
A Customizable Substrate for Concurrent LanguagesSuresh Jagannathan Jim PhilbinNEC Research Institute4 Independence WayPrinceton, NJ 08540fsuresh | philbing@research.nj.nec.comAbstractWe describe an approach to implementing a wide-range ofconcurrency paradigms in high-level (symbolic) program-ming languages. The focus of our discussion is sting,a dialect of Scheme, that supports lightweight threads ofcontrol and virtual processors as �rst-class objects. Giventhe signi�cant degree to which the behavior of these ob-jects may be customized, we can easily express a varietyof concurrency paradigms and linguistic structures withina common framework without loss of e�ciency.Unlike parallel systems that rely on operating system ser-vices for managing concurrency, sting implements con-currency management entirely in terms of Scheme objectsand procedures. It, therefore, permits users to optimizethe runtime behavior of their applications without requir-ing knowledge of the underlying runtime system.This paper concentrates on (a) the implications of thedesign for building asynchronous concurrency structures,(b) organizing large-scale concurrent computations, and(c) implementing robust programming environments forsymbolic computing.1 IntroductionThe growing interest in parallel computing has led to thecreation of a number of parallel programming languagesthat de�ne explicit high-level program and data structuresfor expressing concurrency. Parallel languages targetedfor non-numerical application domains typically support(in varying degrees of e�ciency) concurrency structuresthat realize dynamic lightweight process creation[13, 15]high-level synchronization primitives[28, 29], distributeddata structures[6], and speculative concurrency[8, 25]. Ine�ect, all these parallel languages may be viewed as con-sisting of two sublanguages { a coordination language re-sponsible for managing and synchronizing the activitiesof a collection of processes, and a computation languageA slightly modi�ed version of this paper appears in theProceedings of the 1992 ACM Symposium on Program-ming Language Design and Implementation.

responsible for manipulating data objects local to a givenprocess.In this paper, we describe the implementation of a coor-dination substrate that permits the expression of a widerange of concurrency structures within the context of asymbolic computation language. Our intention is to de-�ne a general-purpose coordination model on top of whicha number of specialized coordination languages can be ef-�ciently implemented. We use Scheme[27] as our compu-tation base. We emphasize, however, that the design ofthe substrate could be incorporated into any high-levelsymbolic programming language.One obvious way of implementing a high-level parallel lan-guage is to build a dedicated (user-level) virtual machine.The virtual machine serves primarily as a substrate thatimplements the high-level concurrency primitives foundin the coordination sublanguage. Given a coordinationlanguage L supporting concurrency primitive P , the roleof L's virtual machine (LP ) is to handle all implementa-tion aspects related to P ; this often requires that the ma-chine manage process scheduling, storage management,synchronization, etc. Because LP is tailored only towardse�cient implementation of P , however, it is often unsuit-able for implementing signi�cantly di�erent concurrencyprimitives. Thus, to build a dialect of L with concur-rency primitive P 0 usually requires either building a newvirtual machine or expressing the semantics of P 0 usingP . Both approaches have their obvious drawbacks: the�rst is costly to implement given the complexity of imple-menting a new virtual machine; the second is ine�cientgiven the high-level semantics of P and LP 's restrictedfunctionality.Rather than building a dedicated virtual machine for im-plementing concurrency, a language implementation mayuse low-level operating system services[5, 30]. Process cre-ation and scheduling is implemented by creating a heavy-or lightweight OS-managed thread of control; synchro-nization is handled using low-level OS-managed struc-tures. These implementations tend to be more portableand extensible than systems built around a dedicated run-time system, but they necessarily sacri�ce e�ciency[2]since every (low-level) kernel call requires a context switchbetween the application and the operating system. More-over, generic OS facilities perform little or no optimizationat either compile time or runtime since they are usually



insensitive to the semantics of the concurrency operatorsof interest.The dialect of Scheme described here (called sting)includes a coordination language (implemented via adedicated virtual machine) for expressing asynchronouslightweight concurrency that combines the best of bothapproaches. In contrast to other parallel Schemesystems[12, 13, 19] and parallel dialects of similar high-level languages[10, 28], the basic concurrency objects insting (threads and virtual processors) are streamlineddata structures with no complex synchronization or valuetransmission semantics. Unlike parallel systems that relyon OS services for managing concurrency, sting imple-ments all concurrency management issues in terms ofScheme objects and procedures, permitting users to op-timize the runtime behavior of their applications withoutrequiring knowledge of underlying OS services. We ar-gue that sting supports the features essential to creatingand managing various forms of asynchronous parallelismwithin a conceptually uni�ed, very general framework.Our results show that it is possible to build an e�cientsubstrate upon which various parallel dialects of high-level symbolic languages can be built. Sting is not in-tended merely to be a vehicle that implements stand-alone short-lived programs, however. We envision thissystem as providing a framework for building a rich pro-gramming environment for parallel symbolic computing.In this regard, the system provides support for threadpreemption, per-thread asynchronous garbage collection,exception handling across thread boundaries, and appli-cation dependent scheduling policies. In addition, it con-tains the necessary functionality to handle persistent long-lived objects, multiple address spaces and other featurescommonly associated with advanced programming envi-ronments.This paper concentrates on the implications of the stingdesign for building asynchronous concurrency structures,organizing large-scale concurrent computations, and im-plementing robust programming environments. A detaileddescription of its implementation is given in [18]. The pa-per is structured as follows. In the next section, we givean overview of sting focusing primarily on the structureof the coordination model. Section 3 describes the threadand virtual processor abstractions. Section 4 describesthe dynamics of thread execution and synchronizationin the context of implementating of several well-knownconcurrency paradigms (e.g., result-parallel (�ne-grained)parallelism[3], master-slave computations[11], speculativeconcurrency, and barrier synchronization). We argue thatdespite obvious syntactic and methodological di�erences,these paradigms all impose common requirements on theunderlying runtime system: they require throttling of dy-namically generated processes, cheap synchronization, ef-�cient storage management, and the ability to treat pro-cesses as bona �de data objects. Section 5 presents someperformance �gures, and comparison to related work isgiven in Section 6.

