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Entangled quantum systems have properties that have fundamentally overthrown a classical 
worldview [1, 2]. Increasing the complexity of entangled states by expanding their dimensionality 
not only allows the implementation of novel fundamental tests of nature [3, 4], but also enables 
genuinely new protocols for quantum communication [5-7] and quantum computation [8]. In our 
experiment we generate photons entangled in angular momentum and radial modes. We 
unambiguously verify that these photons are highly entangled in most 2x2-dimensional subspaces 
of a 34.500-dimensional Hilbert space, which suggests the generation of genuine high dimensional 
entanglement. We develop a source-independent criterion that reveals an entanglement 
dimensionality of over 100. For the criterion we propose a mathematical conjecture for which we 
have strong numerical evidence and theoretical arguments. Furthermore, the size of the entangled 
Hilbert space is of the same magnitude as the largest entangled multipartite systems 
experimentally measured so far. This result indicates the great potential of high-dimensional 
entangled photons for a wide range of quantum information tasks. 

 
It has been shown that the dimensionality of the quantum system is particularly important for 
quantum computation. While any continuous measure of entanglement can be arbitrarily small, a 
sufficiently high dimensionality of entanglement is necessary for any quantum speed up [9-11]. 
Therefore generating and verifying genuine high-dimensional entanglement has been a main focus of 
experiments performed in quantum optics. 
 
One method of bipartite high-dimensional entanglement, namely spatial modes of photons, has 
attracted much attention in recent years [12, 13]. The spatial mode entanglement is readily available 
from non-linear processes in optical crystals, and theoretically its dimensionality can be arbitrarily 
high. Therefore a natural question is “what is the actual dimensionality of entanglement” or “how 
many degrees of freedom are entangled in the quantum state?”. Several experiments aimed to 
answer that question with different methods. 
 
An interesting example is the violation of a 12-dimensional generalized Bell-inequality. This was 
possible by assuming conservation of orbital angular momentum (OAM) and numerical maximization 
of dimensionality bounds [13]. With a different method, the capability of revealing dimensionality 
with non-perfect measurements was analyzed. By assuming pure states, the authors showed the 
potential of revealing a dimensionality of about 50 [14, 15]. In yet another experiment it was 
demonstrated that by thoughtfully optimizing the OAM-spectrum, entanglement of up to 30 
dimensions can be achieved. This was possible by applying a dimensionality criterion that assumes 
pure states as well [16]. 
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Figure 1: Visualization of the measurement concept. The two photons are separated into 
different paths. Each of the photons is in a superposition of many modes. We perform the 
same two-dimensional subspace measurement on both photons. When we consider all 
two-dimensional subspaces, we can determine the dimensionality of entanglement. As 
there are three 2-dimensional Pauli matrices, and each Pauli matrix requires 2 projective 
measurements on each of the two photons, we perform 12 measurements per two-
dimensional subspace. 
 

 

 
Figure 2: Schematic of the experimental setup. We pump a type-II quasi phase-matched 
nonlinear periodically poled potassium titanyl phosphate (ppKTP) crystal with a 405 nm, 
60mW single-mode laser. Spontaneous parametric down-conversion creates photon pairs 
with 810 nm wavelength and orthogonal polarization. We remove the pump beam at a 
dichroic mirror (DM) and separate the two photons at a polarizing beam splitter (PBS). In 
both arms of the setup we use spatial light modulators (SLM) to perform a mode-
transformation of the photons. The transformation done by a computer-generated 
hologram at the SLM converts a specific mode into the Gauss mode. Only the Gauss mode 
couples into a single mode fiber (SMF), thus the SLM+SMF act as a mode filter. In the end, 
we detect the photons with avalanche photo-diode based single photon detector (D) and 
analyze the time correlation using a coincidence-logic (&). The inset shows an example of 
a two-dimensional subspace. The intensities and phases for two different modes in the z 
basis are demonstrated, and their superposition leads to a mode in the x basis. 

 
 
In general, accessing and verifying genuine high order entanglement from unknown sources poses 
significant experimental and analytical challenges, because examining Schmidt numbers (which is the 
dimensionality of the entanglement) requires reliable access to the full density matrix. For example, 
in Hilbert spaces of dimension (200*200), this would correspond to more than 10^9 measurement 
settings accessing the full Hilbert space [17, 18]. To determine the dimensionality of entanglement, 
dimension witnesses provide an experimentally feasible method [13, 19]. Generally a dimension 
witness defines a set of measurements and gives a bound of the experimental result depending on 
the dimensionality of entanglement. Such methods can reveal the Schmidt number of a state with 
just a fraction of measurements compared to full state tomography. A similar concept has been 
employed to analyze the dimension of the underlying Hilbert-space, using high-dimensional 
entanglement [20, 21]. 
 
