observes the result.

!no$led(e)usiness Policies

Policy Processing

Context Con3i(uration

Deployment

Business

System

Administrator

Device

Instance

Policy
Continuum

Conflict
Elaboration

Conflict
Detection

Conflict
Resolution

Analysis

Knowledge Generation / Analysis

Foundation Observe Compare Act

Ontologies Learning & Reasoning

Information Processing

Patterns

Contracts

Processes

Resources

Services

Policies

Communications NetworksCommunications Networks

Behavior

Business Goals/Policies

Figure 1. Conceptual Autonomic Control Loop for Network Management

We believe the information and ontological modeling based approach will deliver considerable
improvements over existing manually configured network management systems, since it will
support context-driven reconfiguration of networks with minimal human intervention at all but
the high-level business view. Nevertheless, in order to deliver full autonomic network
management capabilities, we believe it is also necessary to introduce decentralized processes
and algorithms into the network infrastructure to maintain optimal or near-optimal behavior in
terms of global stability, improved performance and adaptability, robustness and security. As
described by Babaoglu et al. [2], many of these processes and algorithms can be profitably
modeled on various biological processes found in the natural world. However, to ensure that
they act in accordance with business goals, we argue that such processes and algorithms should
themselves be modeled, so that their operation can be automatically configured via appropriate
management policies.

This paper is structured as follows: in Section 2 we briefly summarize current research in the
areas of autonomic computing and autonomic networking, contrasting our approach with other
ongoing efforts. Section 3 introduces our conceptual model of an autonomic network
management system, highlighting the main components that are needed to deliver effective
management. Section 4 describes our work on embodying these concepts in FOCALE, our
architecture for autonomic network management, whilst Section 5 discusses an initial
prototypical realization of FOCALE. Finally, Section 6 summarizes the paper and discusses
future work and open issues relating to the development and standardization of our work.

2 Autonomic Computing and Autonomic Networking
For many years, researchers have been aware that the structural and operational complexity of
communications networks, and indeed distributed computing systems in general, has been
increasing to the point where it is negatively impacting the economic viability of introducing
new products and services to the market. In recent years the paradigms that have created the
most interest as means of addressing this problem are that of autonomic computing [3], and
later, autonomic networking [4]. Put simply, the autonomic paradigm seeks to reduce the need
for human intervention in the management process through use of one or more control loops that
continuously re-configure the system to keep its behavior within desired bounds.

The term autonomic computing was coined by IBM as an analogy of the autonomic nervous
system, which maintains homeostasis (essentially maintaining equilibrium of various biological
processes) in our bodies without the need for conscious direction. Autonomic computing
attempts to manage the operation of individual pieces of IT infrastructure (such as servers in a
data center), through introduction of an autonomic manager that implements an autonomic
control loop in which the managed element and the environment in which it operates is
monitored, collected data is analyzed, and actions are taken if the managed element is deemed to
be in an undesired (sub-optimal) state [3]. The autonomic control loop is made up of Monitor,
Analyze, Plan, and Execute components, all of which rely on a common knowledge repository.
The Monitor component gathers data, filters, and collates it as required, and then presents it to
the Analyze component, which seeks to understand the data and determine if the managed
element is acting as desired. The Plan component takes these data and determines if action
should be taken to reconfigure the managed element. The Execute component translates the
planned actions into a set of configuration commands that can be applied to the managed
element.
The autonomic computing vision can be summarized as that of a “self-managing” IT
infrastructure in which equipment will have software deployed on it that enables it to self-
configure, self-optimize, self-heal and self-protect. That is, it will exhibit what has come to be
known as “self-*” behavior. Clearly this is a powerful vision, albeit one that is acknowledged by

Kephart [5] as requiring significant advances in the state-of-the-art over a number of years. It
was therefore natural that the networking community would extend this vision from autonomic
management of individual elements to autonomic networking – the collective (self-)
management of networks of communicating computing elements. Of course, some of the
network management work of the 1980s and 1990s could be retrospectively termed “autonomic
networking”, as some of the self-* issues were addressed, but in practice the term is a 21st
Century one. Autonomic networking is currently a burgeoning research area, which seeks to
integrate results from disciplines ranging from telecommunications network management to
artificial intelligence, and from biology to sociology. For a good summary of the state-of-the-art
in this fast-moving area, the reader is referred to Dobson et al. [6].