2 The ContextFour features of the sting design, when taken as a whole,distinguish the system from many other symbolic parallellanguages:1. The Concurrency Abstraction: Concurrency is ex-pressed in sting is via a lightweight thread of con-trol. A thread is a non-strict �rst-class data struc-ture that super�cially resembles the object createdby a MultiLisp future[13], for example. We elabo-rate upon the di�erences in the following section.2. The Processor and Policy Abstractions: Threads ex-ecute on a virtual processor (VP) that represents anabstraction of a physical computing device. Theremay be many more virtual processors than the ac-tual physical processors available. Like threads, vir-tual processors are also �rst-class objects. A VPis closed over a policy manager that determines thescheduling and migration regime for the threads thatit executes. Di�erent VPs can be closed over di�er-ent policy managers without incurring any perfor-mance penalty.A collection of virtual processors can be combined toform a virtual machine. A virtual machine is closedover an address space managed by its virtual pro-cessors. Multiple virtual machines can execute on asingle physical machine consisting of a set of physi-cal processors. Virtual machines are also denotableScheme objects and may be manipulated as such.3. Storage Model: A thread allocates data on a stackand heap that it manages exclusively. Thus, threadsgarbage collect their state independently of one an-other; no global synchronization is necessary in or-der for a thread to initiate a garbage collection.Data may be referenced across threads. Inter-areareference information maintained by areas is used togarbage collect objects across thread boundaries[4,26]. Storage is managed via a generational scaveng-ing collector[21, 32]; long-lived or persistent dataallocated by a thread thread is accessible to otherthreads in the same virtual machine.The design is sensitive to storage locality concerns;for example, storage for running threads are cachedon VPs and are recycled for immediate reuse when athread terminates. Moreover, multiple threads mayshare the same dynamic context whenever data de-pendencies warrant.4. The Program Model: Sting permits exceptions to behandled across threads, supports non-blocking I/O,permits the scheduling of virtual processors on phys-ical processors to be customizable in the same waythat the scheduling of threads on a virtual processoris customizable, and provides an infra-structure forimplementing multiple address spaces and long-livedshared persistent objects.2



3 Threads and Virtual ProcessorsThe computation sublanguage of sting is Scheme[27], ahigher-order lexically scoped dialect of Lisp. The compilerused is a modi�ed version of Orbit[20].The main components in the coordination sublanguage ofsting are lightweight threads of control and virtual pro-cessors. Threads are simple data structures that encapsu-late local storage (e.g., registers, stack and heap organizedinto areas), code, and relevant state information (e.g., sta-tus, priorities, preemption bits, locks, etc.). They de�nea separate locus of control. The code associated witha thread is executed for e�ect, not value; thus, threadsdo not adhere to any particular synchronization protocol.The system imposes no constraints on the code encapsu-lated by a thread: any valid Scheme expression can betreated as a distinct process.Each virtual processor (VP) is closed over a (1) a threadcontroller that implements a state transition function onthreads, and (2) a policy manager that implements botha thread scheduling and thread migration policy. A VPis also closed over a set of registers and interrupt han-dlers. Most of the dedicated registers found in the VPare managed by Orbit; these include a register containingthe return address of the current procedure, registers tohold the arguments to a procedure, and registers that re-fer to the top-of-stack and top-of-heap. Another registerpoints to the currently executing thread. Besides vari-ous handlers and a policy manager, a VP also retains theidentity of its virtual machine, and the physical processoron which it is executing.Virtual processors are multiplexed on physical processorsin the same way that threads are multiplexed on virtualprocessors; associated with each physical processor is apolicy manager that dictates the scheduling of the virtualprocessors which execute on it.3.1 ThreadsThreads are �rst-class objects in sting. Thus, they maybe passed as arguments to procedures, returned as results,and stored in data structures. Threads can outlive the ob-jects that create them. A thread is closed over a thunk,a nullary procedure, that is applied when the thread exe-cutes. The value of the application is stored in the threadon completion.The static component of a thread also contains state in-formation on the thread's status. A thread can be eitherdelayed, scheduled, evaluating, stolen or determined. Adelayed thread will never be run unless the value of thethread is explicitly demanded. A scheduled thread is athread scheduled to evaluate on some virtual processorbut which has not yet started executing. An evaluatingthread is a thread that has started running. A threadremains in this state until the application of its thunkyields a result. At this point, the thread's state is set todetermined. Stolen threads are discussed in Section 4.1.In addition to state information and the code to be eval-uated, a thread also holds references to

