Susan L. Brantley

Susan L. Brantley
Pennsylvania State University | Penn State · Department of Geosciences

Ph.D. Geological and Geophysical Sciences

About

576
Publications
111,170
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
34,160
Citations
Introduction
Rock-water interaction

Publications

Publications (576)
Chapter
Full-text available
Experimental research indicates that the efficiency of enhanced rock weathering (ERW) as a form of carbon dioxide removal (CDR), is subject to large variations in effectivity, and that the current state of knowledge is not sufficient to develop robust predictive capabilities. It appears that the heterogeneous mineralogy and reactivity of basalt, as...
Article
Full-text available
While unconventional oil and gas (UOG) development is changing the world economy, processes that are used during UOG development such as high-volume hydraulic fracturing (“fracking”) have been linked with water contamination. Water quality risks include leaks of gas and salty fluids (brines) that are coproduced at wellpads. Identifying the cause of...
Article
Full-text available
After 4.5 billion years as an evolving and dynamic planet, the Earth continues to evolve but with human‐altered dynamics. Earth scientists have special opportunities and responsibilities to accelerate our understanding of Earth's changes that are transforming our most remarkable home.
Preprint
While unconventional oil and gas development (UOGD) is changing the world economy, processes that are used during UOGD such as high-volume hydraulic fracturing (“fracking”) have been linked with water contamination. Water quality risks include leaks of gas and salty fluids (brines) that are co-produced at wellpads. Identifying the cause of contamin...
Article
Full-text available
As drinking‐water scarcity grows worldwide, we need to improve predictions of the quantity and quality of our water resources. An overarching problem for model improvement is that we do not know the geological structure of aquifers in sufficient detail. In this work, we demonstrate that mineral‐water reactions imprint structure in the subsurface th...
Article
Despite its importance, only a few researchers have incorporated the effects of fracturing into models of reactive transport for rock weathering. Here we explore 2D simulations that describe weathering under conditions of diffusive and advective transport within heterogeneous media consisting of rocky blocks and fractures. In our simulations, the D...
Article
Earth's climate may be stabilized over millennia by solubilization of atmospheric carbon dioxide (CO2) as minerals weather, but the temperature sensitivity of this thermostat is poorly understood. We discovered that the temperature dependence of weathering expressed as an activation energy increases from laboratory to watershed as transport, clay p...
Article
Full-text available
Although metal redox reactions in soils can strongly affect carbon mineralization and other important soil processes, little is known about temporal variations in this redox cycling. Recently, potentiostatically poised electrodes (fixed-potential electrodes) have shown promise for measuring the rate of oxidation and reduction at a specific reductio...
Article
The oxidation of petrogenic organic carbon (OCpetro) is a source of carbon dioxide to the atmosphere over geological timescales. The rates of OCpetro oxidation in locations that experience low rates of denudation remain poorly constrained, despite these landscapes dominating Earth’s continental surface area. Here, we track OCpetro oxidation using r...
Article
Analytical and numerical solutions have been proposed to model reaction fronts to study soil formation. With growing access to large geo-datasets and powerful computational capacity, data-driven models are becoming increasingly useful. We therefore explored the use of a neural network (NN) guided by a physics-based model (PBM) to simulate the depth...
Article
The reaction mechanism of weathering of chlorite, an important rock-forming phyllosilicate, is not well understood in natural settings. In this work we investigated the weathering of Fe-rich chlorite from deep protolith to saprock to soil across a small shale-underlain watershed in the Appalachian Mountains, USA (Shale Hills). We found that oxidati...
Article
Unconventional oil and gas development (UOGD) sometimes impacts water resources, including incidents of methane (CH4) migration from compromised wells and spills that degrade water with salts, organics, and metals. We hypothesized that contamination may be more common where UOGD overlaps with legacy coal, oil, and gas extraction. We tested this hyp...