Much of the focus of research in autonomic network management is on the development of
highly distributed algorithms that seek to optimize one or more aspects of network operation
and/or performance, in essence aiming to provide various self-management capabilities. In this
context, many researches are investigating the potential use of biologically-inspired algorithms
and processes. As noted in [6], complex biological systems “tend to exploit decentralized and
uncoupled coordination models, relying primarily on environment-mediated local information
transfer.” Examples include homeostasis (the tendency towards stable equilibrium between
interdependent elements), chemotaxis (movement of a cell in a particular direction
corresponding to a chemical gradient), and stigmergy (indirect communications between
organisms through modification of their local environment), all of which have been used as
inspiration for algorithm development – for descriptions of specific examples see [2].
Whilst work on development of decentralized self-management algorithms is crucial, and noting
that significant advances have been made, we believe that deployment of these algorithms,
whilst necessary, will not be sufficient. Equally important will be the flexible specification and
enforcement of the goals these algorithms collectively seek to achieve – goals designed to
ensure that the network successfully delivers services to users. Policy-based network
management [1], is widely seen as an appropriate management paradigm to facilitate higher-
level, human-specified cognitive decision making; therefore, many researchers are examining
how policy-based management can be leveraged to help realize the autonomic vision (a good
example is the work of Agrawal et al. [7]). However, to our knowledge little work has been
done to date on integrating distributed self-management algorithms with policy-based
management – for example by allowing policies to re-parameterize such algorithms to change
their behavior to adapt to changing business goals. We believe this step is essential to provide a
solution that balances the need for explicit control over network operation with the benefits of
highly efficient and robust self-management algorithms and processes. Given this, a key goal of
our work is to develop an architecture for autonomic network management that can profitably
integrate the “top-down” explicit control model of traditional network management with the
“bottom-up” emergent behavior associated with biologically-inspired, distributed algorithms.
This requires numerous advances in the state of the art, chiefly with regard to:

− Management of heterogeneous functionality
One of the problems in applying autonomic principles to networks is that networks are made
up of many different devices that have different programming models and provide different
management data describing the same, or similar, concepts. This makes it imperative to
harness information models and ontologies to abstract away vendor-specific functionality, in
order to facilitate a standard way of reconfiguring that functionality. Achieving this will
allow legacy resources with no inherent autonomic capabilities be managed by autonomic
systems.

− Adaptability

One of the promises of autonomic operation is to be able to adapt the functionality of the
system in response to changes in user needs, business rules, and/or environmental
conditions. This requires a more flexible governance approach than has been provided to
date. In particular, the system needs to be able to sense context changes, and use policies
specific to the new context to effect the required re-configuration of network devices.

− Application of learning and reasoning techniques to support intelligent interaction
Current examples of network device configuration and management rely on vendor-specific
snapshots of static data. For example, statistics can be gathered and analyzed to determine if
a given device interface is experiencing congestion. However, existing management data
will not tell the user why congestion is incurring. This information must be inferred using
these and other data, and retained for future reference. Hence, there is a need to incorporate
sophisticated, state-of-the-art learning and reasoning algorithms into autonomic network
management systems.

3 Conceptual Representation of an Autonomic Network
Management System

Figure 2 presents a conceptual representation of an autonomic network management system
incorporating an autonomic control loop enabled by the presence of one or more system models
and ontologies that abstract the static structure, functionality, and dynamic behavior of the
underlying network infrastructure, management functionality and offered services. These
models and ontologies are continuously updated by the Model-based Information Processing
component in response to the changing operational context of the network. This component

DEN-ng Models and Ontologies

Ontological Comparison

Learning and Reasoning

Normalized
Data Adjustment

Vendor-
specific

Data

Vendor-
specific
Configuration

Maintenance

Control
ControlControl

Control A77lication
o3 Intelli(ence

Policy Context
InformationNormalized

Information

Su77ort Su77ort

Su77ort

Business Goals

Model-based
Policy

Processing

(Policy
Continuum)

