
Susannah K S ThorpeUniversity of Birmingham · School of Biosciences
Susannah K S Thorpe
About
81
Publications
43,724
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,344
Citations
Publications
Publications (81)
There has been a long debate about the possibility of multiple contemporaneous species of Australopithecus in both eastern and southern Africa, potentially exhibiting different forms of bipedal locomotion. Here, we describe the previously unreported morphology of the os coxae in the 3.67 Ma Australopithecus prometheus StW 573 from Sterkfontein Memb...
Background Understanding the needs of animals with physical and cognitive impairments is essential for zoos, rehabilitation centres, and other captive contexts. This case study describes the atypical physical and cognitive development of Jiwa, an adult male Sumatran orangutan ( Pongo abelii ), to evaluate how these differences may impact Jiwa and t...
Wild orangutans ( Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills...
Kinematic differences in the knuckle-walking gaits of chimpanzees and gorillas have provided crucial evidence to support the theory that knuckle-walking evolved independently in the Pan and Gorilla lineages, rather than being inherited from their last common ancestor. This has been used to refute the idea that hominin bipedalism evolved from knuckl...
The StW 573 skeleton of Australopithecus prometheus from Sterkfontein Member 2 is some 93% complete and thus by far the most complete member of that genus yet found. Firmly dated at 3.67 Ma, it is one of the earliest specimens of its genus. A crucial aspect of interpretation of locomotor behaviour from fossil remains is an understanding of the pala...
Behavior is the interface through which animals interact with their environments, and therefore has potentially cascading impacts on the health of individuals, populations, their habitats, and the humans that share them. Evolution has shaped the interaction between species and their environments. Thus, alterations to the species-typical “wild-type”...
The Enclosure Design Tool framework translates research on wild great apes into enclosure modifications that sanctuaries can use to increase wild-type behaviours for apes in their care. The underpinning concept is to create species-appropriate challenge, choice and control through 'functional' enclosures where the environments in which the animals...
(300 words)
StW 573, from Sterkfontein Member 2, dated ca 3.67 Ma, is by far the most complete skeleton of an australopith to date. Joint morphology is in many cases closely matched in available elements of Australopithecus anamensis ( eg. proximal and distal tibial and humeral joint-surfaces) and there are also close similarities to features of th...
Positional behavior describes an animal's physical activities, and has two components: posture and locomotion. Positional behavior is a vital part of a primate's ecology, as it directly affects foraging, predator avoidance, and reproductive success, and has strong links with morphology. Primates, in particular the larger‐bodied species among them,...
The well-developed Achilles tendon in humans is generally interpreted as an adaptation for mechanical energy storage and reuse during cyclic locomotion. All other extant great apes have a short tendon and long-fibred triceps surae, which is thought to be beneficial for locomotion in a complex arboreal habitat as this morphology enables a large rang...
Whether tree canopy habitats played a sustained role in the ecology of ancestral bipedal hominins is unresolved. Some argue that arboreal bipedalism was prohibitively risky for hominins whose increasingly modern anatomy prevented them from gripping branches with their feet. Balancing on two legs is indeed challenging for humans under optimal condit...
Arboreal, and in particular suspensory, postures may elicit a preference for the strongest limb to be used in postural support in large bodied primates. However, selection may have favored ambilaterality rather than a preference for a particular hand in chimpanzees (Pan troglodytes) fishing arboreally for ants. To investigate the influence of arbor...
Positional behavior describes an animal's physical activities, and has two components: posture and locomotion. Positional behavior is a vital part of a primate's ecology, as it directly affects foraging and reproductive success, and has strong links with morphology. Primates display hugely diverse and versatile positional repertoires, which allow t...
An animal's size is central to its ecology, yet remarkably little is known about the selective pressures that drive this trait. A particularly compelling example is how ancestral apes evolved large body mass in such a physically and energetically challenging environment as the forest canopy, where weight-bearing branches and lianas are flexible, ir...
The tree canopy is an energetically challenging environment to traverse. Along with compliant vegetation, gaps in the canopy can prove energetically costly if they force a route-extending detour. Arboreal apes exhibit diverse locomotion strategies, including for gap crossing. Which one they employ in any given scenario may be influenced by the ener...
Detailed materials and methods, and explanation and regression figures of re-analysis based on digitisation of Figure 1A in Hanna et al. (2008)
Detailed materials and methods, and explanation and regression figures of re-analysis based on digitisation of Figure 1A in Hanna et al. (2008)
Detailed materials and methods, and explanation and regression figures of re-analysis based on digitisation of Figure 1A in Hanna et al. (2008)
We often encounter problems in which our usual learned solutions are ineffective. In such situations, we may know what problem we face, and what we want to achieve, but we must generate new behavior to bridge the gap between the current situation and the desired result. In this chapter, we discuss why this process of innovation is important for hum...
For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially a...
Almost a century and a half ago, Charles Darwin in The Descent of Man (1871: 141) highlighted the evolution of bipedalism as one of the key features of the human lineage, freeing the hands for carrying and for using and making tools. But how did it arise? The famous footprints from Laetoli in Tanzania show that hominin ancestors were walking uprigh...
