Studies of Quantum Entanglement in 100 Dimensions
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Entangled quantum systems have properties that have fundamentally overthrown a classical
worldview [1, 2]. Increasing the complexity of entangled states by expanding their dimensionality
not only allows the implementation of novel fundamental tests of nature [3, 4], but also enables
genuinely new protocols for quantum communication [5-7] and quantum computation [8]. In our
experiment we generate photons entangled in angular momentum and radial modes. We
unambiguously verify that these photons are highly entangled in most 2x2-dimensional subspaces
of a 34.500-dimensional Hilbert space, which suggests the generation of genuine high dimensional
entanglement. We develop a source-independent criterion that reveals an entanglement
dimensionality of over 100. For the criterion we propose a mathematical conjecture for which we
have strong numerical evidence and theoretical arguments. Furthermore, the size of the entangled
Hilbert space is of the same magnitude as the largest entangled multipartite systems
experimentally measured so far. This result indicates the great potential of high-dimensional
entangled photons for a wide range of quantum information tasks.

It has been shown that the dimensionality of the quantum system is particularly important for
quantum computation. While any continuous measure of entanglement can be arbitrarily small, a
sufficiently high dimensionality of entanglement is necessary for any quantum speed up [9-11].
Therefore generating and verifying genuine high-dimensional entanglement has been a main focus of
experiments performed in quantum optics.

One method of bipartite high-dimensional entanglement, namely spatial modes of photons, has
attracted much attention in recent years [12, 13]. The spatial mode entanglement is readily available
from non-linear processes in optical crystals, and theoretically its dimensionality can be arbitrarily
high. Therefore a natural question is “what is the actual dimensionality of entanglement” or “how
many degrees of freedom are entangled in the quantum state?”. Several experiments aimed to
answer that question with different methods.

An interesting example is the violation of a 12-dimensional generalized Bell-inequality. This was
possible by assuming conservation of orbital angular momentum (OAM) and numerical maximization
of dimensionality bounds [13]. With a different method, the capability of revealing dimensionality
with non-perfect measurements was analyzed. By assuming pure states, the authors showed the
potential of revealing a dimensionality of about 50 [14, 15]. In yet another experiment it was
demonstrated that by thoughtfully optimizing the OAM-spectrum, entanglement of up to 30
dimensions can be achieved. This was possible by applying a dimensionality criterion that assumes
pure states as well [16].
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Figure 1: Visualization of the measurement concept. The two photons are separated into
different paths. Each of the photons is in a superposition of many modes. We perform the
same two-dimensional subspace measurement on both photons. When we consider all
two-dimensional subspaces, we can determine the dimensionality of entanglement. As
there are three 2-dimensional Pauli matrices, and each Pauli matrix requires 2 projective
measurements on each of the two photons, we perform 12 measurements per two-
dimensional subspace.
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Figure 2: Schematic of the experimental setup. We pump a type-Il quasi phase-matched
nonlinear periodically poled potassium titanyl phosphate (ppKTP) crystal with a 405 nm,
60mW single-mode laser. Spontaneous parametric down-conversion creates photon pairs
with 810 nm wavelength and orthogonal polarization. We remove the pump beam at a
dichroic mirror (DM) and separate the two photons at a polarizing beam splitter (PBS). In
both arms of the setup we use spatial light modulators (SLM) to perform a mode-
transformation of the photons. The transformation done by a computer-generated
hologram at the SLM converts a specific mode into the Gauss mode. Only the Gauss mode
couples into a single mode fiber (SMF), thus the SLM+SMF act as a mode filter. In the end,
we detect the photons with avalanche photo-diode based single photon detector (D) and
analyze the time correlation using a coincidence-logic (&). The inset shows an example of
a two-dimensional subspace. The intensities and phases for two different modes in the z
basis are demonstrated, and their superposition leads to a mode in the x basis.

In general, accessing and verifying genuine high order entanglement from unknown sources poses
significant experimental and analytical challenges, because examining Schmidt numbers (which is the
dimensionality of the entanglement) requires reliable access to the full density matrix. For example,
in Hilbert spaces of dimension (200*200), this would correspond to more than 1079 measurement
settings accessing the full Hilbert space [17, 18]. To determine the dimensionality of entanglement,
dimension witnesses provide an experimentally feasible method [13, 19]. Generally a dimension
witness defines a set of measurements and gives a bound of the experimental result depending on
the dimensionality of entanglement. Such methods can reveal the Schmidt number of a state with
just a fraction of measurements compared to full state tomography. A similar concept has been
employed to analyze the dimension of the underlying Hilbert-space, using high-dimensional
entanglement [20, 21].