Compare
Actual State

to
Desired State

Analyze
Data
and

EventsModel-based
Information
Processing

(Semantic Fusion
and Normalization)

Autonomic Manager

Policy ManagerContext Manager User Interface

Managed Resource(s)

Figure 2. Conceptual Representation of an Autonomic Network Management System

gathers raw context information from managed resources (e.g., SNMP alarms) and using various
analysis techniques, infers the impact, or potential impact, of this information (e.g., a network
failure means that customer X is not being delivered the QoS level indicated in their SLA for
service Y). It then passes normalized data relating to current operational context to the Event
Analysis component, which employs ontological engineering, in conjunction with learning and
reasoning techniques, to analyze whether the system’s actual state corresponds to the desired
state (as indicated by currently deployed set of policies).
If there is a mismatch between the detected system state and the desired state, two courses of
action are possible. Firstly, if a there is a deployed policy specifying what should be done in this
particular scenario that policy will be triggered via the Policy Processing Component, which
utilizes knowledge embodied within systems models to automatically generate and apply
updated network device configurations, which should bring the network back to the desired
state. Alternatively, if no such policy exists (as may happen occasionally, since it will never be
possible to model all possible operational scenarios for a complex network) information models
and ontologies will be analyzed to determine what actions are required to bring the network
back to the desired state. This will be codified in a new policy, which will be passed to the
Policy Processing Component, where, as described above, it will be triggered to appropriately
reconfigure the network.

The control loop described above is controlled by an Autonomic Manager, which influences the
deployment of the policies that effect decision making within the loop. The Autonomic Manager
receives up-to-date business level policies from the Policy Manager, which in turn manages
policies that are created or modified by humans via a User Interface (e.g., business analysts may
create policies indicating which services a new customer may access), or which are modified by
the system itself based on information supplied by the Context Manager (e.g., in cases of
network failures, policies relating to certain customers could be modified to deny them access to
services in order to give preferential access to other, more important, customers).

The entire system, but particularly the Model-based Information Processing component, is
reliant on the presence of information and data models that embody the knowledge necessary to
represent managed resources (routers and other network devices) and their control using
autonomic principles. In our work we use the DEN-ng information model (outlined in [8]),
which we are currently enhancing with finite state machines to model behavior, and augmenting
with ontological models that embody semantic information that cannot be represented in the
Unified Modeling Language (UML). DEN-ng is a comprehensive information model for
telecommunications, capturing everything from business concepts (e.g., products, service level
agreements, and customers) down to low-level device functionality (e.g., packet marking,
forwarding, and queuing). It is designed so that it can be readily augmented with vendor specific
information and data models; it thereby provides a highly flexible and extensible modeling
solution. Probably the best known application of DEN-ng is in the TM Forum standards, where
parts of it have been used as the basis of the Shared Information and Data (SID) modeling effort.
The combination of a set of enhanced DEN-ng information and data models, combined with
domain-specific ontologies for augmenting those models with required semantics allows
information gathered from the network to be analyzed and used to ensure the models accurately
reflect the current operational status. Following the examples above, when devices in the
network fail resulting in localized lack of connectivity or decreases in available bandwidth, the
myriad alarms raised can be collectively analyzed to ascertain which services, and therefore
which customers, are being affected. Forwarding knowledge expressed in these terms facilitates
decisions regarding which customers should be given preferential access to the network during
the period in which the network is congested and therefore incapable of supporting all of its

