Susanne Seltmann

Susanne Seltmann
Max Planck Institute for Ornithology · Neural circuits for vocal communication

Dr. rer. nat.

About

6
Publications
455
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
81
Citations
Citations since 2017
0 Research Items
57 Citations
2017201820192020202120222023024681012
2017201820192020202120222023024681012
2017201820192020202120222023024681012
2017201820192020202120222023024681012

Publications

Publications (6)
Article
Full-text available
Melatonin is a key hormone in the regulation of circadian rhythms of vertebrates, including songbirds. Understanding diurnal melatonin fluctuations and being able to reverse or simulate natural melatonin levels are critical to investigating the influence of melatonin on various behaviors such as singing in birds. Here we give a detailed overview of...
Data
Differences in plasma melatonin concentration between treatment and control Results of a Dunnett’s test comparing all sampled time points of the low concentration treatment with the control (taken before treatment, 1.59 log pg/ml). Groups marked red differ significantly from the control group (p < 0.05).
Data
Raw data, sample overview and assay information This data set includes the individual melatonin concentration for each sample taken (Data Fig. 1 & Data Figs. 2 and 3), an overview of sampling time points as well as additional information about the different radioimmunoassays (overview samples).
Data
Changes in individual plasma melatonin concentrations Individual melatonin concentrations of all birds sampled are indicated by black dots. A simple model was fitted to the time course of melatonin concentration with three levels of melatonin; mel1 as resting melatonin level, mel2 during the night, and mel3 after the drop in concentration. Two time...
Article
Full-text available
Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which "stack" call...

Network

Cited By