In our experiment, we reveal high dimensional entanglement in a completely state independent way 
(i.e. no assumptions need to be made about the quantum state under investigation, such as purity). 
This is achieved by developing a novel nonlinear entanglement dimension criterion. The witness is 
capable of unambiguously revealing high dimensional entanglement through sub-space correlations 
(see supplementary). In our case, we analyze correlations in two-dimensional subspaces (Figure 1). 
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Although individually these virtual two-qubit systems can never reveal more than mere qubit 
entanglement [18], we explicitly show how their combination can be exploited to reveal the full 
dimensionality of entanglement in arbitrarily large Hilbert spaces.  
 
We find bounds for these correlations (assuming a mathematical statement for which we have strong 
numerical evidences and theoretical arguments, see supplementary material). The number of 
measurements required to extract the dimensionality information is always less than for quantum 
state tomography and is generally less than required for the violation of generalized Bell-inequalities 
[18]. To fully access the dimensionality of a (186*186)-dimensional Hilbert space, we only required 
~51.000 measurement settings (with ~205.000 projective measurements). This constitutes ~0,005% 
of a full state tomography. 
 
 
 

 
 

Figure 3: a) Normalized coincidence rate of different modes (with logarithmic scale), 
depending on the two mode numbers (“full-field”-bandwidth). The probability for higher 
modes drops fast, therefore a logarithmic scale has been used. b) Weighted correlations 
between different modes. Due to different probabilities of different modes, we weight 
every correlation with the probability of involved modes. That means, 
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normalization constant. Thereby the visualization of correlations and anti-correlations is 
more informative (without weighting, only a few bright spots would be visible due to the 
different count rates for different modes). The two pictures show different sorting of the 
two quantum numbers, thus different properties of the state. The modes are sorted first 
by the l number, then modes with same l numbers are sorted by n. The anti-correlation 
between different l-modes can be seen very clearly. The central square, which 
corresponds to l=0, contains bright spots on the edges. They are artifacts of the 
approximate holograms used in the projections, strongly enhanced by the weighting. c) 
The modes (weighted in the same way as before) are sorted first by the n number, then by 
l. (For example: In the inset, the correlations of modes with n=4 are displayed. The 
remaining 19 different settings (l=-9 … +9) are sorted ascending.)  The off-diagonals 
indicate that n-modes are not as well correlated as l-modes.  
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Entanglement in our experiment is analyzed in the Laguerre-Gauss (LG) basis. The first mode number 
l describes the OAM states of light [22-24]. The second index n corresponds to the number of radial 
rings in the intensity profile. Lately this second degree of freedom has been analyzed theoretically in 
a quantum mechanical framework [25]. In a recent experiment correlations were shown for the first 
time in both mode numbers, revealing their potential to access even higher-dimensional 
entanglement [26]. 
 
In our setup, we create photon pairs in a non-linear crystal, and analyze their spatial mode structure 
using holographic transformations (more details in Figure 2). We analyzed the set of modes with the 
highest count rates. The maximal OAM value was l=+/-11 (for n=0), and the maximal radial mode 
number was n=13 for l=0 (Figure 3). 
 
 
 
In our experiment, we measured visibilities in three mutually unbiased bases (MUBs, i.e. 

visibility= i i  , i={x,y,z}, i denote the single-qubit Pauli matrices) in every two-dimensional 

subspace of a (186*186)-dimensional Hilbert-space. This results in 17.205 subsets with 206.460 
projective measurements in total. 
 
From the resulting set of correlations we can analyze the „full-field“-bandwidth (which consists of the 
spiral and radial bandwidth) of our down-conversion state (Figure 3a).  The correlations in the z-basis 
between the 186 modes can be observed in Figure 3. 
 
The three visibilities of the two-dimensional subspace characterize the amount of entanglement 
between the two modes. In figure 4, we analyse the sum of visibilities in two-dimensional subspaces 
and observe regions of modes that have higher (average) visibilities. This effect can be explained by 
the different generation probability of modes (see figure 3), which leads to non-maximally entangled 
states with small visibility in the x- and y-basis. In general, modes with similar probabilities have a 
high visibility in all bases. 
 
To extract the information about the dimensionality of entanglement, we use a novel non-linear 
entanglement witness. It is the sum of all visibilities of the three MUBs in all two-dimensional 
subspaces 
 

 
2 1

, , , , , ,

0 1 ,

1ˆ ,
D D

a b a b a b a b a b a b

x x y y z z

a b a a b

W
N

     
 

  

        
(1) 

where a and b stand for specific LGn,l modes, D stands for the number of modes considered for the 
witness. Na,b is a normalization constant that appears because by measuring a two-dimensional 
subspaces, we ignore all the other modes. It can be shown that the normalized subspace-witness can 
reveal higher Schmidt numbers than its linear form in the case of non-maximal entangled states 
(which is the case for our experiment, as one can see in figure 3). 
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Figure 4: Sum of coincidence visibilities in x, y and z basis of 17.205 two-dimensional 
subspaces. a) This picture shows the sum of the three visibilities for every two-
dimensional subspace, with the same mode-sorting as in figure 3b. The structure 
originates from different count rates for different modes, which leads to non-maximally 
entangled states and a smaller overall visibility in the corresponding two-dimensional 
subspace. The visibility in the z-basis is not affected by the non-maximal entanglement, as 
shown in the inset. However, the visibilities in x- and y-basis are very small for strongly 
asymmetric probabilities. b) The average sum of visibilities (in x, y, and z basis) of a specific 
mode with all other modes is indicated. The observable structure originates again from 
non-maximally entanglement due to different count rates. The bright regions in the center 
are modes with a similar probability. The central low-order modes (such as the Gauss 
mode) have the highest probability (Figure 3), therefore the lowest average visibility. 
Precisely, the Gauss mode has an average sum of visibilities of 1,21 – which mainly results 
from the visibilities in z-basis. A maximally entangled high-dimensional state would have a 
summed visibility of 3 for every mode. 