1. other threads waiting for it to complete,2. references to the thunk's dynamic and exception en-vironment, and3. genealogy information indicating the thread's parent,siblings, and children.Dynamic and exception environments are used to imple-ment 
uid bindings and inter-process exceptions. Geneal-ogy information serves as a useful debugging and pro�lingtool that allows applications to monitor the dynamic un-folding of a process tree.Evaluating threads are associated with a dynamic contextcalled a thread control block (TCB). Besides encapsulat-ing thread storage (stacks and heaps), the TCB containsinformation about the current state of the active thread(e.g., is the thread currently running on some VP, is itblocked, suspended, terminated, etc?), requested statetransitions on this thread made by other threads, the cur-rent quantum for the thread, and the virtual processor onwhich the thread is running. TCBs hold some other in-formation for implementing speculative and barrier syn-chronization that we discuss in Section 4.3.The implementation of threads requires no alteration tothe implementation of other primitive operations in thelanguage. The synchronization semantics of a thread isa more general (albeit lower-level) form of the synchro-nization facility available via e.g., MultiLisp's \touch",Linda's tuple-space[7], or CML's \sync"[28]. The ap-plication completely control the condition under whichblocked threads may be resumed. However, there is ex-plicit system support for data
ow (i.e., future-touch), non-deterministic choice, and constraint-based or barrier syn-chronization.Users manipulate threads via a set of procedures (listedbelow) de�ned by a thread controller (TC) that imple-ments synchronous state transitions on thread state. TheTC is written entirely in Scheme with the exception ofa few primitive operations to save and restore registers.The thread controller allocates no storage; thus, a TCcall never triggers garbage collection. Besides these oper-ations, a thread can enter the controller because of pre-emption.(fork-thread expr vp) creates a thread to evaluateexpr, and schedules it to run on vp.(create-thread expr) creates a delayed thread thatwhen demanded evaluates expr.(thread-run thread vp) inserts a delayed, blockedor suspended thread into the ready queue of thepolicy manager for vp.(thread-wait thread) causes the thread executingthis operation to block until thread's state be-comes determined.(thread-value thread) returns the value of the ap-plication associated with thread.(thread-block thread . blocker) requests threadto block; blocker is the condition on which thethread is blocking.3



Figure 1: Threads and Virtual Processors(thread-suspend thread . quantum)requests thread to suspend execution. If thequantum argument is provided, the thread isresumed when the period speci�ed has elapsed;otherwise, the thread is suspended inde�nitelyuntil it is explicitly resumed using thread-run .(thread-terminate thread . values)requests thread to terminate with values as itsresult.1(yield-processor) causes the current thread to re-linquish control of its VP. The thread is insertedinto a suitable ready queue.(current-thread) returns the thread executing thisoperation.3.1.1 A Simple ExampleTo illustrate how users might program with threads, con-sider the program shown in Fig. 2 that de�nes a Sieve ofErasthosenes prime �nder implementation.Note that the de�nition makes no reference to any partic-ular concurrency paradigm; such issues are abstracted byits op argument.This implementation relies on a user-de�ned synchroniz-ing stream abstraction that provides a blocking operation1As in some other Scheme dialects, expressions can yield mul-tiple values.

(define (filter op n input)(let loop ((input input)(output (make-stream))(last? true))(let ((x (hd input)))(cond ((terminate? x)(attach (terminate-token) output)output)((zero? (mod x n))(loop (rest input)outputlast?))(last?(op (lambda ()(filter op x output)))(loop (rest input)(attach x output)false))(else (loop (rest input)(attach x output)last?)))))(define (sieve op n)(let ((input (make-integer-stream n)))(op (lambda ()(filter op 2 input)))))Figure 2: An abstraction of a concurrent prime �nder.4



on stream access ( hd ) and an atomic operation for ap-pending to the end of a stream ( attach ).We can de�ne various implementations of a prime num-ber �nder that exhibit di�erent degrees of asynchronousbehavior. For example,(let ((filter-list (list)))(sieve (lambda (thunk)(set filter-list(cons (create-thread (thunk))filter-list)))n))de�nes an implementation in which �lters are generatedlazily; once a demanded, a �lter repeatedly removes ele-ments o� its input stream, and generates potential primesonto its output stream. To initiate a new �lter scheduledon a VP using a round-robin thread placement discipline,we might write:(thread-run(car filter-list)(mod (1+ (vm.vp-vector (current-vp).vm))n))(Current-vp) returns the vp on which the expressionis evaluated; ((current-vp).vm) de�nes the virtual ma-chine of which the current VP is a part. A virtual ma-chine's public state includes a vector containing its virtualprocessors.By slightly rewriting the above call to sieve, we can ex-press a more lazy implementation:(let ((filter-list (list)))(sieve (lambda (thunk)(let ((new-thread(create-thread(begin(map thread-runfilter-list)(thunk)))))(map thread-block filter-list))(set filter-list(cons new-thread filter-list))new-thread)n))In this de�nition, a �lter that encounters a potential primep, creates a lazy thread object L and requests all other �l-ters in the chain to block. When L's value is demanded,it unblocks all the elements in the chain, and proceedsto �lter all multiples of p on its input stream. This im-plementation throttles the extension of the sieve and theconsumption of input based on demand.We can also de�ne an eager version of the sieve as follows:(sieve(lambda (thunk)(fork-thread (thunk)))n)Evaluating this application schedules a new thread re-sponsible for �ltering all multiples of a prime.This simple exercise highlights some interesting pointsabout the system. First, sting treats thread operations