In our experiment, we reveal high dimensional entanglement in a completely state independent way
(i.e. no assumptions need to be made about the quantum state under investigation, such as purity).
This is achieved by developing a novel nonlinear entanglement dimension criterion. The witness is
capable of unambiguously revealing high dimensional entanglement through sub-space correlations
(see supplementary). In our case, we analyze correlations in two-dimensional subspaces (Figure 1).
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Although individually these virtual two-qubit systems can never reveal more than mere qubit
entanglement [18], we explicitly show how their combination can be exploited to reveal the full
dimensionality of entanglement in arbitrarily large Hilbert spaces.

We find bounds for these correlations (assuming a mathematical statement for which we have strong
numerical evidences and theoretical arguments, see supplementary material). The number of
measurements required to extract the dimensionality information is always less than for quantum
state tomography and is generally less than required for the violation of generalized Bell-inequalities
[18]. To fully access the dimensionality of a (186*186)-dimensional Hilbert space, we only required
~51.000 measurement settings (with ~205.000 projective measurements). This constitutes ~0,005%
of a full state tomography.
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Figure 3: a) Normalized coincidence rate of different modes (with logarithmic scale),
depending on the two mode numbers (“full-field”-bandwidth). The probability for higher
modes drops fast, therefore a logarithmic scale has been used. b) Weighted correlations
between different modes. Due to different probabilities of different modes, we weight
every correlation with the probability of involved modes. That means,
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normalization constant. Thereby the visualization of correlations and anti-correlations is
more informative (without weighting, only a few bright spots would be visible due to the
different count rates for different modes). The two pictures show different sorting of the
two quantum numbers, thus different properties of the state. The modes are sorted first
by the | number, then modes with same | numbers are sorted by n. The anti-correlation
between different |-modes can be seen very clearly. The central square, which
corresponds to |=0, contains bright spots on the edges. They are artifacts of the
approximate holograms used in the projections, strongly enhanced by the weighting. c)
The modes (weighted in the same way as before) are sorted first by the n number, then by
I. (For example: In the inset, the correlations of modes with n=4 are displayed. The
remaining 19 different settings (I=-9 ... +9) are sorted ascending.) The off-diagonals
indicate that n-modes are not as well correlated as I-modes.

, Where i and j stand for different modes, and N is a



Entanglement in our experiment is analyzed in the Laguerre-Gauss (LG) basis. The first mode number
| describes the OAM states of light [22-24]. The second index n corresponds to the number of radial
rings in the intensity profile. Lately this second degree of freedom has been analyzed theoretically in
a quantum mechanical framework [25]. In a recent experiment correlations were shown for the first
time in both mode numbers, revealing their potential to access even higher-dimensional
entanglement [26].

In our setup, we create photon pairs in a non-linear crystal, and analyze their spatial mode structure
using holographic transformations (more details in Figure 2). We analyzed the set of modes with the
highest count rates. The maximal OAM value was |=+/-11 (for n=0), and the maximal radial mode
number was n=13 for 1=0 (Figure 3).

In our experiment, we measured visibilities in three mutually unbiased bases (MUBs, i.e.
visibility= <0i R o; >, i={x,y,z}, o; denote the single-qubit Pauli matrices) in every two-dimensional

subspace of a (186*186)-dimensional Hilbert-space. This results in 17.205 subsets with 206.460
projective measurements in total.

From the resulting set of correlations we can analyze the ,full-field“-bandwidth (which consists of the
spiral and radial bandwidth) of our down-conversion state (Figure 3a). The correlations in the z-basis
between the 186 modes can be observed in Figure 3.

The three visibilities of the two-dimensional subspace characterize the amount of entanglement
between the two modes. In figure 4, we analyse the sum of visibilities in two-dimensional subspaces
and observe regions of modes that have higher (average) visibilities. This effect can be explained by
the different generation probability of modes (see figure 3), which leads to non-maximally entangled
states with small visibility in the x- and y-basis. In general, modes with similar probabilities have a
high visibility in all bases.