 

We have analytically derived bounds for arbitrary Schmidt numbers and D on this correlation 
function for non-normalized subspaces. Using these results we were able to prove analytical and 
tight bounds for equally distributed subspaces. Strong numerical evidence suggests that this function 
(which is symmetric in its inputs) is indeed maximized by symmetric distributions of the subspaces. 
This is one of the reasons (others can be found in the supplementary) why we suggest that the 
derived bounds are actually the global maximum, that can be attained for a mixture of maximally 
entangled pure states. The entanglement dimensionality bounds can be written as 

 

( 3)ˆ ,
2
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
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where d is the dimensionality of an arbitrary entangled quantum state (i.e. the Schmidt number). The 
left side of the inequality represents the measured value of equation (1). The right side denotes the 
maximal value which can be obtained by a d-dimensional entangled state. If the measurement result 
exceeds the value for an d-dimensional entangled state, we know that the considered state was 
entangled in at least (d+1) dimensions. The bounds are therefore sufficient but not necessary (i.e. we 
have at least (d+1) dimensional entanglement, but we could have even more). 
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When we consider the whole 186-dimensional Hilbert-space, we obtain 

 

186

ˆ 35 529 6,
D

W


   (3) 

which corresponds to 100-dimensional entanglement (101dim: W>35.619; 100dim: W>35.433; 
99dim: W>35.247). The confidence interval here (and elsewhere) corresponds to one standard 
deviation. 
 
As shown in Figure 4, some modes contribute more to the witness than others. Since the bounds of 
the witness depend on the number of modes considered, we can search for the subspace with the 
highest-dimensional entanglement. By removing 19 modes with the smallest contribution to the 
witness (i.e. not considering the corresponding two-dimensional subsets of those modes) we obtain 
 

167

ˆ 30 836 6,
D

W


   (4) 

which correspond to a 103-dimensional entanglement (104dim: W>30.895; 103dim: W>30.728; 
102dim: W>30.561). 
 
Our results are state-independent, we don’t require any knowledge about the considered quantum 
state. As a comparison, if we had assumed properties of the state such as purity, we could fully 
analytical derive different bounds for the witness in (1), and find more than 140-dimensional 
entanglement. 
 
 
 
In summary, we analyzed the dimensionality of entanglement of a two-photon state generated in 
down-conversion. Both quantum numbers of Laguerre-Gauss modes have been considered to obtain 
high dimensionality. We developed an entanglement witness for arbitrary high dimensions which 
does not require any a priori knowledge about the analyzed state. This allowed us to analyze a state 
in a Hilbert space of (186*186) dimensions with only ~205.000 projective measurements. We verified 
that the analyzed state was entangled in at least 103 dimensions (assuming the mathematical 
statement mentioned before, for which we have theoretical arguments and strong numerical 
evidence). The size of the entangled Hilbert-space is of the same magnitude than the biggest 
quantum systems with multipartite entanglement measured so far, such as 14-qubit ion 
entanglement [27]. 
 
The entanglement dimensionality could be further increased by specially designed crystal parameters 
[28]. A different approach is the employing of additional degrees of freedom photons [29], or by 
considering a combination of multi-partite and multi-dimensional entanglement [30]. Additionally, 
the question about a generalization of the introduced entanglement dimension criterion is very 
interesting for experimentalists as well as for theorists: How can the proof of the bounds be 
completed fully analytical? How can the normalized subspace criterion be applied to high-
dimensional multipartite systems? What additional information can be extracted from normalized 
subspaces?  
 
We hope that this experimental result stimulates further theoretical investigations on how to exploit 
the potential of large entangled Hilbert spaces consisting of high-dimensionally entangled entities in 
novel ways (e.g. [7]). 
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Methods: 
The holograms on the SLMs are calculated using a plane-wave approximation. This could lead to non-
orthogonal projective measurements. However, for our system this effect can only reduce the visibilities thus 
reduce the observed dimensionality. We restrict ourselves to two-dimensional subspaces, as this leads to 
simpler holograms on the SLMs and increases the mode transformation accuracy due to the finiteness of the 
pixels. Furthermore this method allows us to treat non-maximally entangled state (Figure 2) directly, therefore 
we do not need to perform any entanglement concentration [13]. 
 
All confidence intervals have been calculated using Monte-Carlo simulations. The detected photon numbers are 
Poisson distributed, which leads to asymmetric distribution especially for low count rates. Analytical treatment 
of error propagation for such a big number of measurements was not feasible anymore. 
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