as ordinary procedures, and manipulates the objects ref-erenced by them just as any other Scheme object; if two�lters attached via a common stream are terminated, thestorage occupied by the stream may be reclaimed. Stingimposes no a priori synchronization protocol on threadaccess { application programs are expected to build ab-stractions that regulate the coordination of threads.The threads created by filter maybe terminated in oneof two ways. The top-level call to sieve may be struc-tured so that it has an explicit handle on these threads;the filter-list data structure used to create a lazysieve is such an example. One can then evaluate:(map thread-terminate filter-list)to terminate all threads found in the sieve. Sting alsoprovides thread groups as a means of gaining control over arelated collection of threads[19]. A thread group is closedover debugging and thread operations that may be ap-plied en masse to all of its members. Every thread hasa thread group identi�er that associates it with a givengroup. Thread groups provide operations analogous toordinary thread operations (e.g., termination, suspension,etc.) as well as operations for debugging and monitoring(e.g., resetting, listing all threads in a given group, listingall groups, pro�ling genealogy information, etc..) Thus,when the thread T under which the call to sieve is ter-minated, users can request all of T 's children (which arede�ned to be part of T 's group to be terminated) thus:(kill-group (thread.group T))Second, lazy threads are distinguished from scheduledones. A lazy thread de�nes a thread object closed overa thunk and dynamic state (but which is unknown toany virtual processor). A scheduled thread is also alightweight data structure, but is known to some VPand will eventually be assigned a TCB. Applications canchoose the degree of laziness (or eagerness) desired. Onlythe thread controller can initiate a thread transition toevaluating { the interface does not permit applications toinsist that any speci�c thread immediately run on somevirtual processor. All default policy managers implementa fair scheduling policy, but sting imposes no constraintson user-de�ned policy managers in this regard.Third, threads can request state changes to other threads;the change itself takes place only when the target threadnext makes a TC call (either synchronously or becauseof preemption). Requested state changes to a thread Tmade by another T 0 are recorded as part of T 's next statein its TCB. State changes are recorded only if they donot violate the state transition semantics (e.g., evaluat-ing threads cannot be subsequently scheduled; terminatedthreads cannot become subsequently blocked, etc.), andthe requesting thread has appropriate authority.Only threads can actually e�ect a change to their ownstate. This invariant implies that a TCB can perform astate transition without acquiring locks.3.2 Virtual ProcessorsVirtual processors (and by extension, virtual machines)are �rst-class objects in sting. According �rst-class sta-5



tus to VPs has several important implications that distin-guish sting from other high-level thread systems[9, 10] orother asynchronous parallel languages. First, one can or-ganize parallel computations by explicitly mapping pro-cesses onto speci�c virtual processors. For example, aprocess P known to communicate closely with Q shouldexecute on a VP topologically near V . Such considera-tions can be expressed in sting since VPs can be directlyenumerated. Systolic style programs for example can beexpressed by using self-relative addressing o� the currentVP (e.g., left-VP, right-VP, up-VP , etc.). The systemprovides a number of default addressing modes for manycommon topologies (e.g., hypercubes, meshes, systolic ar-rays, etc.). Furthermore, since VPs can be mapped ontospeci�c physical processors, the ability to manipulate vir-tual processors as �rst-class data values gives sting pro-grammers a great deal of 
exibility in expressing di�erentparallel algorithms that are de�ned in terms of speci�cprocessor topologies[16].More signi�cantly, since VPs can be closed over di�erentvirtual policy managers, di�erent groups of threads cre-ated by an application may be subject to di�erent schedul-ing regimes. Virtual machines or VPs can be tailored tohandle di�erent scheduling protocols or policies. We dis-cuss the implications of customizable schedulers in thefollowing section.3.3 The Policy ManagerThe sting thread controller de�nes a thread state transi-tion procedure, but does not de�ne a priori scheduling ormigration policies. These policies can be application de-pendent. Although several default policies are providedas part of the overall sting runtime environment, usersare free to write their own. In fact, each virtual pro-cessor is closed over its own policy manager (PM); thus,di�erent VPs in a given virtual machine may implementdi�erent policies. The PM handles thread scheduling, pro-cessor/thread mapping, and thread migration.The ability to partition an application into distinctscheduling groups is important for long-lived parallel (orinteractive) programs. Threads executing I/O bound pro-cedures have di�erent scheduling requirements than thoseexecuting compute bound routines; applications with real-time constraints should be implemented using di�erentscheduling protocols than those that require only a sim-ple FIFO scheduling policy.Tree-structured parallel programs may realize best run-time performance using a LIFO-based scheduler; appli-cations running master/slave or worker farm algorithmsmay do better using a round-robin preemptive schedulerfor fairness. Since all of these applications may be compo-nents of a larger program structure or environment, the
exibility a�orded by having them evaluate with di�erentpolicy managers is signi�cant. Distinct applications canexist as independent executing threads evaluating on thesame virtual machine. Moreover, each distinct scheduleris realized by a policy manager with di�erent performancecharacteristics and implementation concerns.