Putting flesh on to hominin bones - Volume 88 Issue 341 - Susannah K.S. Thorpe, Juliet M. McClymont, Robin H. Crompton
Historically, paleoanthropology has focused on explaining human uniqueness. This review paper highlights several recent challenges to key features that have been considered to be exclusive to hominins, testing three long-standing theories in evolutionary anthropology. The knuckle-walking quadrupedalism model describes the evolution of modern gorill...
Perception of hill slant is exaggerated in explicit awareness. Proffitt (Perspectives on Psychological Science 1:110-122, 2006) argued that explicit perception of the slant of a climb allows individuals to plan locomotion in keeping with their available locomotor resources, yet no behavioral evidence supports this contention. Pedestrians in a built...
The axial musculoskeletal system is important for the static and dynamic control of the body during both locomotor and non-locomotor behaviour. As a consequence, major evolutionary changes in the positional habits of a species are reflected by morpho-functional adaptations of the axial system. Because of the remarkable phenotypic plasticity of musc...
The ability to identify an appropriate sequence of actions or to consider alternative possible action sequences might be particularly useful during problem solving in the physical domain. We developed a new 'paddle-box' task to test the ability of different ape species to plan an appropriate sequence of physical actions (rotating paddles) to retrie...
The tropical arboreal environment is a mechanically complex and varied habitat. Arboreal inhabitants must adapt to changes in the compliance and stability of supports when moving around trees. Because the orangutan is the largest habitual arboreal inhabitant, it is unusually susceptible to branch compliance and stability and therefore represents a...
The influence of habitat structure and support availability on support use is an important aspect of understanding locomotor behavior in arboreal primates. We compared habitat structure and support availability in three orangutan study sites-two on Sumatra (Pongo abelii) in the dry-lowland forest of Ketambe and peat swamp forest of Suaq Balimbing,...
Background / Purpose:
The cognitive capacity for short-term planning (i.e. mentally “trying out” potential action sequences prior to execution) has been investigated experimentally in several species. However, the majority of these studies have either involved tool-use, which biases against non-tool-using species, or used computerised tasks, whic...
Living tree branches are almost impossible to snap. Some show “greenstick fracture”, breaking halfway across before splitting along their length, while others simply buckle. In this study we investigated the bending failure of coppice branches of three temperate angiosperm trees: ash, Fraxinus excelsior; hazel, Corylus avellana; and white willow, S...
Nest-building orangutans must daily build safe and comfortable nest structures in the forest canopy and do this quickly and effectively using the branches that surround them. This study aimed to investigate the mechanical design and architecture of orangutan nests and determine the degree of technical sophistication used in their construction. We m...
In accordance with the comparatively short lumbar region, long iliac blades, and small lateral epaxial tracts, locomotor studies have suggested that chimpanzees possess only limited trunk mobility. For instance, chimpanzees seem to lack the intensive sagittal bending occurring in monkeys during asymmetrical gaits. However, non-locomotor activities...
The maximum capability of a muscle can be estimated from simple measurements of muscle architecture such as muscle belly mass, fascicle length and physiological cross-sectional area. While the hindlimb anatomy of the non-human apes has been studied in some detail, a comparative study of the forelimb architecture across a number of species has never...
Obtaining food in an arboreal habitat is complex due to the irregular and flexible nature of the supports available. As the largest predominantly arboreal primate, orangutans are expected to have developed particular postural strategies to enable them to feed successfully. In particular, they need to be able to cope within the terminal branch niche...
Apparently sophisticated behaviour during problem-solving is often the product of simple underlying mechanisms, such as associative learning or the use of procedural rules. These and other more parsimonious explanations need to be eliminated before higher-level cognitive processes such as causal reasoning or planning can be inferred. We presented t...
This study examined the locomotor behavior of wild Bornean orangutans (P. p. wurmbii) in an area of disturbed peat swamp forest (Sabangau Catchment, Indonesia) in relation to the height in the canopy, age-sex class, behavior (feeding or traveling), and the number of supports used to bear body mass. Backward elimination log-linear modeling was emplo...
By relating an animal's morphology to its functional role and the behaviours performed, we can further develop our understanding of the selective factors and constraints acting on the adaptations of great apes. Comparison of muscle architecture between different ape species, however, is difficult because only small sample sizes are ever available....
Different locomotor and postural demands are met partly due to the varying properties and proportions of the muscle fibre types within the skeletal muscles. Such data are therefore important in understanding the subtle relationships between morphology, function and behaviour. The triceps surae muscle group is of particular interest when studying ou...
In an arboreal habitat, primates have to cope with a complex meshwork of flexible supports in order to obtain food, find mates and avoid predators. To understand how animals interact with such complex environments we can study their positional behaviour. However, due to the intricate variation in locomotion and posture it can be difficult to captur...
Napier and Walker’s (1967) locomotor category of vertical clinging and leaping (VC&L) is one of the most familiar in primatology, and tarsiers are
probably the most morphologically specialized of its membership. However, the link between vertical clinging and leaping remains
unelucidated. We attempt to do so by reanalysis of Crompton’s 1985 and 198...
