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Abstract
High-throughput DNA sequencing has enabled systems biology to begin to address areas in health,
agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity
to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is
an analysis pipeline, database and visualization software for use with massively parallel DNA
sequencing technologies that feature multi-gigabase throughput characterized by relatively short
reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied
Biosystem’s SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s),
detection of variants and enumeration of sequence abundance, including expression levels in
transcriptome sequence. Alpheus is able to detect several types of variants, including non-
synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions
(indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter
variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant
type in order to minimize false positives while maximizing the identification of true positives.
Alpheus also enables comparisons of genes with variants between cases and controls or bulk
segregant pools. Sequence-based differential expression comparisons can be developed, with data
export to SAS JMP Genomics for statistical analysis.
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Introduction
High-throughput DNA sequencing using the Illumina GA series, the Roche 454 and the ABI
SOLiD platforms have enabled a plethora of methods previously either prohibitively expensive
or technologically impractical to be developed. Among these are whole genome shotgun
sequencing [WGSS] and whole transcriptome shotgun sequencing [WTSS]. The output from
these technologies currently ranges from 1–20 gigabases of raw sequence information per
experiment, with a relatively high error rate compared to Sanger sequencing. The sheer quantity
of output, the relative shortness of reads and the frequency of errors have created problematic
areas for data management in terms of organization, analysis and information extraction. While
several genome browsers currently exist (e.g., Ensembl (Flicek, et al., 2008), the UCSC
Genome Browser (Mangan, et al., 2008), and the Broad Institute Integrative Genomics Viewer
[http://www.broad.mit.edu/igv/], these tools presently include a significant structural overhead
that make their application to so-called generation-2 sequencing efforts generally intractable.
We have developed a streamlined application focusing on the acquisition, storage, analysis,
organization, exploration and export of high-throughput sequencing data.

In this paper, we will describe the infrastructure and application necessary to perform these
tasks, and focus on three of many applications in resequencing: genome variant detection,
transcript expression analysis and protocol evaluation and analysis.

Genome Variant Detection
In DNA analysis, non-synonymous genetic variations (nsVariants; nsV) that cause an amino
acid change are critical to understanding various diseases and traits (i.e., phenotypes) in all
organisms. Single nucleotide polymorphisms (SNPs) represent the most frequent type of DNA
variation, often having a neutral effect on phenotype (a synonymous SNP); nsVariants result
in an amino acid change in the protein products of genes, and thus are believed to have the
most significant impact on phenotype (Ramensky, et al., 2002). Aberrations resulting in point
mutations, genome rearrangements, and insertions/deletions (indels) have been linked to
tumorigenesis (Morozova and Marra, 2008).

SNPs have traditionally been found using Sanger sequencing methods at considerable cost.
Microarray-based studies have also been used to detect known SNPs (Ropers, 2007), and the
International HapMap Project was developed to determine patterns of human heritability to
improve the success of genetic heritability studies (Manolio, et al., 2008). However, while
array-based analysis has improved and has led to the discovery of almost 100 loci for nearly
40 common diseases and traits (Manolio, et al., 2008), the large number of unknown SNPs as
well as poor hybridization of probes has caused some frustration on the part of researchers
(Ropers, 2007). Sequencers such as Illumina Genome Analyzer (sequencing-by-synthesis;
Illumina, Inc., San Di-ego, CA]), Roche-454 GS20 (pyrosequencing; Roche Applied Science,
Inc., Indianapolis, IN) and Applied Biosystems SOLiD (sequencing-by-ligation; Applied
Biosystems, Foster City, CA) have recently been used to perform massive sequencing of human
and plant genomes and transcriptomes at low cost as compared to Sanger sequencing methods.
Direct sequencing is likely to replace indirect approaches (SNP-HapMap), making it possible
to screen entire genomes to examine introns, UTRs, and promoter regions as well as exons for
likely pathogenic variation (Mardis, 2008). The generation-2 sequencing technologies enable
comprehensive resequencing of common, complex disorders and feature relatively deep
coverage. However, the nature of the technology also leads to relatively high sequence error
rates that can cause false discovery of SNPs that can be expensive and time-consuming to
validate.

Miller et al. Page 2

J Comput Sci Syst Biol. Author manuscript; available in PMC 2010 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.broad.mit.edu/igv/


Expression Analysis
Evolving from the WTSS methodologies, a variety of transcriptome sequencing methodologies
are developing collectively referred to as RNA-seq (Lister, et al., 2008; Marioni, et al., 2008;
Mortazavi, et al., 2008; Nagalakshmi, et al., 2008; Pan, et al., 2008; Wang, et al., 2009;
Wilhelm, et al., 2008). Transcriptome sequencing has evolved from the low-coverage EST and
cDNA projects which provided early gene discovery projects, and resulted in such databases
as the NCBI dbEST and the Unigene databases (Wheeler, et al., 2008). With a variety of human,
animal and plant genomes now completely sequenced, and vast assemblies of cDNAs and
ESTs, WTSS projects have evolved into gene discovery, novel exon determination (Shin, et
al., 2008; Wang, et al., 2008), whole transcriptome differential expression analysis (Mudge, et
al., 2008), and quantitative tag-based methodologies, the latter with sensitivities in the 1–10
molecule per cell range (t Hoen, et al., 2008). Moreover, miRNA and other small transcribed
non-coding RNAs can be captured using modified RNA isolation protocols (Chellappan and
Jin, 2009; Hafner, et al., 2008; Lu, et al., 2007), and sequenced in parallel with transcriptomes.
This has resulted in the discovery of a significant number of new miRNAs in animals (Burnside,
et al., 2008) and plants (Lu, et al., 2008; Lu, et al., 2006; Lu, et al., 2007), and the technology
has developed to the point that parallel sequencing of mRNAs and miRNAs on the same
libraries have been used to develop the concept of an RNA degradome (Addo-Quaye, et al.,
2008; Addo-Quaye, et al., 2008; German, et al., 2008).