Our design seeks to provide a 
exible framework ableto incorporate and experiment with di�erent schedulingregimes transparently without requiring modi�cation tothe thread controller itself. To this end, all PMs providethe same interface although no constraints are imposed onthe implementations themselves. The interface shown be-low provides operations for choosing a new thread to run,enqueuing an evaluating thread, setting thread priorities,and migrating threads. These procedures are expectedto be used exclusively by the TC; in general, user appli-cations need not be aware of the policy/thread managerinterface.(pm-get-next-thread vp) returns the next readyTCB or thread to run on vp. If a TCB is re-turned, its associated thread is evaluating; if athread is returned, its state is not evaluating,and a new TCB must be allocated for it.(pm-enqueue-thread obj vp state)enqueues obj which may be either a thread ora TCB into the ready queue of the policy man-ager associated with vp. The state argumentindicates the state in which the the call to theprocedure is made: delayed, kernel-block, user-block, or suspended.(pm-priority priority) and (pm-quantum quantum)use their priority and quantum arguments ashints to establish a new priority and quantumfor the currently executing thread.(pm-allocate-vp) returns a new virtual processoron the current virtual machine.(pm-vp-idle vp) is called by the thread managerif there are no evaluating threads on vp. Thisprocedure can migrate a thread from anothervirtual processor, do bookkeeping information,or call the physical processor to have the pro-cessor switch itself to another VP.Besides determining a scheduling order for evaluatingthreads, the PM implements two basic load-balancing de-cisions: (1) it may choose a VP on which a newly cre-ated thread should be run, and (2) it determines whichthreads on its VP can be migrated, and which threads itwill choose for migration from other VPs.The �rst decision point is important to handle initial load-balancing; the second is important to support dynamicload-balancing protocols. Determining the initial place-ment of a newly evaluating thread is often based on pri-orities di�erent from those used to determine the migra-tion of currently evaluating threads. The PM interfacepreserves this distinction.Scheduling policies can be classi�ed along several impor-tant dimensions:Locality: Is there a single global queue of threads inthis system, or does each PM maintain its ownlocal queues?6



Granularity: Are threads distinguished based on theircurrent state or are all threads viewed as equalsby the PM? For example, an application mightchoose an implementation in which all threadsoccupy a single queue regardless of their currentstate. Alternatively, it might choose to classifythreads into di�erent queues based on whetherthey are evaluating, scheduled, previously sus-pended etc.Structure: Are the queues implemented as FIFO's,LIFO's, round-robin, priority, or realtime struc-tures (among others)?Serialization: What kind of locking structure does anapplication impose on various policy managerqueues?Choosing di�erent alternatives in this classi�cation schemeleads to di�erent performance characteristics. For exam-ple, if we adopt a granularity structure that distinguishesevaluating threads (i.e., threads with TCBs) from sched-uled ones, and we impose the constraint that only sched-uled threads can be migrated, then no locks are requiredto access the evaluating thread queue; this queue is localto the VP on which it was created. Queues holding sched-uled and suspended threads however must be locked be-cause they are targets for migration by PMs on other VPs.This kind of scheduling regimen is useful if dynamic load-balancing is not an issue. Thus, when there exist manylong-lived non-blocking threads (of roughly equal dura-tion), most VPs will be busy most of the time executingthreads on their own local ready queue. Eliminating lockson this queue in such applications is therefore bene�cial.On the other hand, applications that generate threads ofvarying duration may exhibit better performance whenused with a policy manager that permits migration ofboth scheduled and evaluating threads even if there isan added cost associated with locking the runnable readyqueue.Global queues imply contention among policy managerswhenever they need to execute a new thread, but suchan implementation is useful in implementing many kindsof parallel algorithms. For example, in master/slave (orworker-farm) programs, the master initially creates a poolof threads; these threads are long-lived structures that donot spawn any new threads themselves. Once runningon a VP, they rarely block. Thus, a PM executing such athread has no need to support the overhead of maintaininga local thread queue. Local queues are useful, however, inimplementing result-parallel programs in which the pro-cess structure takes the form of a tree or graph; thesequeues can be used in such applications to load balancethreads fairly among a set of virtual processors.4 The Dynamics of Thread Execution and Syn-chronizationObvious di�erences exist in program methodology, syn-tax, etc. among the numerous proposals for incorporat-ing concurrency structures into high-level symbolic pro-gramming languages. Sting supports the functionality