customers. Moreover, the DEN-ng models and associated ontologies provide a knowledge base
that can be used by machine learning and reasoning algorithms to both analyze collected data
and automatically generate new knowledge that can then be leveraged to autonomically manage
the underlying network infrastructure. In particular, this allows data gathered from the network
to be analyzed and used to ensure the models accurately reflect its current operational status.
Another significant benefit of DEN-ng is its comprehensive policy model, which facilitates the
specification of policy representation languages that are tightly coupled to the information
model of the network which policies authored in that language will govern (as discussed below
this characteristic is particularly useful for policy analysis). Furthermore, we can apply the
DEN-ng policy continuum [8], in which policies at different levels of abstraction are organized
in stratified business, system, network, device and device instance views – mirroring the
different constituencies of people that will work together to define and deploy the policies that
provide a product or service. Implementation of the policy continuum enables these
constituencies, who understand different concepts and use different terminologies, manipulate
sets of policy representations at a view appropriate to them, and to have those view-specific
representations mapped to equivalent representations at views appropriate for manipulation by
other constituencies.
The task of automating the refinement of business level policies (specified in terms of entities
such as products, services and customers) down through the continuum, into corresponding
device instance policies (specified in terms of entities such as packet marking rules or firewall
configuration rules) is hugely challenging, since information needs to be added (and removed)
as the policies become more specific in nature. Our approach is to harness the expressive power
of ontologies to detail the nature of the relationships between concepts at different continuum
levels. Policy refinement processes can access this knowledge from the ontologies, and applying
ontological engineering techniques propose candidate refinements, which in certain cases will
need to be ratified by humans; thus, we envisage policy refinement as a (semi-)automated
process, where the level of human intervention decreases over time as the system learns from
the outcome of previous refinements.

The Model-based Policy Processing component must also incorporate policy conflict analysis
algorithms that: (1) elaborate newly defined/modified policies (e.g. by adding conditions
relating to system constraints not evident to the policy author) so that conflicts are easier to
detect; (2) detect sets of policies that will, or could potentially, conflict given certain network
context; and (3) resolve conflicts by modifying or removing polices based on separate resolution
policies, or by referring back to the appropriate policy author for a decision. Policy conflict
analysis needs to be done at each level of the continuum, with high level policies only being
“deployed” if they, and all the policies associated with them at lower levels of the continuum,
are detected as being conflict-free. Policy conflict analysis is widely research and is
acknowledged as an extremely difficult challenge; however, we believe significant advances can
be made by harnessing the semantic information available in DEN-ng and associated ontologies
to facilitate more powerful conflict analysis algorithms then those currently available – our
initial work on this approach is described in Section 5, and in more detail in [9].
Finally, we note that the model-centered approach outlined above primarily provides for explicit
control of network behavior and, as such, can be viewed as an evolution of traditional network
management approaches. However, this approach is limited by the capabilities (and
configurability) of the network devices and the ability to maintain up-to-date information and
ontological models of very complex and highly dynamic network topologies. True autonomic
network management will, we believe, additionally require the deployment of processes and
algorithms within network devices themselves. These would act in a highly distributed manner,

serving to optimize network behavior with respect to stability, performance, robustness and
security – in effect providing the kind of self-management functionality discussed in Section 2.
We argue that these processes and algorithms need to be incorporated into the overall model-
centered management process so that their operation can be re-parameterized to modify their
behavior to satisfy high-level policies. This provides the necessary integration point between the
(top-down) model-centered management approach and the (bottom-up) self-management
approach in which highly distributed algorithms applying local rules give rise to desired
emergent global behavior.

4 The FOCALE Autonomic Network Management Architecture
In this section we describe how the concepts for autonomic management described in Section 3
are realized in the context of a concrete architectural model for distributed autonomic network
management systems. The architecture, named FOCALE (Foundation – Observation –
Comparison – Action – Learn – rEason) is based on the observation that business objectives,
user needs and environmental context all change dynamically. Therefore a single, statically
defined, management control loop is insufficient – we need the ability to adapt the behavior of
the control loop so that it can effectively manage the network to react appropriately to observed
or hypothesized changes. FOCALE implements two control loops: a maintenance control loop
is used when no anomalies are found (i.e., when either the current state is equal to the actual
state, or when the state of the managed element is moving towards its intended goal); and an
adjustment control loop is used when one or more policy reconfiguration actions must be
performed, and/or new policies must be codified and deployed.