Our focus has been the development of a hardware and software infrastructure sufficiently
robust as to support both variant detection and RNA expression analysis. This hardware and
software infrastructure serves multiple purposes. First, it provides a data management system
for the data acquired in multiple internal and contract sequencing projects, as well as a gateway
to statistical analysis tools. Second, it provides us with a querying mechanism for information
derived from these projects necessary for publication of large-scale sequencing results (Mudge,
et al., 2008; Sugarbaker, et al., 2008). Third, because publications frequently focus on the
narrow subset of the information pertinent to that paper, while WTSS generally provides much
more information than might necessarily be published, it provides a mechanism for both
validation of results presented by external reviewers and users, and a resource that can be
queried by the community for additional information that may not have been captured in or
the focus of the publication. Finally, the primary national archive for data of this type is the
NCBI Short Read Archive [SRA; (Wheeler, et al., 2008) and
http://www.ncbi.nlm.nih.gov/Traces/sra], designed in large part to serve the needs of the 1000
Genomes Project (Siva, 2008) and http://www.1000genomes.org. While the logic of this design
is indisputable, it remains that data deposited in the SRA will require a significant
computational effort to realign to reference sequence data.

Methods
Sequencing

While Alpheus is capable of handling Sanger, Roche 454, Illumina GA2 and SOLiD data, much
of our focus has been on Illumina GA2 output. The output sequence data from the GA2 is
intermediate in size (36–106 bp) compared to the ABI instrument (26 bp) and Roche 454 (200–
450bp).

Base-calling
Base-calling is generally performed using instrument-specific software.
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Hardware: Clustering and Alignments
Alignments are performed on a cluster of 50 SunBlade X6220s with 2 dual core processors
with 16 GB of RAM and 146 GB local disk per blade. Cluster management is provided by
Platform Rocks (Platform Computing, Markham, Ontario, Canada); resource management is
provided by Platform LSF/HPC. At present, we are experimenting with the deployment of the
alignment resources at the New Mexico Computing Applications Center (NMCAC) on an SGI/
Intel Altix cluster (14,336 cores).

The distributed WX2 database cluster (see below) consists of 4 Sun X4240 servers each with
two quad core processors, 64 GB RAM, 16 × 146 GB disks, and additional Sun x4140 server
with 2 quad core processors, 64 GB RAM and 8 × 146 GB disks. The X4240 servers host the
relational database, and the X4140 acts as the application server.

Database Management Systems
Alpheus was designed with an underlying relational database management system. The current
installation is on Sybase 12.5.4. We are, however, presently experimenting with an
implementation on the Kognitio’s (Berkshire, UK & Chicago, IL, USA) WX2 analytical
database.

Alignments
We have tested a variety of alignment tools for resequencing. These include GMAP (Wu and
Watanabe, 2005), Blast (Altschul, et al., 1997), MegaBlast (Zhang, et al., 2000) and Eland
[Illumina, Inc.]. Though the pipeline is insensitive to the source of the alignments, our
workhorse alignment software remains GMAP, originally developed to by Tom Wu at
Genentech, Inc., to align EST and cDNA data to reference genomes and transcriptomes, but
which can be parameterized to handle short-read data. GMAP implements a collection of
sophisticated algorithms producing gene models associated with cDNA sequences through
comparison with a genomic reference. Following an initial mapping step, the cDNA sequence
is aligned to its mapping target, establishing an approximate gene structure. This structure is
refined through the use of a novel splice site inference algorithm, ultimately producing its gene
model. It is notable that GMAP gene models accommodate the presence of microexons.

Genomic mapping in GMAP makes use of exact searches based upon 24 bp oligomers.
Beginning from the ends of the query cDNA sequence, oligomers are mapped onto the genomic
reference. The resulting maps are examined for reasonable levels of proximity. Expecting that
the cDNA is “expanded” in the genome sequence, this process is continued from the ends
inward along the cDNA in order to accumulate additional supporting evidence of proximal
genomic coordinates. The mapping is complete if this process produces a small number of
significant candidate regions on the genome; otherwise a different strategy is employed. In this
case, oligomers are sampled from the interior of the cDNA instead. Segments of the genomic
reference with sufficient density and colinearity of these 24-mers define the genomic map.

GMAP’s algorithm for approximate alignment of the cDNA to these mapped regions allows
for local mismatches, cDNA insertions, and genomic insertions. Each position of the cDNA is
associated with an 8-mer (e.g., an eight-nucleotide oligomer beginning at that position), and
that 8-mer associated with several coordinates on the genomic reference. From this perspective,
various alignments can be created by running along the cDNA, selecting monotonically
increasing (or decreasing) genomic coordinates. GMAP produces its “approximate alignment”
using dynamic programming, identifying the highest scoring path through this set of feasible
alignments.
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Refinement of this approximate alignment between the cDNA and the genomic segment, to
localize introns, for example, is performed by a technique Wu & Watanabe refer to as
“sandwich dynamic programming.” This method involves the computation of two global
alignment matrices (Needleman-Wunsch) in the vicinity of significant gaps in the approximate
alignment, and the selection of an optimal transition from one to the other. Scoring includes
rewards for transitions occurring across standard splicing donor-acceptor pairs.