Article
Full-text available
Weathering continuously converts rock to regolith at Earth's surface while regulating the atmospheric concentrations of CO2 and O2. Shale weathering is of particular interest because shale, the most abundant rock type exposed on continents, stores much of the ancient organic carbon (OCpetro) buried in rocks. Using geochemical and mineralogical anal...
Article
Full-text available
Meteoric waters move along pathways in the subsurface that differ as a function of lithology because of the effects of chemical and physical weathering. To explore how this affects stream chemistry, we investigated watersheds around an igneous intrusion in the Luquillo Mountains (Puerto Rico). We analyzed streams on 1) unmetamorphosed country rock...
Article
Understanding emissions of methane from legacy and ongoing shale gas development requires both regional studies that assess the frequency of emissions and case studies that assess causation. We present the first direct measurements of emissions in a case study of a putatively leaking gas well in the largest shale gas play in the United States. We q...
Preprint
Full-text available
Changes in metal redox in soils can exert strong controls on carbon mineralization but are difficult to measure in real time. Recently, potentiostatically poised electrodes (fixed-potential electrodes) have been demonstrated as promising for measuring the rate of oxidation and reduction at a specific reduction potential in situ in riparian soils bu...
Article
Full-text available
To investigate how bedrock transforms to soil, we mapped the topography of the interface demarcating onset of weathering under an east‐west trending shale watershed in the Valley and Ridge province in the USA Using wave equation travel‐time tomography from a seismic array of >4,000 geophones, we obtained a 3D P‐wave velocity (Vp) model that resolve...
Article
Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (P...
Article
Full-text available
Predicting the partitioning between aqueous and gaseous C across landscapes is difficult because many factors interact to control carbon dioxide (CO2) concentrations and removal as dissolved inorganic carbon (DIC). For example, carbonate minerals buffer soil pH and allow CO2 dissolution in porewaters, but nitrification of fertilizers may decrease p...
Article
Data sharing benefits the researcher, the scientific community, and the public by allowing the impact of data to be generalized beyond one project and by making science more transparent. However, many scientific communities have not developed protocols or standards for publishing, citing, and versioning datasets. One community that lags in data man...
Article
Full-text available
We used seismic refraction to image the P‐wave velocity structure of a shale watershed experiencing regional compression in the Valley and Ridge Province (USA). From estimates showing strong compressional stress, we expected the depth to unweathered bedrock to mirror the hill‐valley‐hill topography (“bowtie pattern”) by analogy to seismic velocity...
Article
Full-text available
How does hillslope structure (e.g., hillslope shape and permeability variation) regulate its hydro-geochemical functioning (flow paths, solute export, chemical weathering)? Numerical reactive transport experiments and particle tracking were used to answer this question. Results underscore the first-order control of permeability variations (with dep...
Article
More above-ground biomass (kg m⁻²) grows in the northern Appalachian mountains (USA) in forests on shale than on sandstone at all landscape positions other than ridgetops. This has been tentatively attributed to physical (rather than chemical) attributes of the substrates such as elevation, particle size, and water capacity. However, shales have ge...
Article
Full-text available
Endmember mixing analysis (EMMA) is often used by hydrogeochemists to interpret the sources of stream solutes, but variations in stream concentrations and discharges remain difficult to explain. We discovered that machine learning can be used to highlight patterns in stream chemistry that reveal information about sources of solutes and subsurface g...
Article
Full-text available
Large‐scale models often use a single grid to represent an entire catchment assuming homogeneity; the impacts of such an assumption on simulating evapotranspiration (ET) and streamflow remain poorly understood. Here, we compare hydrological dynamics at Shale Hills (PA, USA) using a complex model (spatially explicit, >500 grids) and a simple model (...
Article
Numerous geochemical approaches have been proposed to ascertain if methane concentrations in groundwater, [CH4], are anomalous, i.e., migrated from hydrocarbon production wells, rather than derived from natural sources. We propose a machine-learning model to consider alkalinity, Ca, Mg, Na, Ba, Fe, Mn, Cl, sulfate, TDS, specific conductance, pH, te...