Of course, it is unreasonable to assume that a single entity will be able to maintain all the
information required to realize the FOCALE control loops for large scale networks containing
large numbers of heterogeneous (in terms of available functionality, vendor-specific
programming model and specific configuration) devices. Therefore, FOCALE must be a
distributed architecture, to the degree that even individual network devices may incorporate
autonomic management software implementing the maintenance and adjustment control loops.
To this end FOCALE assumes that any managed resource (which can be as simple as a device

Autonomic Management Element

Autonomic
Manager

Model-based
Translation Layer

Managed Resource(s)

Vendor-
specific Data

Vendor-specific
Commands

Vendor-
neutral Data

Vendor-neutral
Commands

System
Policies

System
Ontology

Object
Models

DEN-ng
Information

Model

Policy Analyzer
& PDP

Event
Manager

State
Manager

Action
Manager

<earner=easoner

Figure 3: FOCALE Autonomic Management Element Functional Architecture

interface, or as complex as an entire system or network) can be associated with an Autonomic
Management Element (AME), by interfacing the functionality of the Managed Resource to the
functionality of an Autonomic Manager (AM) using a Model-Based Translation Layer (MBTL),
as shown in figure 3. As figure 4 shows, AMEs can be modularized to first form a uniform
Autonomic Management Domain (AMD), and then to an Autonomic Management Environment;
with each level containing Policy, Security, Discovery, Context and Analysis services that serve
to harmonise the operation of the AMEs/AMDs.

The Autonomic Management Architecture contains two main functional components: the
Autonomic Manager (AM) and the Model-based Translation Layer (MBTL). The AM is
independent of the vendor-specific functionality/data of the underlying managed resource(s),
which facilitates easier communication between AMEs for coordination of management
decision making. Each AM realizes the autonomic management functionality described in
section 3 via an Event Manager, a State Manager, an Action Manager, a Reasoner, a Learner,
and a Policy Analyzer / Policy Decision Point (PDP). All these sub-components can
communicate with each other and have access to the DEN-ng information model, an object
model reflecting the current state of the AME’s managed resource(s), the system ontology, and
the set of deployed policies governing the AME’s managed resource(s). When the AM receives
context information via the MBTL, the Policy Analyzer/PDP ascertains if the conditions of any
deployed policies are satisfied; if they are the corresponding actions are applied via the MBTL.
If the Policy Analyzer / PDP does not recognize the context it contacts the Event and State
Managers, which use the models/ontologies to ascertain if the system is in a desired state. If it is
not, the State Manager employs the Reasoner to identify actions that will lead the system back
towards its desired state. Once identified, the Action Manager coordinates the enforcement of
these actions by the Policy Analyzer / PDP. Subsequently, the Learner monitors the
effectiveness of actions identified in this manner; if successful these actions are codified as one
or more policies that are then added to the set of system policies. Of course AMs also has the
ability to communicate with other AMs to coordinate activities such as analysis of global
network state, or introduction of new policies.

Autonomic Management Environment

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Domain

Policy
Service

Event Service

Security
Service

Discovery
Service

Context
Service

Analysis
Service

Autonomic Management Element

Autonomic
Manager

Model-based
Translation Layer

Managed Resource(s)

Vendor-
specific Data

Vendor-specific
Commands

Vendor-
neutral Data

Vendor-neutral
Commands

System
Policies

System
Ontology

Object
Models

DEN-ng
Information

Model

Policy Analyzer
& PDP

Event
Manager

State
Manager

Action
Manager

<earner=easoner

Autonomic Management Element

Autonomic
Manager

Model-based
Translation Layer

Managed Resource(s)

Vendor-
specific Data

Vendor-specific
Commands

Vendor-
neutral Data

Vendor-neutral
Commands

System
Policies

System
Ontology

Object
Models

DEN-ng
Information

Model

Policy Analyzer
& PDP

Event
Manager

State
Manager

Action
Manager

<earner=easoner

Autonomic Management Element

Autonomic
Manager

Model-based
Translation Layer

Managed Resource(s)