To extract the information about the dimensionality of entanglement, we use a novel non-linear
entanglement witness. It is the sum of all visibilities of the three MUBs in all two-dimensional
subspaces
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where a and b stand for specific LG, modes, D stands for the number of modes considered for the
witness. N,p is a normalization constant that appears because by measuring a two-dimensional
subspaces, we ignore all the other modes. It can be shown that the normalized subspace-witness can
reveal higher Schmidt numbers than its linear form in the case of non-maximal entangled states
(which is the case for our experiment, as one can see in figure 3).
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Figure 4: Sum of coincidence visibilities in x, y and z basis of 17.205 two-dimensional
subspaces. a) This picture shows the sum of the three visibilities for every two-
dimensional subspace, with the same mode-sorting as in figure 3b. The structure
originates from different count rates for different modes, which leads to non-maximally
entangled states and a smaller overall visibility in the corresponding two-dimensional
subspace. The visibility in the z-basis is not affected by the non-maximal entanglement, as
shown in the inset. However, the visibilities in x- and y-basis are very small for strongly
asymmetric probabilities. b) The average sum of visibilities (in x, y, and z basis) of a specific
mode with all other modes is indicated. The observable structure originates again from
non-maximally entanglement due to different count rates. The bright regions in the center
are modes with a similar probability. The central low-order modes (such as the Gauss
mode) have the highest probability (Figure 3), therefore the lowest average visibility.
Precisely, the Gauss mode has an average sum of visibilities of 1,21 — which mainly results
from the visibilities in z-basis. A maximally entangled high-dimensional state would have a
summed visibility of 3 for every mode.

We have analytically derived bounds for arbitrary Schmidt numbers and D on this correlation
function for non-normalized subspaces. Using these results we were able to prove analytical and
tight bounds for equally distributed subspaces. Strong numerical evidence suggests that this function
(which is symmetric in its inputs) is indeed maximized by symmetric distributions of the subspaces.
This is one of the reasons (others can be found in the supplementary) why we suggest that the
derived bounds are actually the global maximum, that can be attained for a mixture of maximally
entangled pure states. The entanglement dimensionality bounds can be written as

<V\7>SDd+D(D_3), (2)

where d is the dimensionality of an arbitrary entangled quantum state (i.e. the Schmidt number). The
left side of the inequality represents the measured value of equation (1). The right side denotes the
maximal value which can be obtained by a d-dimensional entangled state. If the measurement result
exceeds the value for an d-dimensional entangled state, we know that the considered state was
entangled in at least (d+1) dimensions. The bounds are therefore sufficient but not necessary (i.e. we
have at least (d+1) dimensional entanglement, but we could have even more).



When we consider the whole 186-dimensional Hilbert-space, we obtain

<V\‘/>D=186 —35529+6, (3)

which corresponds to 100-dimensional entanglement (101dim: W>35.619; 100dim: W>35.433;
99dim: W>35.247). The confidence interval here (and elsewhere) corresponds to one standard
deviation.

As shown in Figure 4, some modes contribute more to the witness than others. Since the bounds of
the witness depend on the number of modes considered, we can search for the subspace with the
highest-dimensional entanglement. By removing 19 modes with the smallest contribution to the
witness (i.e. not considering the corresponding two-dimensional subsets of those modes) we obtain

<V\7 >D:W —30836+6, (4)

which correspond to a 103-dimensional entanglement (104dim: W>30.895; 103dim: W>30.728;
102dim: W>30.561).

Our results are state-independent, we don’t require any knowledge about the considered quantum
state. As a comparison, if we had assumed properties of the state such as purity, we could fully
analytical derive different bounds for the witness in (1), and find more than 140-dimensional
entanglement.

In summary, we analyzed the dimensionality of entanglement of a two-photon state generated in
down-conversion. Both quantum numbers of Laguerre-Gauss modes have been considered to obtain
high dimensionality. We developed an entanglement witness for arbitrary high dimensions which
does not require any a priori knowledge about the analyzed state. This allowed us to analyze a state
in a Hilbert space of (186*186) dimensions with only ~205.000 projective measurements. We verified
that the analyzed state was entangled in at least 103 dimensions (assuming the mathematical
statement mentioned before, for which we have theoretical arguments and strong numerical
evidence). The size of the entangled Hilbert-space is of the same magnitude than the biggest
guantum systems with multipartite entanglement measured so far, such as 14-qubit ion
entanglement [27].

The entanglement dimensionality could be further increased by specially designed crystal parameters
[28]. A different approach is the employing of additional degrees of freedom photons [29], or by
considering a combination of multi-partite and multi-dimensional entanglement [30]. Additionally,
the question about a generalization of the introduced entanglement dimension criterion is very
interesting for experimentalists as well as for theorists: How can the proof of the bounds be
completed fully analytical? How can the normalized subspace criterion be applied to high-
dimensional multipartite systems? What additional information can be extracted from normalized
subspaces?