(define (primes limit)(let loop ((i 3)(primes (future (list 2))))(cond ((> i limit)(touch primes))(else(loop(+ i 2)(future(filter i primes)))))))(define (filter n primes)(let loop ((j 3))(cond ((> (* j j) n)(cons n (touch primes)))((zero? (mod n j)) primes)(else (loop (+ j 2))))))Figure 3: An implementation of primes using futures. Afuture must be explicitly touched to access its value inthis implementation.required by the semantics of many of these proposals: (a)threads may be dynamically instantiated and require run-time scheduling, (a) communication among threads takesplace via concurrent data structures that may be sharedby many readers and writers, (c) communicating threadsexecute within a single address space, and (d) threads syn-chronize either by waiting for values generated by otherprocesses, or by waiting at explicit barrier points.4.1 Support for Result (Fine-Grained) ParallelismIn a result parallel program, each concurrently executingprocess contributes to the value of a complex data struc-ture (e.g., an array or list). Process communication is viathis result structure. Expressions that attempt to accessa component of the result whose contributing process isstill evaluating block until the process completes.Futures[13] are a good example of an operation well-suitedfor implementing result parallel algorithms. The objectcreated by the MultiLisp or Mul-T expression, (futureE) , creates a thread responsible for computing E; theobject returned is known as a future. When E �nishes,yielding v as its result, the future is said to be determined.An expression that touches a future either blocks if E isstill being computed or yields v if the future is determined.Threads are a natural representation for futures.To motivate the implementation of result parallelism insting, Figure 3 is an implementation of a parallel primenumber �nder using futures.In this program, a future is created for each odd elementbetween 2 and limit . A number is added onto a currentprime list if filter determines it to be a prime number.In a naive implementation, each instantiation of a future7



will entail the creation of a new thread; thus, the numberof threads allocated in executing this program (under thisimplementation) is proportional to limit . This behavioris undesirable because a future computing the primalityof i has an implicit dependence with the future created tocompute the primality of i� 2 and so on. Poor processorand storage utilization will results given the data depen-dencies found in this program. This is because many ofthe lightweight processes that are created will either:1. need to block when they request the value of otheryet-unevaluated futures or,2. in the case of processes computing small primes, doa small amount of computation relative to the costincurred in creating them.Because the dynamic state of a thread consists of largeobjects (e.g., stacks and heaps), cache and page localityis compromised if process blocking occurs frequently or ifprocess granularity is too small.The semantics of touch and future dictate that a futureF which touches another future G must block on G ifG is not yet determined. Assume TF and TG are thethread representation of F and G, respectively. The run-time dynamics of the touch operation on G can entailaccessing TG either when TG is (a) delayed or scheduled,(b) evaluating, or (c) determined. In the latter case, nosynchronization between these threads is necessary. Case(b) requires TF to block until TG completes. Sting per-forms an important optimization for case (a), however,which we discuss below.4.1.1 Thread StealingTF can evaluate the closure encapsulated within TG (callit E) using its own stack and heap, rather than blockinga forcing a context switch if TG is delayed or scheduled.In e�ect, this implementation treats E as an ordinaryprocedure, and the touch of G as a simple procedure call;we say that TF steals TG in this case. The correctnessof this optimization lies in the observation that that TFwould necessarily block otherwise; by applying E usingTF 's dynamic context, the VP on which TF executes doesnot incur the overhead of executing a context switch. Inaddition, no TCB need be allocated for TG since TF 'sTCB is used instead.The optimization may only lead to observably di�erentresults if used in instances where the calling thread neednot necessarily block. For example, suppose TG was anelement of a speculative call by TF . Furthermore, assumeTG diverges, but another speculative thread (call it TH)does not. In the absence of stealing, both TG and THwould spawn separate thread contexts. TH returns a valueto TF . In the presence of stealing, however, TF will alsoloop because TG does. Users can parameterize threadstate to inform the TC if a thread can steal or not; stingprovides interface procedures for this purpose.

Figure 4: Dynamics of thread stealing. Dashed lines indi-cate data
ow constraints, solid lines specify thread tran-sitions.Like load-based inlining[33] or lazy task creation[24], steal-ing throttles process creation. Unlike these other tech-niques, however, stealing also improves locality. Localityis increased because a stolen thread is run using the TCBof a currently evaluating thread; consequently, the stackand heap of this TCB remains in the virtual machine'sworking set.Because of stealing, sting reduces the overhead of contextswitching, and increases process granularity for programsin which processes (a) exhibit strong data dependenciesamong one another, and (b) block only when they requiredata from other processes. Of course, for the operationto be most e�ective, appropriate scheduling policies mustbe adopted. For example, a preemptible FIFO schedulerin the prime number code would not take full advantageof stealing since processes computing small primes wouldbe run before processes that compute large ones. Stealingoperations will be minimal in this case: processes exhibitfew data dependencies with processes instantiated earlier,and threads computing small primes must necessarily bedetermined before threads computing large primes canproceed. On the other hand, a LIFO scheduling policy willcause processes computing large primes (i.e., primes closeto limit ) to be run �rst. Stealing will occur much morefrequently here since processes will demand the results ofother processes computing smaller primes which have notyet run; the process call graph will, therefore, unfold moree�ectively.8