Vendor-
specific Data

Vendor-specific
Commands

Vendor-
neutral Data

Vendor-neutral
Commands

System
Policies

System
Ontology

Object
Models

DEN-ng
Information

Model

Policy Analyzer
& PDP

Event
Manager

State
Manager

Action
Manager

<earner=easoner

Autonomic Management Element

Autonomic
Manager

Model-based
Translation Layer

Managed Resource(s)

Vendor-
specific Data

Vendor-specific
Commands

Vendor-
neutral Data

Vendor-neutral
Commands

System
Policies

System
Ontology

Object
Models

DEN-ng
Information

Model

Policy Analyzer
& PDP

Event
Manager

State
Manager

Action
Manager

<earner=easoner

Figure 4: FOCALE Autonomic Management Environment Functional Architecture.

Unlike the AM, the MBTL must have in-depth knowledge of the managed resource(s) to allow
it translate normalized vendor-specific data gathered from the managed resource(s) into DEN-ng
compliant vendor neutral data (context information) to pass to the Policy Analyzer / PDP, and
vice versa for configuration commands. As alluded to in section 3, DEN-ng can be readily
extended with vendor specific information and data models (e.g., relating to new releases of CLI
command sets for a family of network devices). Assuming that the DEN-ng information model
is extended in this manner for all the managed resource(s), and furthermore, that the system
ontology is extended to incorporate semantic information detailing the meaning of various
vendor specific data/commands, the MBTL can employ ontological engineering techniques,
including semantic similarity matching (for a description see [10]), to map between DEN-ng
vendor neutral representations and vendor specific representations.

The basis of the MBTL approach is depicted in figure 5, which shows a typical network
scenario in which different devices having different data models are managed using different
tools. This creates cognitive dissonance between data in the two data models – since there is no
common vocabulary with established meanings defining the data and relationships, it is
impossible to directly compare data from different sources, which in turn means that it is
impossible to see if those data are related to each other. By using an ontology to augment the
facts represented in these data models, each fact can be mapped into a common vocabulary,
which enables each fact to be augmented with appropriate semantics – enabling cognitive
similarity between these different facts to be established. Conceptually, the association between
a set of nodes in a model and the set of nodes in an ontology creates a new set of associations,
bridging the gap between how knowledge is represented between these different approaches.

5 Prototype Implementation
We now provide a brief overview of our ongoing work in building a prototype realization of the
FOCALE architecture; for a fuller description of this prototype, the reader is referred to [9].
Figure 6 depicts our current implementation of a single FOCALE AME, which targets aspects
of traffic conditioning in a simulated IP-based network of an ISP, over which customers are
offered a small number of communications services. It should be noted that the simulated
network is very loosely coupled to the AME implementation – in the next phase of development
we plan to replace the simulation with real routers that will be configured by CLI commands
generated by the AME and which will provide context information to the AME via SNMP. As it

Cognitive Dissonance
? ? ? ?

Cognitive Equivalence

Semantically Equivalent
Homogeneously Managed

Heterogeneous Data Models

Distributed Ontology

SiSiSiSiSiSi

SiSi
SiS i

SiSiSiSiSiSi

SiSi

SiSi

F

C

A

B

ED

GH

V W

Y Z

X

U

T

Figure 5: Use of Ontologies to Identify Cognitive Equivalence across Heterogeneous Data Models.