Our experience with GMAP has shown it to be robust and reliable, and well-suited for a role
in high-volume processing pipelines such as Alpheus.

Wu has also made his recently-developed GSNAP software available to us (T. Wu, personal
communication). GSNAP was specifically designed to handle short-read data (26–100 bp),
including paired-end sequence data. Paired-end data includes both 5′- and 3′- ends of the
clonally amplified fragments, and is particularly useful in resequencing of genomic samples
(which include duplicate genes, introns, and intergenic regions). Paired ends are also useful in
de novo sequencing applications (i.e., those sequences for which no reference genome exists).

GSNAP is a program for aligning short reads to a reference sequence, typically a genome, but
possibly a set of transcripts. The program is designed to be both fast and flexible. GSNAP is
designed to be fast through its use of multiple specialized algorithms, each one handling a
different mapping type. The program is flexible in that it can handle arbitrarily long read
lengths, which is becoming important as sequencing technologies are currently generating
reads of 100 bp and longer. The program can also find and report alignments containing
multiple mismatches, a single insertion or a single deletion, or a combination of these. The
program is also able to map transcriptional reads that span an exon-exon boundary in a reference
genome, including distant translocation events.

GSNAP also has flexibility in the types of input data it can process, including single-end,
paired-end and circular-end reads. Paired-end reads are obtained when the sample DNA or
RNA is fragmented into uniform lengths, typically 200—500~bp, and sequences obtained from
both ends. Circular-end reads are obtained when long fragments of 10,000 bases or more are
circularized with a 200–500 bp linker and then cut at the appropriate places to provide reads
at the ends of the original long fragment.

The ability of GSNAP to handle paired-end reads, circular-end reads, and arbitrarily distant
translocation events depends on having random access to the entire genome. Most other short-
read mapping programs do not have this capability, because they are designed to have only
sequential access. The prevailing architecture is to index a given dataset of short reads, and
then to use that data-based index to scan the reference sequence. In contrast, GSNAP is one of
only a few programs that depend on pre-indexing the reference genome or transcriptome.

The reference indices used by GSNAP are in the same format as those used by GMAP, and a
reference index per genome or transcriptome serves both programs. A reference index is built
by scanning the reference sequence for 12-mers, at a sampling interval of 3 bp. The positions
for each sampled 12-mer are sorted and stored in a positions file. An offsets file contains
pointers to the positions for each sampled 12-mer. Therefore, a reference index allows a
program to find a uniform sampling of genomic or transcriptional positions for any given 12-
mer. In addition to the offsets and positions files, the pre-indexing process also stores a
compressed version of the reference sequence that essentially stores each 32 nucleotides in
three 4-byte words. This compression allows storage of non-ACGT characters in the reference
genome.

The GSNAP program then processes short reads to find alignments of the following types:
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Exact matches

Single mismatches

Multiple mismatches, possibly with a single insertion or deletion

Exon-exon matches, local (if the splicing flag is selected)

Exon-exon matches, distant (if the splicing flag is selected)

The combination of mismatches, insertions, and deletions is handled by assigning a penalty
value to an insertion or deletion. For example, if the user specifies a maximum of four
mismatches, and an indel penalty of 3, then the program will find alignments with a single
indel and up to 1 mismatch.

The user may specify a minimum and maximum search level. The minimum search level
specifies that the user wants all mapping results up to the chosen level. After the minimum
level of search is performed, the program reports all results accumulated through that level. If
there are no results found so far, the program then proceeds to subsequent levels through the
maximum and reports the results at the first successful level.

The program has a specialized algorithm to solve each alignment type. The algorithm for
finding exact matches is essentially an intersection operation. The program identifies a set of
12-mers that span the given short read, and takes the intersection of their corresponding
reference positions. Because our reference sequence is sampled every third nucleotide, the ends
of the short read may be represented by a 10-mer or 11-mer. These cases are handled by
substituting all possible nucleotides in the overhanging positions and treating these cases as
the union of the corresponding reference positions.

The algorithm for finding single mismatches is an intersection operation that allows one 12-
mer to be left out. The program must then compare the short read against the reference
sequence. This comparison operation makes use of the compressed version of the reference
sequence that was built during the pre-indexing process.

The algorithm for finding multiple mismatches is essentially a union operation. The program
looks up the reference positions for every 12-mer in the short read, and then uses a heap-based
priority queue to merge these lists of positions into segments. Based on this information, the
program can compute a minimum bound, or floor, for each segment, which is the number of
mismatches possible for that mapping. If this floor is less than the maximum number of
mismatches specified by the user, the program performs a comparison against the compressed
reference sequence. The resulting segments are stored for later use in finding insertions and
deletions, and for finding exon-exon alignments.

Insertions and deletions, or indels, are identified in two separate algorithms. The first algorithm
finds indels that occur in the middle of the short read, between the first and last 12-mer. It finds
pairs of segments within a user-specified distance of each other (default 30 bp for deletions
and 9 bp for insertions). The algorithm then tests each pair against the compressed reference
sequence to see if an alignment is possible within the allowed number of mismatches. The
second algorithm finds indels that occur in the ends, within the first or last 12-mer. Each
segment can be scored for a floor as if the first or last 12-mer were excluded, and segments
that have a sufficiently small floor are compared against the compressed reference sequence
for a possible alignment having the allowed number of mismatches or less.

To find exon-exon alignments, the program identifies segments that contain a likely donor or
acceptor splice site. These are sites containing the canonical GT or AG and having adjacent
nucleotides that score sufficiently high when compared against a probabilistic splice site model.
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For local exon-exon alignments, the program identifies pairs of segments, one with a donor
and one with an acceptor, that are within a certain distance on the genome corresponding to a
maximal intron length (default 100,000 bp). If a local exon-exon alignment cannot be found,
the program attempts to find distant exon-exon alignments by pairing segments with donor and
acceptor splice sites, regardless of their genomic distance.