Article
Since the early 2000s, an increasing number of power plants in the U.S. have switched from burning coal to burning gas and thus have released less SO2 emissions into the atmosphere. We investigated whether stream chemistry (i.e., SO4²⁻) also benefits from this transition. Using publicly available data from Pennsylvania (PA), a U.S. state with heavy...
Article
Full-text available
Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface...
Article
Full-text available
The critical zone sustains terrestrial life, but we have few tools to explore it efficiently beyond the first few meters of the subsurface. Using analyses of high‐frequency ambient seismic noise from densely spaced seismometers deployed in the forested Shale Hills subcatchment of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO), we sh...
Article
Clay weathering in shales is an important component of the global Li budget because Li is mobilized from Li-rich clay minerals and shale represents about one quarter of the exposed rocks on Earth. We investigate Li isotopes and concentrations to explore implications and mechanisms of Li isotopic fractionation in Shale Hills, a first-order catchment...
Article
To further develop boron isotopes as a tool for understanding shale weathering, we explored patterns of boron concentrations and isotopes across the forested Susquehanna Shale Hills Critical Zone Observatory (CZO). We present boron measurements for all watershed components that provided a foundation for examining water-rock interactions in a shale...
Article
Weathering plays a crucial role in a number of environmental processes, and the microstructure and evolution of multi-scale pore space is a critically important factor in weathering. In igneous rocks the infiltration of meteoric water into initially relatively dry material can initiate disaggregation, increasing porosity and surface area, and allow...
Article
Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localiz...
Article
Full-text available
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) h...
Article
Pyrite is a ubiquitous iron sulfide mineral that is oxidized by trace oxygen. The mineral has been largely absent from global sediments since the rise in oxygen concentration in Earth’s early atmosphere. We analyzed weathering in shale, the most common rock exposed at Earth’s surface, with chemical and microscopic analysis. By looking across scales...
Preprint
Full-text available
Endmember mixing analysis (EMMA) is often used by hydrogeochemists to interpret the sources of stream solutes, but variations in stream concentrations and discharges remain difficult to explain. We discovered that machine learning can be used to reveal patterns in stream chemistry that pertain to information about weathering sources of solutes and...
Article
Full-text available
Significance To understand groundwater in weathered bedrock aquifers, we explore (bio)geochemical reactions using geophysical measurements. The result leads to a conceptual model for the three-dimensional distribution of geochemical alteration in the subsurface—well beyond the typical approach of inferring (bio)geochemical reactions in the subsurfa...
Article
Chemical spills in streams can impact ecosystem or human health. Typically, the public learns of spills from reports from industry, media, or government rather than monitoring data. For example, ∼1300 spills (76 ≥ 400 gallons or ∼1500 L) were reported from 2007 to 2014 by the regulator for natural gas wellpads in the Marcellus shale region of Penns...
Preprint
Full-text available
As natural gas has grown in importance as a global energy source, leakage of methane (CH4) from wells has sometimes been noted. Leakage of this greenhouse gas is important because it affects groundwater quality and, when emitted to the atmosphere, climate. We hypothesized that streams might be most contaminated by CH4 in the northern Appalachian Ba...
Article
As natural gas has grown in importance as a global energy source, leakage of methane (CH4) from wells has been noted. Leakage of this greenhouse gas is important because it affects groundwater quality and, when emitted to the atmosphere, climate. We hypothesized that streams might be most contaminated by CH4 in the northern Appalachian Basin in reg...
Article
Weathering of bedrock creates and occludes permeability, affecting subsurface water flow. Often, weathering intensifies above the water table. On the other hand, weathering can also commence below the water table. To explore relationships between weathering and the water table, a simplified weathering model for an eroding hillslope was formulated t...
Chapter
Full-text available
One goal in critical zone (CZ) science is to project the response of Earth's near‐surface fluxes of water, sediments, and nutrients to perturbations in climate and human actions, an approach that is increasingly known as earthcasting. However, earthcasting requires knowledge of the present and a deep understanding of the past and, more importantly,...