stands our OPNET™ based simulation is configured to emit information relating to network
events, and read and apply new router configurations generated by the AME.
Core to the prototype are the object model and system ontology, which provide synchronized
models representing the current state of the simulated network, the customers and services it
supports, and the policies deployed in it. To initially set up these models we have created a
configuration Domain Specific Language (DSL) and editor that enables the creation of
information model instances (i.e., object models) to represent the structure of the managed
system. We use the textual DSL framework called xtext, created by open Architecture Ware
(available through Eclipse’s Generative Modelling Technologies (GMT) initiative). The
configuration DSL is generated from the model elements in the DEN-ng model that are marked
as relevant for describing the structure of our particular managed network – this offline process
is depicted at the top of Figure 6. The same technique used to create the configuration DSL and
its editor were used to generate an event-condition-action (ECA) policy DSL that is based on the
policy representation entities in the DEN-ng model. The ECA policy DSL has the following
semantics: on the occurrence of a set of events, if the condition clause evaluates to true, then
execute the action clause. Separation of the configuration and policy DSLs and their editors
allows the policy editor to be used during system operation to create, modify, or withdraw
policies.
A formal representation of the information model subsets used for generating the DSLs
(configuration and policy) is required for automated reasoning in policy analysis – the OWL-
based system ontology provides this ability. We use IBM’s EMF Ontology Definition
Metamodel (EODM) to produce an OWL representation of the identified subset of the DEN-ng
information model. The resulting baseline ontology can be viewed within Eclipse with the
IODT plug-in or saved and opened with the Protégé OWL editing tool. Our baseline system
ontology has been edited to embody semantic information useful for analysis processes such as
policy conflict detection.
The Policy Analyzer uses the object model and system ontology models to build a more
complete understanding of the characteristics and behavior of policies and how they affect
managed resources. To help provide this understanding we translate policies into a format
suitable for deployment on a rule inference engine based Policy Decision Point. We use JBoss

config
DSL

initiates

semantic
checking

Policy Analyzer
Syntactic/Semantic Checking

Policy
Refinement

Policy Conflict
AnalysisOPNET info

(XML)

Parser

OPNET info
(XML)

Policy
Editor

Parser
(xText)

creates

sanitised XMI XMI

policy DSL

DEN-ng
(Rational)

DEN-ng lite
(Poseidon)

MDR2ECore
(Eclipse Plugin)

Information Model
(ECore)

Config
Editor

Parser
(xText)

System Ontology
(Proteg!)

Object Model
(ECore)

Policy
Decision

Point
(JBoss Rules)

Network Simulation
(OPNET)

policies

new/modified
policies

XCheck

creates

configurations

ev
en

ts

modifies

Figure 7: FOCALE Autonomic Management Element Prototype

Rules (based on the Drools rule engine), which uses a tailored object-oriented form of the Rete
algorithm called Rete-OO for evaluating the rules. The Rete algorithm efficiently stores rules in
memory in the form of a network so that it can take advantage of rule patterns to reduce the
number of conditions that need to be evaluated. Policies are particularly amenable to Rete-based
rule engines, as sets of deployed policies typically share event, condition, and even action parts.
As depicted in Figure 6, these components cooperate to realize FOCALE maintenance and
adjustment control loops. For the maintenance loop a parser detects changes in the operational
context of the network simulation (e.g. a bandwidth utilization threshold on a link being
exceeded) and updates the object model accordingly. This object model change triggers
evaluation of policies deployed in the JBoss rules engine; if the conditions of one or more
policies are satisfied the appropriate actions are invoked on the simulated network via
reconfiguration of simulation parameters (e.g., a low priority customer is denied access to a
service, thereby reducing link bandwidth utilization to below the threshold value). For the
adjustment loop human users can use the policy DSL editor to create/modify/withdraw policies,
via an iterative process in which policies “proposed” by the user are analyzed by the Policy
Analyzer for syntactic and semantic correctness, and potential for conflict with other deployed
policies. This occurs at each step of their refinement down the policy continuum. If, at any
stage, the problem cannot be resolved by the Policy Analyzer the user is informed of the
problem and prompted to re-edit the policy. Once policy analysis is complete the
created/modified policy is converted to JBoss format and deployed on the JBoss PDP. In this
manner the operation of the maintenance control loop is adjusted.