Alpheus Pipeline
Alpheus is a multi-component system that includes processing and analytical pipelines,
information storage and retrieval services, and web-based applications (see Figure 1). The
pipeline begins with quality assessment of new read data, stores the data, maps the reads onto
genome and transcriptome references and creates alignments, computes coverage statistics for
these references, performs variant prediction, and stores the computed results for reuse. With
respect to mapping and alignment, the system is significantly flexible, typically customized to
the kind of read data being processed. This is necessary since by design Alpheus is intended
to accommodate high volume data produced by different technologies including Illumina GA2,
Roche 454, SOLiD, and Sanger. The system itself, developed in Java, makes extensive use of
clear data abstraction, tiered architecture principles, adapters, etc., in order to support this
fundamental flexibility and to facilitate its continuing improvement. The Alpheus
implementation is based upon industrial grade technologies (Java, Sybase), and makes use of
community standards (e.g., XML, GFF3), software (e.g., BioJava), and current best practices.

Available mapping and alignment methods include GMAP and GSNAP, as described earlier,
as well as MegaBLAST and Eland. Potential variants are identified using an Enumeration/
Characterization module, which makes use of the computed alignments. This module reports
synonymous and nonsynonymous SNPs, indels, premature stop codons, and candidate
alternative splicing. The variant module can accommodate different read and library types.
Read coverage is reported by gene, transcript, and chromosome. Other modules address
sequencing-based gene expression and small/micro RNA studies.

Alpheus provides researchers who lack programming or bioinformatic sophistication the
ability to explore and analyze tens of gigabases of sequence results and hundreds of samples
through the Alpheus web tools. In addition to a project summary, users can view read data,
coverage statistics, variant data, and perform sophisticated differential analysis. Data is
accessible to clients by download, and as discussed later, by export for use in other analytical
tools such as SAS JMP Genomics.

Alpheus Inputs: Read and Reference Data
There are a number of formats in current use for sequence data, both reads and reference. Sanger
reads typically are presented in FASTA format. Roche 454 quality scores are supplied in a
similar fashion: FASTA format with tagged to match their associated reads. Illumina reads are
provided in FASTQ format, similar to FASTA but with read and quality data residing in the
same file. Reference data includes not only genomic or transcript reference sequences, but also
annotations (e.g., gene, CDS) on the references. These are most often available as GFF3 or
Genbank feature table formats. Parsers for all of these are used in Alpheus.

Alignment to reference library and variant enumeration/characterization. GMAP and GSNAP
provide essential mapping and alignment for short read data, and these results are used for
identification of variants. Alignments to the references are made, typically require 95 percent
identity and an identity count of 34 bp for a 36 bp read. Best-match alignments for the reads
are stored in the database; all alignments equivalent to the best-match are stored which is
important in the case of hits to shared exons in alternate splicing. All positions at which a read
differs from the aligned reference sequence are enumerated. Contiguous indel events are treated
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as single polymorphisms. All occurrences of potential polymorphisms in reads with respect to
a given position are unified as a “single polymorphism,” with associated statistics on frequency,
alignment quality, base quality, and other attributes that may be used to assess the likelihood
that the polymorphism is a true variant. Candidate variants are further characterized by type
(SNP, indel, alternate splicing or stop codon) and as synonymous variant (sV) or non-
synonymous variant (nsV).

Data Model
Data is stored in sample-specific tables, which are created dynamically by the Alpheus pipeline
as each sample is processed. Sample-specific tables are differentiated from each other through
the use of a sample-specific suffix that identifies each table as belonging to the sample with
that primary key identifier. Transcriptome reference sequences are stored in the
RefSeqTranscript table; genome reference data (e.g. chromosomes) is stored in the
RefSeqGenome table. Gene data, including the genomic position of the gene, is stored in the
Transcription Unit table. Figure 2 shows a sub-section of the Alpheus database that stores
transcriptome alignments and substitution sequence variants. Data stored in sample-specific
tables include a record of all sequences and their accompanying quality scores, (SeqRead_1),
read alignments to the transcriptomic reference (RSTAlignmentInfo_1,
ReadRSTAlignment_1), and all substitution variants detected in each read (SNP_RST_1).
Sequence variants are initially recorded for each read, then “unified” into the RSTUnifiedSNP
table where each unique combination of reference position and allele is recorded once. If it can
be determined that a substitution results in an amino acid change, a row is stored for the SNP
in the NSSNP table, which records the reference and variant amino acid, as well BLOSUM62
(Henikoff and Henikoff, 1993) matrix score for the amino acid shift. Sample-specific statistics
such as the number of reads showing the variant allele, the total number of reads covering the
variant position and quality metrics for reads showing the allele are stored in the
RSTSNP_SampleFrequency table. Transcriptomic indels are stored in tables parallel to the
substitution tables. All positions are recorded with start and stop coordinates rather than a single
position. Similarly, genomic alignment, substitution, insertion/deletion and frequency tables
are stored in another parallel set of tables, with the difference that reference coordinates are
recorded on a genomic rather than a transcriptomic reference entity.