We hope that this experimental result stimulates further theoretical investigations on how to exploit
the potential of large entangled Hilbert spaces consisting of high-dimensionally entangled entities in
novel ways (e.g. [7]).



Methods:

The holograms on the SLMs are calculated using a plane-wave approximation. This could lead to non-
orthogonal projective measurements. However, for our system this effect can only reduce the visibilities thus
reduce the observed dimensionality. We restrict ourselves to two-dimensional subspaces, as this leads to
simpler holograms on the SLMs and increases the mode transformation accuracy due to the finiteness of the
pixels. Furthermore this method allows us to treat non-maximally entangled state (Figure 2) directly, therefore
we do not need to perform any entanglement concentration [13].

All confidence intervals have been calculated using Monte-Carlo simulations. The detected photon numbers are
Poisson distributed, which leads to asymmetric distribution especially for low count rates. Analytical treatment
of error propagation for such a big number of measurements was not feasible anymore.
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BOUNDING THE SCHMIDT NUMBER FROM NORMALIZED SUBSPACE CORRELATIONS

The goal of this supplementary is to the determine lower bounds on the Schmidt-number from the sum of all
two-dimensional non-normalized subspace correlations in a D dimensional system. It is organized as follows:

o We first introduce the general correlation criterion for normalized subspaces
e We continue by deriving tight lower bounds for the same correlations in non-normalized subspaces

e We then argue using two conjectures for which we have strong numerical evidences, that the maximum for
normalized subspaces will be realized by correlations equally distributed over all subspaces

e Finally we derive tight lower bounds for equally distributed correlations in normalized subspaces

Using the following abbreviation
ILG+) = [k) (S1)
where we count all LG modes of {n,l}, we can represent the performed measurements via the following operators

oyt == k) (1| + | (k]

oyt o= ilk) (1| |l (k]

att o= k) (Kl = [)(1I. (S2)
In order to lower bound the dimensionality of entanglement in normalized subspaces we use the following correlation
function

D

1
Clp)=>_> g™, (S3)

k<l =1

where the sum is taken over all p¥, the normalized subspace density matrices, where all but two degrees of freedom
on both sides are ignored, i.e.

. ([&) k[ + () () @ ([k) (k| + (D) (&) (k] + 1) (1) @ ([k) (k] + D) (S4)
N '

where Ny; is the normalization, such that Tr(p*) = 1, and

g(p") =Tr (0¥ @ ol — ol @ ol + ot @ ok p*) (S5)



Comparing these to the correlations on the total state, i.e.

fu(p) = Tr (o @ ot — ot @ oyl + o} @ 03")p) (S6)
we can write
fri
= ST
9(pr1) N (S7)
and thus
D-1 F;
kl
Clp) =YY ~==. (S8)
ot =1 Ve

It is important to note that of course we only consider contributions from subspaces with a nonzero contribution, i.e.
if Ng; =0 we set gg; = 0.

Lower bounds from non-normalized subspaces

The first step of the witness construction is the determination of the maximal value of f(p) := >, 211):—11 fri(p)
for d-dimensional states.

D—-1
YD fuc< max f(lba)(Wal) , (S9)

k<l 1=1
where [g) = Zfz_ol Ailiaig). The first step to achieve this maximization is to realize that

D—-1

F()(l) < T((2Dlép) (n] + (D —3) Y lid) (@il ) [) (@] (S10)

=0

where |¢p) 1= % Zf:)l |#4) and we got an upper bound via setting all negative contributions to 0. It is well known
from Ref. [1] that the maximal overlap of a D-dimensional state with a d-dimensional state Tr[|vq)(Va||¢p){(dp]) is
achieved by |¢4) := ﬁ 25;01 |i7). This state also maximizes Tr[((D — 3) Zi}l [i2) (ii])|1) (1|] such that we can infer
that indeed this state achieves the global maximum for max,y,y f(|1q)(a|) and thus we can directly calculate

flp) <(2d+(D=3)). (S11)

The structure of the global maximum

Before we proceed to bound the maximum of C(p) as a function of D and d we require a few observations:

gur = Relklpl)) + (hklollk) + plid) — Gkl plk) — (Lklpltk) _ 4Re[(kklplil)] + (kklplkk) + (Ulplid)
. (kkl|plkk) + (1l|p[i) + (Kilplkl) + (Ik|p|ik) = (kk|pl k) + (1l]plil) ’