6 Summary and Outlook
This paper has advocated the principle of self-governance as the basis for realizing
communications networks that operate and are managed autonomically. We introduced the
FOCALE autonomic network management architecture, which has a number of distinctive
characteristics: (1) emphasis on the use of business goals (codified as policy rules) to determine
how resources in the network should be collectively utilised to best deliver services to users; (2)
context-aware policy management processes to adapt the management control loops used to
ensure that system functionality adapts to meet changing user needs, business goals, and
environmental conditions; and (3) a novel combination of information and data modeling,
augmented by ontological data, to enable the system to learn and reason about itself and its
environment. We emphasized the difficulties imposed by the inherently heterogeneous and
interconnected nature of networked communications systems, and described how FOCALE’s
architectural components are designed to overcome these difficulties.
The grand vision of autonomic computing and autonomic networking is that of a completely
self-managing infrastructure that can itself access, or generate, the knowledge it needs to allow
it optimally react to changing operational context. Although this vision is very attractive, it is
unlikely to ever be fully realized, especially in the context of the hugely complex and dynamic
global communications infrastructure. In developing FOCALE we take a more pragmatic
approach: rather then seeking to entirely eliminate human intervention from the management
process, we seek to minimize it and to focus it more on business concerns then on low-level
device configuration. In particular, we acknowledge that human intervention will sometimes be
required for the refinement of policies down the policy continuum, and also to resolve policy
conflicts never before encountered by the system. Of course, the degree to which this will
happen is highly dependent on the completeness, correctness and timeliness of the knowledge
embodied within the system’s information, data and object models, and associated ontologies.
We believe that DEN-ng is the most exhaustive and well-structured information model currently
available, and as such provides a solid basis for realization of FOCALE.

In the paper we also briefly described our prototype realization of FOCALE. We are currently
using this prototype to examine the tradeoffs between management sophistication and derived
benefits as a function of network size, number of users, mix of traffic, and other factors. In
parallel, we are working on replacing the simulated target environment with a small number of
real routers – this process should provide valuable insights in to the practical implications of
using information models and ontologies to automate the generation of CLI commands.
Subsequently, we plan to explore integration of bio-inspired algorithms into FOCALE, and to
demonstrate their added value via implementation in our prototype. Once sufficient
experimental results are obtained, we plan on submitting our results to the Autonomic
Communications Forum standards body.

Acknowledgements
We wish to acknowledge the valuable insights provided by Nazim Agoulmine in the
development of FOCALE, and the work on prototype design and implementation carried out by
Keara Barrett, Alan Davy, Steven Davy, and Elyes Lehtihet. This work has received support
from Science Foundation Ireland under the “Autonomic Management of Communications
Networks and Services” award (grant no. 04/IN3/I404C).

References
[1] M. Sloman, “Policy driven management for distributed systems”, J. Netw. Syst. Manag., vol. 2, no. 4, Dec.

1994, pp. 333-360.
[2] O. Babaoglu et al., “Design patterns from biology for distributed computing,” ACM Trans. Auton. Adapt.

Syst., vol. 1, no. 1, Sep. 2006, pp. 26-66.
[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, Jan. 2003,

pp. 41- 50.
[4] J. Strassner, “Autonomic Networking – Theory and Practice” [tutorial], Proc. 2004 IEEE/IFIP Network

Operations and Management Symp. (NOMS 2004), IEEE, April 2004, pp. 927.
[5] J. O. Kephart, “Research challenges of autonomic computing,” Proc. 27th Int’l. Conf. on Software

Engineering, ACM Press, 2005, pp. 15-22.
[6] S. Dobson et al., “A Survey of Autonomic Communications,” ACM Trans. Auton. Adapt. Syst., vol. 1, no. 2,

Dec. 2006, pp. 223-259.
[7] D. Agrawal, K. W. Lee and J. Lobo, “Policy-based management of networked computing systems,” IEEE

Commun. Mag., IEEE, Oct. 2005, vol. 43, no. 10, pp. 69-75.
[8] J. Strassner, “DEN-ng: achieving business driven network management,” Proc. 8th IEEE/IFIP Network

Operations and Management Symp. (NOMS 2002), IEEE, Apr. 2002, pp. 753-766.
[9] K. Barrett, S. Davy, J. Strassner, B. Jennings, S. van der Meer and W. Donnelly, “A Model Based Approach

for Policy Tool Generation and Policy Analysis,” Proc. 1st IEEE Int’l. Global Information Infrastructure
Symp. 2007 (GIIS 2007), IEEE, 2007, pp. 99-106.

[10] Y. Kalfoglou and M. Schorlemmer, “Ontology Mapping: the state of the art,” Knowl. Eng. Rev., vol. 18, no.
1, 2003, pp. 1-31.