Alpheus Queries
The Alpheus system features a web-interface in which researchers select between two principal
types of queries by selecting boxes or items from pull-down menus. First, a collection of
sequences from an individual sample or set of samples can be queried for particular events
(principally, nucleotide variants or loci expressed at a certain level). Second, collections of
sequences from case-control cohorts can be queried for particular events that differ in frequency
or magnitude between groups. The query interface provides a considerable degree of flexibility
in inclusion or exclusion of particular samples in group comparisons and in cutoffs for
magnitude of change, event type, coverage, quality score or event frequency. This allows, for
example, a query to be performed with or without the inclusion of an outlier sample. Queries
can be performed in sequences aligned to more than one reference (for example, against
alignments to RefSeq transcript or a genome reference, which can return quite different datasets
[Wang et al., 2008]). Typically, an investigator will perform a query repetitively, modifying
filters, cutoffs and samples based on results returned. A researcher is able provide a set of
candidate genes or known features when an instance of Alpheus is developed for a particular
project. Such a reference gene or event set can provide the investigator with guidance regarding
optimal design of a filter set (by, for example, optimizing a query so that it will return a gene
set that the investigator knows to be altered in that experiment). Alpheus offers extensive link-
outs to accessory data that can greatly assist in annotating results of queries or assessing putative
biological significance on a gene-by-gene basis. These include gene- or variant-specific link-
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outs to Entrez gene, Genbank, OMIM and dbSNP. Alpheus also enables drill down from gene
lists to individual gene-associated events to sequences and alignments associated with specific
variants. With these tools, an investigator can undertake exploratory, iterative analyses of large
or complex datasets that provide an understanding of data complexity, stratification, limitations
and confounding effects. Having undertaken such exploratory analyses, an investigator can
perform a final query with optimized cutoffs and filters, returning a final data set for
downstream analyses.

Statistics and Analysis: SAS JMP Genomics
After querying and adjustment of filters to provide appropriate data screening for sequencing
errors, coverage, and differentially expression, data returned by queries can be exported to
Excel or SAS JMP Genomics SAS, Inc., Cary, NC) format. Because of the quantitative and
reproducible nature of data derived by direct sequencing (Marioni, et al., 2008), we have
collaborated with Russ Wolfinger of SAS to develop a suite of statistical analyses comparable
to those used for microarrays (Mudge, et al., 2008). Utilizing experimental and instrument
metadata associated with the sequencing run in Alpheus and stored in a locally-developed
laboratory information management system (LIMS), general assessment approaches such as
distribution analyses, correlation analysis at the sample and gene level, and principal
components analysis (PCA) can be applied to summarized sequence counts and proportions
of variant and reference alleles. JMP Genomics quality assessment tools are particularly useful
for partitioning variance due to experimental and technical factors, and for guiding the decision
for which factors should be included in downstream modeling. Additionally, JMP Genomics
tools can be applied in identifying potential outlier samples which should be excluded prior to
pursuing more detailed analyses.

Once outliers have been detected and removed, JMP Genomics provides a variety of modeling
methods, including analysis of variation (ANOVA) and association testing approaches, that
can be used to detect differences between groups of sequenced samples. Examples include
comparing transcript counts or variant proportions between cases and controls, or examining
changes in treatment effects for different sample groups over time. More complex analyses
can include combining different data types derived from sequence data to relate variant
sequences to gene expression changes, for example to identify cis-acting eQTLs (Kingsmore
et al., submitted).

The wealth of pattern discovery tools available to visualize patterns in high-dimensional
genomics data is also a particular strength of JMP Genomics. In addition to hierarchical
clustering, other methods such as K-Means clustering, principal components analysis, and
distance matrix creation offer visual representations of patterns which connect gene sets. After
identifying interesting gene or variant subsets through pattern discovery and modeling tools
in JMP Genomics, predictive modeling tools can also be used to discover well-supported
subsets of these which best predict classes of samples. Extensive cross-validation options are
available to ensure the selection of high-quality predictor profiles. The application of this
software is demonstrated in our examples below.

Results and Examples
As examples of the efficacy of Alpheus in practical large-scale data analysis, we enumerate
three examples of work made possible using the software system. Specifically, 1.) A variant
discovery project in which mesothelioma tissues were explored for SNP discovery; 2. A
schizophrenia project which utilized the gene expression capabilities; and 3.) A protocol
evaluation project, in which the effects of modifying protocols were evaluated.
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Variant Discovery: Mesothelioma
One of Alpheus primary functions is for discovery of single nucleotide polymorphisms (SNPs).
Alpheus was successfully used to determine candidate causal single nucleotide variants (SNVs)
in malignant pleural mesothelioma (MPM) tissues, an asbestos-related, rapidly fatal cancer
(Sugarbaker, et al., 2008). It is known that cancers arise due to multiple mutations; however
the causative mutations remain largely unknown. To determine possible mechanisms that lead
to the development of MPM transcriptome sequencing was performed to determine SNVs.
Whole-transcriptome 454 pyrosequencing was performed on cDNA from tumors of four MPM
patients as well as an adenocarcinoma lung tumor and normal lung tissue from an MPM patient.
For the six samples > 260 Mb of the transcriptome sequence were obtained by shotgun 454
pyrosequencing with the 454 Life Sciences GS20. More than 98% of the 15 million,
approximately 105 bp sequence reads aligned to human mRNA and DNA databases. Transcript
sequences mapped to 19,306 human reference mRNAs present in the RefSeq mRNAs database
(Pruitt, et al., 2005). In each sample, approximately 15,000 known RefSeq genes were detected
by one or more reads, with approximately 10,000 genes with at least 20 or more reads per gene,
corresponding to 1X coverage. To facilitate analysis and visualization, the data was imported
into Alpheus. Filter parameters include patient sample, gene name, read coverage, variant
frequency, variant type, variant location and links to NCBI sequence and gene function
databases.