Preprint
Full-text available
More than 1 million wells may have been completed using hydraulic fracturing techniques in the USA alone; however, there have been few case studies exploring the impacts on water resources due to methane migration. This study evaluated the results of three investigations initiated by the US Environmental Protection Agency, that were subsequently de...
Article
Full-text available
More than 1 million wells may have been completed using hydraulic fracturing techniques in the USA alone; however, there have been few case studies exploring the impacts on water resources due to methane migration. This study evaluated the results of three investigations initiated by the US Environmental Protection Agency, that were subsequently de...
Article
We present a model of chemical reaction within hills to explore how evolving porosity (and by inference, permeability) affects flow pathways and weathering. The model consists of hydrologic and reactive‐transport equations that describe alteration of ferrous minerals and feldspar. These reactions were chosen because previous work emphasized that ox...
Article
The flux of solutes from the chemical weathering of the continental crust supplies a steady supply of essential nutrients necessary for the maintenance of Earth’s biosphere. Promotion of weathering by microorganisms is a well-documented phenomenon and is most often attributed to heterotrophic microbial metabolism for the purposes of nutrient acquis...
Article
Full-text available
Interdisciplinary science affords new opportunities but also presents new challenges for biogeosciences collaboration. Since 2007, we have conducted site-based interdisciplinary research in central PA, USA, at the Susquehanna Shale Hills critical zone observatory. Early in our collaboration, we realized the need for some best practices that could g...
Article
Full-text available
Understanding streamflow generation and its dependence on catchment characteristics requires large spatial data sets and is often limited by convoluted effects of multiple variables. Here we address this knowledge gap using data‐informed, physics‐based hydrologic modeling in two catchments with similar vegetation and climate but different lithology...
Article
The rate of chemical weathering has been observed to increase with the rate of physical erosion in published comparisons of many catchments, but the mechanisms that couple these processes are not well understood. We investigated this question by examining the chemical weathering and porosity profiles from catchments developed on marine shale locate...
Preprint
Full-text available
In the face of growing needs for water and energy, a fundamental understanding of the environmental impacts of human activities becomes critical for managing water and energy resources, remedying water pollution, and making regulatory policy wisely. Among activities that impact the environment, oil and gas production, wastewater transport, and urba...
Article
Full-text available
Soil CO2 and O2 cycles are coupled in some processes (e.g., respiration) but uncoupled in others (e.g., silicate weathering). One benchmark for interpreting soil biogeochemical processes affected by soil pCO2 and pO2 is to calculate the apparent respiratory quotient (ARQ). When aerobic respiration and diffusion are the dominant controls on gas conc...
Article
Methane (CH4) enters waters in hydrocarbon-rich basins because of natural processes and problems related to oil and gas wells. As a redox-active greenhouse gas, CH4 degrades water or emits to the atmosphere and contributes to climate change. To detect if methane migrated from hydrocarbon wells (i.e., anomalous methane), we examined 20 751 methane-c...
Article
Full-text available
Interdisciplinary science affords new opportunities but also presents new challenges for biogeosciences collaboration. Since 2007, we have conducted site-based interdisciplinary research in central PA, USA at the Susquehanna Shale Hills Critical Zone Observatory. Early in our collaboration, we realized the need for some best practices that could gu...
Article
Although it has been long understood that rock properties strongly modulate the chemical and physical transformation of rock to regolith, recent studies highlight the central role of mechanical fracturing in the shallow subsurface. Competing hypotheses for how fractures co-evolve with surface processes suggest either that topographic stresses enhan...
Article
Full-text available
Projections of future conditions within the critical zone—earthcasts—can be used to understand the potential effects of changes in climate on processes affecting landscapes. We are developing an approach to earthcast how weathering will change in the future using scenarios of climate change. As a first step here, we use the earthcasting approach to...