(S12)

i.e. monotonically decreasing in the elements (kl|p|kl) + (Ik|p|lk) for all k£ and [ and thus we conjecture that it is
sufficient to maximize over density matrices of the form p = >7, ; cu|kk)(ll| with Tr(p) < 1. We can numerically
confirm this conjecture for low dimensions, but D ~ 200 is far out the range of computational feasibility. If the
general form of the maximizing density matrices is true this implies that all Schmidt decompositions can be made in
computational basis and we can write every vector in the decomposition of the maximizing p as [1ba) = D1, AR |kk).
This further implies we can decompose the maximizing density matrix as

Pmazx = Z Z Pa; |wai><¢o¢i | 3 (813)



where « C {0,1,(--+),D — 1} with |a| < d denotes the set of dimensions in which the decomposition element is
entangled. Without loss of generality we consider the case |a| = d, as every density matrix that can be decomposed
into Schmidt rank d’ < d states is strictly contained in this definition (for some A\, = 0). We write (S12) as

Zai:(kE(u)/\(lEai) ZZ pai)\zz)\lai
Za;(kéa,)V(lEa,) Zz p"“(()\gl)Q + (A?l)Z)

Using the abbreviation A% := | /ba, A% we can take the partial derivatives with respect to A2 to find general conditions
for all extremal points:

gri(p) =4 +1. (S14)

B AN S
e —zkz%l:o. (S15)

Thus
gkl AN
= = —t S16
; Ny Z N, le/\;:i ( )
Since the left hand side is symmetric in k£ and [ we can conclude that 5\;’“ = 5\2‘1 It then directly follows that

gkl
Z N Z 2Nkl (817)

And since only the right hand side depends on «, which implies that every partial sum of N%Cz is equal. Thus we can
write

D—1
Comax) <D Y % : (S18)

k<l I=1
where N = 2 and we know from from eq(S11) that 3, _, Ef:ll frr < 2d+ (D — 3) we thus get an upper bound

Clp) < Dd + D(D 3). (S19)

Now we know that all extremal points (of course including all maxima) of the function are upper bounded by this
value. Since the normalization of the density matrix does not enter anywhere in the criterion, we can in principle
leave all Schmidt coefficients completely unconstrained as only their relative weights enter. The last thing left is to
check whether the global maxmimum of the unconstrained function is indeed an extremal point. It is clear that the
function can never escape to infinity, for any asymptotic distribution of A, since it is algebraically bounded by (g )
Still we need to check whether the function cannot asymptotically reach a higher value for some set of A — oo.
We conjecture that this is the case due to the following reasons: It is easy to see that for any extremal pure state
C(Jw)]) < 3(;) +d(D —d) < Dd+ 2(D - 3) and an extensive numerical search for 3 < D < 13 and d < D revealed
that indeed the asymptotic regions (corresponding to mixtures of pure state ) . p;[1);)(1;]) are strictly smaller (and
also that all extrema have equally distributed Ny, further strengthening the first conjecture).

Bound for equally distributed correlations

Indeed the previous bounds would be correct for any function that has eqally distributed subspace correlations gy,
as this would imply that each element fy; = fsi; and Nyg; = Nsy;, such that each fraction is a constant % Now we

can use two inequalities: ), fiy < (2d + (D — 3))Tr[(2?251 |i7)(ii]) p] from eq(S11) and the fact that

D-1 D-1

D—1
Te[(2D]én) (¢p| + (D —3) > lid)(iil)p] = Te[(2Dép) (¢p| + (D —3) Y [id) i)Y lid)(iil)p Zm ()], (S20)
1=0

=0 =0
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and furthermore >, Niy =14 (D — 2)T1'[(Zf)261 lit) (ii])p]. Now we can get upper bounds for the equal distribution
of gi;. The above constraints directly imply:

kal f25k1< (2d+ (D —3)) th (24])p]
k.l

k,l

ZNkl NZskl =14+ (D—-2)Tr Z |i2) (ii]) p] (S21)
k.l

k,l

The last line implies that % = 1 and thus together we get for the equal distribution

< 1
Kt Sk = 1H(D=2)Tr[(S 2" [id) (iil) o]
that

C(p) < Dd+ g(D —3). (S22)

It is worth pointing out that in general for every d < D this bound is tight, i.e. there exists a mixed state which
saturates this bound
1
pa=5- Y, led)ell, (523)

(d) ac{0,1,,D—1}

where |¢d) := % > rea(lkk)) and of course |a| = d.
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