Due to the high number of false positive SNVs characteristic of early high-throughput shotgun
sequencing, the data was filtered to determine true mutations. Inclusion criteria were that the
variant must be present in at least four reads covering the base position, present in at least 30%
of the total number of reads covering the variant, have a GS20 quality score = 20, be observed
in reads from both orientations and be located within a read that is >90% identical along the
entire length of the target RefSeq mRNA sequence. Under these constraints there was 96%
sensitivity in identification of 2,465 annotated SNPs found in dbSNP
(www.ncbi.nlm.nih.gov/projects/SNP). The authors found 100% agreement of 94 SNVs that
were independently confirmed using conventional Sanger sequencing. The six tissues
sequenced contained 659 to 1,155 known RefSeq genes with at least one coding SNV (cSNV).
Within the MPM tissues 153–220 genes contained previously uncharacterized cSNV – which
represent candidate causal mutations. The four tumors contained a total of 619 nonredundant,
previously uncharacterized cSNVs and 2,369 known SNVs. nsV not present in dbSNP were
further explored due to the possible functional relevance. Twelve nsV were common to all five
tumors but absent in the normal lung, four were common only to MPM tissues; sequencing of
the genomic DNA determined that they were germ-line variants and not mutations. 54 of 69
nsV tested within the mesothelioma tissue were present in the genomic DNA, indicating
polymorphisms and not mutations. The remaining 15 nsV were tumor-specific relating to
somatic mutations (n = 7), RNA editing (n = 1), loss of heterozygosity due to chromosomal
deletions (n = 3), and epigenetic silencing (n = 3). The frequency of the seven nsV somatic
mutations were evaluated in 49 additional MPM tumors by genotyping cDNA and gDNA in
the specific exons affected by the individual mutations. Three of the mutations were present
in 4–6% of a larger cohort of MPM tissues; COL5A2 mutation in 3 of 53 (c2773t,
NM_000393.3); UQCRC1 mutation in 3 of 53 (g851a, NM_003365.2) and MXRA5 mutation
in 2 of 53 (c7862a, NM_015419.1).

Differential Gene Expression: Schizophrenia
The schizophrenia data described below is based on 20 transcriptome samples, >475 million
reads, >16 gigabases of high-quality base-called data, and comprises more than 825 gigabytes
of data inserted in to the database.
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Schizophrenia genome convergence analysis using Alpheus—One of Alpheus
primary functions is to assist in the analysis of large genome-wide association studies with the
use of JMP Genomics statistical software. Mudge, et al. (Mudge, et al., 2008) used mRNA
transcripts isolated from 20 postmortem cerebellums to find candidate genes possibly involved
in schizophrenia (SCZ). While several studies have identified candidate SCZ risk genes, few
have been replicated or translated into causal alleles, diagnostics or therapeutics. Deep
sequencing was performed on mRNA transcripts of 14 SCZ patients and 6 matched controls.
12.5–38.7 million high quality sequences of 32–36 bp were generated per sample. The
sequences were aligned to the human genome and RefSeq transcript databases using the GMAP
algorithm allowing for < 2 mismatches. Interestingly 43.5 ± 6.7% of sequences aligned to a
transcript while 69.4 ± 9.6% to the genome. There was little difference in the total number of
transcripts (33,200 ± 1,000) between samples, corresponding to 85 ± 3% of RefSeq transcript
entries. 12.5 million sequences per sample were sufficient to reach a plateau in the number of
transcripts detected, with deeper sequencing resulting in a linear increase in average depth of
coverage. Alpheus was used to normalize the reads per million. Results were imported into
JMP Genomics and read frequencies were Log10 transformed which improved overlaid kernel
density estimates, univariate distribution and Mahalanobis distances. Using unsupervised PCA
(with Pearson product-momentum correlation) SCZ patients were easily distinguished between
controls. Principal components of variance (with Pearson correlations) were used to survey
diagnosis against other sources of variability such as patient, sample and experimental
parameters. The diagnosis attributed to 45.3% of variance with cause of death (9.6%),
instrument (12.5%), year sequenced (19%) and post-mortem interval (0.1%) as the other major
components of variance with a low unknown residual variance (13.5%). Analysis-of-variance
was performed using the diagnosis as the discriminatory effect and the major non-diagnosis
components of variance as fixed effects. Following FDR-correction 88 genes exhibited
differences in expression in genome-aligned read frequencies and 152 genes differed
significantly in transcript-aligned reads, 25 genes were common to both genome- and
transcript-aligned sequences. GO annotation determined that 23 genes significantly affected
were related to Golgi function or presynaptic vesicular transport and GABAergic
neurotransmission which may define a unifying molecular hypothesis for dysfunction in
cerebellar cortex in SCZ.

Protocol Evaluation using Transcriptome Sequencing
Whole Blood RNA Isolation

Human whole blood samples were collected in PAX gene tubes (Qiagen Inc., Valencia, CA)
from one of the co-authors at three random time points over a two-month period. The samples
were frozen at −80°C for at least 24h. RNA isolation was performed per manufacture’s
instructions.