The full publication of Ardipithecus ramidus has particular importance for the origins of hominin bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques however inevitably concentrate on details of fragmentary postcranial bones and can benefit from a whole-animal perspective. This can be provided by field s...
Linburg-Comstock syndrome is characterised by an anomalous tendon slip from the flexor pollicis longus to the flexor digitorum profundus, usually of the index finger. An incidence as high as 60% to 70% has been reported. Post-traumatic inflammation of inter-tendinous connections between the flexor pollicis longus and flexor digitorum profundus, usu...
Biology, and particularly the study of 'natural intelligence', has long provided diverse forms of inspiration for AI and robotics re-searchers. However, instances of biologists gaining inspiration from AI have been less common. In this paper (written as an introduc-tion to the AI-Inspired Biology Symposium), we argue that there are many ways in whi...
Previous studies on wild moulting waterfowl have demonstrated that flight and leg muscles experience periods of hypertrophy and atrophy. This is thought to be in response to the change in use of the locomotor muscles as described in the use/disuse hypothesis. We tested this hypothesis using captive barnacle geese. Forty geese were dissected before,...
Orangutans are the largest habitually arboreal mammal. For them, as for all arboreal mammals, access to the abundant fruits and narrowest gaps found among the thin peripheral branches of tree crowns poses considerable safety risks and energetic demands. Most arboreal primates use flexed-limb postures to minimize problems caused by branch compliance...
Thesis (B.A.)--California State University, San Bernardino, 1999. Includes bibliographical references (leaves 40-41).
Based on our knowledge of locomotor biomechanics and ecology we predict the locomotion and posture of the last common ancestors of (a) great and lesser apes and their close fossil relatives (hominoids); (b) chimpanzees, bonobos and modern humans (hominines); and (c) modern humans and their fossil relatives (hominins). We evaluate our propositions a...
Begun et al. purport to present technical concerns regarding our case for an arboreal origin for terrestrial bipedalism in early hominins,
but merely reiterate their knuckle-walking hypothesis, which lacks support from the fossil record and is highly unparsimonious.
The technical concerns are refuted by published studies cited in our study and thus...
Human bipedalism is commonly thought to have evolved from a quadrupedal terrestrial precursor, yet some recent paleontological evidence suggests that adaptations for bipedalism arose in an arboreal context. However, the adaptive benefit of arboreal bipedalism has been unknown. Here we show that it allows the most arboreal great ape, the orangutan,...
Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78, 315-320; Demes et al. 1995 Am. J. Phys. Anthropol. 96, 419-429), fi...
The timing of heel strike (HS) and toe off (TO), the events that mark the transitions between stance and swing phase of gait, is essential when analysing gait. Force plate recordings are routinely used to identify these events. Additional instrumentation, such as force sensitive resistors, can also been used. These approaches, however, include rest...
The Asian apes, more than any other, are restricted to an arboreal habitat. They are consequently an important model in the interpretation of the morphological commonalities of the apes, which are locomotor features associated with arboreal living. This paper presents a detailed analysis of orangutan positional behavior for all age-sex categories a...
Quantitative, accurate data regarding the inertial properties of body segments are of paramount importance when developing musculo-skeletal locomotor models of living animals and, by inference, their ancestors. The limited number of available primate cadavers, and the destructive nature of the post-mortem, result in such data being very rare for pr...
We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional are...
Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of...
We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional are...
The large body mass and exclusively arboreal lifestyle of Sumatran orangutans identify them as a key species in understanding the dynamic between primates and their environment. Increased knowledge of primate locomotor ecology, coupled with recent developments in the standardization of positional mode classifications (Hunt et al. [1996] Primates 37...
Recent studies have indicated that chimpanzee bipedality is mechanically inefficient and dynamically unlike that of humans, thus undermining the chimpanzee analogy for mechanical aspects of the early evolution of hominid bipedalism. This paper continues this theme by measuring the forces and stresses engendered by the muscles during bipedal locomot...
Vertical climbing is central to the locomotor and foraging strategies of the great apes and, indeed, to theories about the evolution of locomotor specialisations of hominoid primates. Nevertheless, its kinematics have yet to be fully evaluated. Here, we present spatio-temporal parameters of 80 climbing sequences containing 560 limb cycles obtained...
The two most popular current paradigms concerning the precursor of hominid bipedalism are the terrestrial-quadrupedal model of GEBO (1992, 1996) and the vertical climbing model of FLEAGLE et al. (1981). The former regards heel strike plantigrady and a lateral to medial transfer of pressure in the foot as synapomorph features of the African Apes; th...
This paper supplies quantitative data on the hind- and forelimb musculature of common chimpanzees (Pan troglodytes) and calculates maximum joint moments of force as a contribution to a better understanding of the differences between chimpanzee and human locomotion. We dissected three chimpanzees, and recorded muscle mass, fascicle length, and physi...
Calculation of the stresses exerted by human muscles requires knowledge of their physiological cross-sectional area (PCSA). Magnetic resonance imaging (MRI) has made it possible to measure PCSAs of leg muscles of healthy human subjects, which are much larger than the PCSAs of cadaveric leg muscles that have been used in previous studies. We have us...