4.2 Master-Slave Programs: Blocking and Syn-chronizationThe master-slave paradigm is a popular parallel programstructuring technique. In this approach, the collection ofprocesses generated is bounded a priori; a master pro-cess generates a number of worker processes and collatestheir results. Process communication typically occurs viashared concurrent data structures or variables. Master-slave programs often are more e�cient than result paral-lel ones on stock multiprocessor platforms because work-ers rarely need to communicate with one another exceptto publish their results, and process granularity can bebetter tailored for performance.We have used sting to build an optimizing implementa-tion of �rst-class tuple-spaces in Scheme. A tuple-space isan object that serves as an abstraction of a synchronizingcontent-addressable memory[6]; tuple-spaces are a natu-ral implementation choice for many master/slave-basedalgorithms.The semantics of tuple-spaces in our system di�er sig-ni�cantly from their de�nition in C.Linda, for example.Besides the added modularity brought about by deno-table tuple-space objects, our system also treats tuples asobjects, and tuple operations as binding expressions, notstatements. We have built a customized type inferenceprocedure to specialize the representation of tuple-spaceswhenever possible[17]. In our current implementation,tuple-spaces can be specialized as synchronized vectors,queues, streams, sets, shared variables, semaphores, orbags; the operations permitted on tuple-spaces remainsinvariant over their representation. In addition, applica-tions can specify an inheritance hierarchy among tuple-spaces if so desired.Processes can read, remove or deposit new tuples intoa tuple-space. The tuple argument in a read or removeoperation is called a template and may contain variablespre�xed with a \?". Such variables are referred to as for-mals and acquire a binding-value as a consequence of thematch operation. The bindings acquired by these formalsare used in the evaluation of a subordinate expression:thus, we can write:(get TS [?x](put TS [(+ x 1)]))to remove atomically a singleton tuple from TS , incrementit by one, and deposit it back into TS .Our implementation, in the general case, uses two hash-tables (call themHR andHP ) as the representation struc-tures for a fully associative tuple-space. Processes thatattempt to read or remove a tuple �rst hash on their non-formal tuple elements in HP . If at least one match exists,the proper bindings for the formals are established, the re-trieved tuple is marked as deleted in the case of a removeoperation, and the executing process proceeds. When amatch does not exist, the process hashes on its non-formaltuple elements in HR, deposits a structure that indicatesits identity. and blocks.

A depositing process is de�ned symmetrically { any pro-cesses waiting for its tuple inHR are unblocked and resched-uled. Otherwise, the tuple is deposited into HP using its�elds as hash keys. The implementation minimizes syn-chronization overhead by associating a mutex with everyhash bin rather than having a global mutex on the entirehash table. This permits multiple producers and con-sumers of a tuple-space to concurrently access its hashtables.The implementation also takes advantage of stealing topermit the construction of �ne-grained parallel programsthat synchronize on tuple-spaces. We use threads as bona�de elements in a tuple. Consider a process P that exe-cutes the following expression:(rd TS [ x1 x2 ] E)where x1 and x2 are non-formals. Assume furthermorethat a tuple in TS is deposited as a consequence of theoperation:(spawn TS [ E1 E2 ])This operation schedules two threads (call them TE1 andTE2) responsible for computing E1 and E2. If both TE1and TE2 complete, the resulting (passive) tuple containstwo determined threads; the matching procedure appliesthread-value when it encounters a thread in a tuple; thisoperation retrieve the thread's value.If TE1 is still scheduled at the time P executes, however, Pis free to steal it, and then determine if its result matchesx1 . If a match does not exist, P may proceed to searchfor another tuple, leaving TE2 still in a scheduled state.Another process may subsequently examine this same tu-ple and steal TE2 if warranted. Similarly, if TE1 's resultmatches x1 , P is then free to steal TE2 . If either TE1 orTE2 are already evaluating, P may choose to either blockon one (or both) thread(s), or examine other potentiallymatching tuples in TS . The semantics of tuple-spaces im-pose no constraints on the implementation in this regard.Sting's combination of �rst-class threads and stealing al-lows us to write quasi-demand driven �ne-grained (result)parallel programs using shared data structures. In thissense, the thread system attempts to minimizes any sig-ni�cant distinction between structure-based (e.g., tuple-space) and data
ow style (e.g., future/touch) synchro-nization.4.2.1 MutexesOperations on tuple-spaces or similar high-level syn-chronization structures make use of mutex operations,mutex-acquire and mutex-release .Mutexes are created by the mutex operation, (make-mutexactive passive) . Mutex-acquire attempts to acquire amutex. If the mutex is locked, the executing thread ac-tively spins for the period speci�ed by active; active spin-ning causes the thread to retain control of its virtual pro-cessor during the period that it is blocked waiting for themutex to be released. When the active spin count be-comes zero, the thread relinquishes control of its VP, and9