Sequencing-by-synthesis
Transcriptomic libraries were prepared using Illumina’s standard protocols as previously
described (Mudge, et al., 2008) except with either poly-A selection, ribominus [Ribo (−)]
selection, or zinc fragmentation after poly-A tail selection. Briefly, following RNA quality
assessment using Bioanalyzer 2100 (Agilent Inc., Santa Clara, CA), poly A+ RNA was isolated
from 1 ì g total RNA by two rounds of oligo-dT selection (Invitrogen Inc., Santa Clara, CA.)
or rRNA depletion using a RiboMinus kit (Invitrogen) per manufacturer’s instructions. For
one sample, zinc fragmentation was performed for 10m at 70°C using Ambion RNA
Fragmentation Reagents (Applied Biosystems Inc., Austin TX) and ethanol/glycogen
precipitated. All mRNA samples were then annealed to high concentration of random hexamers
and reverse transcribed. Following second strand synthesis, end repair and A-tailing, adapters
complementary to sequencing primers were ligated to cDNA fragment ends. Libraries were
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size fractionated on agarose gels, 200 bp fragments excised and amplified by 15 cycles of
polymerase chain reaction. Following quality assessment, single-stranded cDNA fragments
were randomly annealed to the surface of a flow cell. Annealed fragments were extended with
DNA polymerase and unlabeled dNTPs in a solid phase “bridge amplification.” The resultant
double strand fragments were denatured and bridge amplification repeated for 35 cycles,
generating approximately 30–40 million clusters. Subsequently, 36 cycles of sequencing-by-
synthesis chemistry were performed in Illumina Genome Analyzer II instruments (Illumina
Inc.) with dNTPs featuring cleavable dyes and reversible terminators. Following base
extensions, four images are taken upon laser excitation. Incorporation of the next base occurred
after removal of the blocked 3′-terminus and fluorescent tag of the previously incorporated
nucleotide. High quality sequence reads, as defined by default filtering parameters used in the
Illumina GA Pipeline GERALD stage, were retained.

Read Alignment-based Gene Expression Profiling
High quality reads were aligned to the human genome, Build 36.2, RefSeq Transcript database,
Release 22 (Pruitt, et al., 2005), Unigene Hs, build 215 using the algorithm GMAP (Wu and
Watanabe, 2005) and Alpheus. Adjustments for SBS reads were oligomer overlap interval = 3
nt, identities = 34/36. A read was denoted aligned to a locus if its sequence alignment to the
genomic reference sequence (NCBI build 36.2) fell within the boundaries of the locus
coordinates on the chromosome. Locus boundaries on the genome were defined by NCBI
annotations, as reported through the Nucleotide database. Reads with a single best alignment
or with equally good alignments to alternative transcripts of the same locus were considered
uniquely aligned. Aligned read frequencies (per million reads) were calculated for each sample
and locus expression and locus using Alpheus.

Statistical Analysis
Read frequencies were log2 transformed prior to evaluation of inter-sample differences.
Overlaid kernel density estimates, correlation coefficients of pairwise sample comparisons and
unsupervised PCA (by Pearson product-momentum) of read frequencies were performed with
JMP Genomics. Heat maps were compared by selecting genes with a least a two-fold difference
of expression within one of the comparison groups and then hierarchal clustering of the data
set was performed.

Results
Library Prep Techniques Leads to Highly Variably Transcriptomic Expression Profiles

To compare the differences in transcriptomic expression variance in the Ilumina library prep
protocols we compared expression data of the normal Illumina library preparation protocol, a
zinc mRNA fragmentation protocol after normal library prep, or after performing ribosomal
exclusion. Whole blood was collected in PAX gene tubes from one of the coauthors at three
separate time points over a three-month time period. It is believed that zinc fragmentation
would improve 3′-bias, while ribosomal exclusion would allow for screening of non-gene
related transcribed RNA. After SBS and pipelining into Alpheus, uniquely aligned expression
data was imported into JMP Genomics for statistical analysis. After import, the data was log2
transformed. While the all of the samples were from the same individual we found vastly
different expression results from the three library preparation techniques as demonstrated by
parallel plots (fig. 3) and the unsupervised PCA (fig. 4). To determine changes in expression,
we subtracted log transformed values to find genes that had at least a two-fold difference in
expression. Under these constraints, 13,791 genes out of 33,887 total genes were at least two-
fold different in expression. As visualized by the hierarchal cluster analysis, overall expression
was much lower in the ribo(−) selection as compared to the normal technique and the
fragmented technique (fig. 5). The pairwise comparisons of fragmented versus non-fragmented
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protocols (r2= 0.8845) were fairly regular as compared to fragmented versus ribo(−) (r2 =
0.6945) and non-fragmented versus ribo(−) (r2 = 0.7582) (fig. 6). We were not able to determine
any major advantage using the fragmented technique over the non-fragmented technique in
terms of 3′ bias or overall expression data (data not shown). However, the data did highlight
expression differences of the two protocols (fig. 5). Both the non-fragmented and fragmented
techniques were preferred over ribo(−) selection as it appeared robust changes in transcriptomic
expression was muted using the ribo(−) technique as well as a very poor pairwise correlation
results as previously mentioned.

Discussion
Alpheus is a modular, robust data management and exploratory tool. It has been utilized for
multiple high-throughput genome and transcriptome sequencing projects with differing
objectives (total data presently stored in the production databases is approximately seven
terabytes). Because the environment of second-generation sequencing is evolving extremely
rapidly, we have scoped this project not to encompass all aspects of annotation, but rather to
leverage existing, supported resources. For example, while performing essential alignment
services, we rely on RefSeq, OMIM, pathway databases and other functional annotation
resources for primary information. Where necessary and appropriate (e.g., in differential gene
expression and exon discovery projects), we extract information from our database for further
analysis. For example, in quests for new or un-annotated genes and exons in specific tissues,
treated or pathologic tissues, we query the database for alignment information represented in
the genome sequence, but not present in the transcriptome-based unigene assemblies.
Occasionally, these are represented as gene models; however, frequently, even in heavily
annotated reference sequences (e.g., human and the model plant, Arabidopsis thaliana), reads
identify un-identified areas. An example of this is demonstrated above for mesothelioma;
however, the value of this query type has been shown in a variety of animal and plant projects
(manuscripts in preparation).

The design of the resource is amenable to expansion to accommodate new sequencing
technologies. While genome and transcriptome resequencing has been the focus of many
projects, particularly variant discovery and differential gene expression, a module to
accommodate miRNA sequencing is being added with relative ease. Developments in
sequencing technologies have thus far driven our development efforts. In recent months,
additions to the repertoire of production-level technologies are helping us prioritize the
evolution of Alpheus. These technologies include epigenetic mapping (e.g., methylome
analysis, (Butcher and Beck, 2008; Lister, et al., 2008; Pomraning, et al., 2008) and combined
RNA-seq techniques, such as those which define the RNA degradome (Addo-Quaye, et al.,
2008) and quantification of alternative splice isoform and alternative polyadenylation (Wang
et al., 2008). As per-run data outputs increase, methods for bar-coding or indexing of individual
libraries so that samples can be combined in sequencing runs and later deconvoluted become
more important, and difficult to decipher on a production scale (Craig, et al., 2008; Goossens,
et al., 2008; Hillier, et al., 2008). Analysis of structural variation in shotgun sequences from
sets of individual eukaryotic genomes (such as the 1000 genomes project) is also driving the
evolution of Alpheus. While much of our work is in higher eukaryotes with genomes ranging
from 1–3 gigabases, bacterial and lower eukaryotes have genomes that range from 3–50
megabases, and survey level sequencing (5–10x coverage) can be accommodated in a mixed
samples. Finally, metagenomes will present a particular challenge. Metagenomes are mixtures
of microorganisms from environmental, plant and animal samples, most of which are
unculturable and unidentified, which represent generally stable populations. The aggregate
representation of the DNA sequence of the population is thus referred to as the metagenome
(review, (Medini, et al., 2008). At present, the sequencing issues are approachable on a
production scale, but the informatics issues remain subtle (review, (Kunin, et al., 2008).
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Automating and organizing the subtlety of metagenomic analysis will be challenging, to say
the least.

As discussed in the introduction, we consider the Alpheus infrastructure as an adjunct to
publication of the results of high-throughput sequencing efforts. The NCBI Trace Archive
evolved from a need to present the raw data from genome and transcriptome sequencing
projects to allow the validation of experimental results, and to make the data available to a
larger community than the sequencing teams involved in the project. These resources continue
to be mined using new algorithmic methods, and frequently re-assembled by other groups. The
NCBI Short Read Archive is designed to serve a similar purpose. However, the computational
problem of utilizing this data, either resequencing alignments or particularly de novo
sequencing efforts, remains challenges. A single deep transcriptome alignment can take up to
1600 CPU hours to completely analyze. Alpheus can be used to present the underlying
assumptions used in complex experiments, and particularly to make the entire analyzed data
set available to the community in a fashion that it not only can be examined, but can be further
explored by others in the research community. As implemented, Alpheus can present virtually
any level of access, from the complete sequencing data set and underlying query tools to the
narrower data set necessary to confirm published experiments. The mesothelioma and
schizophrenia results are examples of this, with varying levels of accessibility to data at the
web sites.

The scale of contemporary high-throughput sequencing has migrated DNA data acquisition
from a simple tool to an essential platform for systems biology. We have developed Alpheus
as a data management and exploration tool to complement experimentation and provide leads
in a plethora of human, agricultural and basic biological research. As discussed, we intend to
continue to develop the system to extend into new technologies and research arenas.
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ANOVA Analysis of variation

cSNV Coding SNV

indels Insertions/deletions

MPM Malignant pleural mesothelioma
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nsV Non-synonymous genetic variations

SRA NCBI Short Read Archive

PCA Principal components analysis

ribo(−) Ribominus

SNPs Single nucleotide polymorphisms

SNVs Single nucleotide variants

sV Synonymous variant

WGSS Whole genome shotgun sequencing

WTSS Whole transcriptome shotgun sequencing
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Figure 1.
Key components of Alpheus and data flow through the system.
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Figure 2.
Partial schema of Alpheus. Transcriptome alignments and substitution sequence variants are
stored in this core schema, as described in detail in Materials and Methods.
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Figure 3.
Overlaid kernel density estimates of gene expression by sequence read frequencies. Gene
expression of whole blood mRNA for normal Illumina library prep (red), fragmented after
poly-A selection, and with Ribo(−) exclusion. The X-axis show log2 transformed gene
expression values, while the Y-axis shows kernel densities. Without log transformation,
samples showed greater variability in kernel densities and sequence read frequencies showed
near exponential decay.
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Figure 4.
Unsupervised PCA of expression data. Three dimensional plot of unsupervised PCA by
Pearson product-moment correlation of log sequence expression. Normal (Red) and
fragmented (Blue) libraries are more similar than the Ribo(−) prepped libraries (blue).
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Figure 5.
Hierarchal clustering of log transformed expression data. 13,791 genes out of 33,887 total
genes were at least two-fold different. Most genes had much higher expression in both normal
and fragmented library preps than Ribo(−). Normal and fragmented prep had 6,577 genes that
were at least two fold different. 10,404 genes were different between normal and ribo(−), while
11,104 genes were two fold different between fragmented and ribo(−) library preps
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Figure 6.
Pairwise sample correlations of Log2 transformed read frequencies, showing pairwise
correlation coefficients. Pairwise comparisons suggest fairly linear distribution of gene
expression of the normal library technique versus the fragmented technique, while there is
much great frequency distribution between ribo (−) and the normal and fragmented techniques.
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