inserts itself into an appropriate ready queue. When nextrun, it attempts to re-acquire the mutex, yielding its pro-cessor if unsucessful. This operation is repeated passivenumber of times. If the passive spin count is exhausted,and the mutex has not yet been acquired, the executingthread blocks on the mutex. When the mutex is ulti-mately released, (via mutex-release ) all threads blockedon this mutex are restored onto some ready queue.Using mutex primitives, macros, and Scheme's support forexception handling, one can easily build a \safe" version ofa mutex acquire operation, (with-mutex mutex body) .This operation ensures that mutex is released if body raisesan exception during its evaluation that causes control toexit the current dynamic environment.4.2.2 Preemption and InterruptsA preemptive round-robin or FIFO scheduling policy isbest suited for master-slave applications in which the mas-ter performs relatively little processing after the initialset of spawned workers complete. A round-robin pol-icy allocates a speci�ed quantum for each worker in theworker pool. Support for preemption is important be-cause workers rarely block; in its absence, long-runningworkers might occupy all available VPs at the expense ofother enqueued ready threads.Preemption is sometimes best disabled in master/slaveprograms that make signi�cant use of barrier synchro-nization. In these applications, the master generates anew set of worker processes after all previously createdworkers complete. If the time to execute a particularset of workers is small relative to the total time neededto complete the application, enabling preemption maydegrade performance[31]. Threads can disable an ini-tial preemption by setting a 
ag in their TCB; if pre-emption takes place when this quantum 
ag is false, an-other bit in the TCB state is set indicating that a sub-sequent preemption should not be ignored. Users canencapsulated time critical code using the the syntacticform, (without-preemption body) that evaluates bodywith preemption disabled. The without-preemption formis in fact a specialized version of a more general construct,without-interrupts , that disables all interrupts duringthe evaluation of its body.4.3 Speculative Parallelism and Barrier Synchro-nizationSpeculative parallelism is an important programming tech-nique that often cannot be e�ectively utilized because ofruntime overheads incurred in its implementation. Thetwo features most often associated with systems that sup-port a speculative programming model are the ability tofavor certain (more promising) tasks over others, and themeans to abort, reclaim (and possibly undo) unnecessarycomputation.Sting permits programmers to write speculative applica-tions by:

1. allowing users to explicitly program thread priorities,2. permitting a thread to wait on the completion ofother threads, and3. allowing threads to terminate other threads.Promising tasks can execute before unlikely one becausepriorities are programmable. A task � that completes �rstin a set of tasks can awaken any thread blocked on itscompletetion; this functionality permits sting to supporta simple form of OR-parallelism[8]. � can terminate allother tasks in its task set once it has been determined thattheir results are unnecessary. Speculative computationusing sting, however, will not be able to undo non-localside-e�ects induced by useless tasks; the system does notprovide a primitive backtracking mechanism2.Consider the implementation of a wait-for-one construct.This operator evaluates its list of arguments concurrently,returning the value yielded by the �rst of its argumentsto complete. Thus, if ai yields v in the expression:(wait-for-one a1 a2 : : : ai : : : an)the expression returns v, and, if desired by the program-mer, terminates the evaluation of all the remaining aj ,j 6= i.The speci�cation of a wait-for-all construct that im-plements an AND-parallel operation is similar; it alsoevaluates its arguments concurrently, but returns trueonly when all its arguments complete. Thus, the expres-sion:(wait-for-all a1 a2 : : : ai : : : an)acts as a barrier synchronization point since the threadexecuting this expression is blocked until all the ai com-plete. The implementation of this operation is very simi-lar to the implementation of the speculative wait-for-oneoperation.The TC implements these operations using a commonprocedure, block-on-group . Threads and TCBs are de-�ned to support this functionality. For example, associ-ated with a TCB structure is information on the numberof threads in the group that must complete before theTCB's associated thread can resume.Block-on-group takes a list of threads and a count. Thesethreads correspond to the arguments of the wait-for-oneand wait-for-all operations shown above; the count ar-gument represents the number of threads that must com-plete before the current thread (i.e., the thread executingthis procedure) is allowed to resume. If the count is one,we get an implementation of wait-for-one ; if the countis equal to n, we get an implementation of wait-for-all .The relationship between a thread Tg in the group and thecurrent thread (Tw) that is to wait on T is maintained in adata structure (called a thread barrier (TB)) that containsreferences to:1. Tw's TCB.2. the TB of another waiter blocked on Tg (if one ex-ists).2Sting does not support �rst-class continuations across threadboundaries.10



(define (block-on-group count group)(let loop ((i count)(threads group))(cond((zero? i))((null? group)(set-TCB.wait-count (current-TCB) i)(thread-block (current-thread)))(else(let ((thread (car threads)))(mutex-acquire thread.mutex)(cond((determined? thread)(mutex-release thread.mutex)(loop (1- i) (cdr threads)))(else(let ((tb (make-tb)))(set-tb.tcb tb(current-tcb))(set-tb.thread tb thread)(set-tb.next tb(thread.waiters thread))(set-thread.waiters thread tb))(mutex-release mutex))(loop (1- i)(cdr threads))))))))Figure 5: De�nition of block-on-group .3. Tg { this is used only for debugging purposes.We give a de�nition for block-on-group in Fig. 5.The call:(block-on-group m T1 T2 : : : Tn)causes the current thread (call it T ) to block on the com-pletion of m of the Ti, m � n. Each of these Ti havea reference to T in their chain of waiters. The proce-dure checks if a thread in the thread group has alreadybeen determined; in the case, the wait-count is decre-mented, but no thread barrier is constructed. Other-wise, a TB is constructed as well. When all threads ingroup have been examined, the procedure sets the cur-rent thread's wait-count �eld to the extant count, andissues a thread-block operation.Applications use Block-on-group in conjunction witha wakeup-waiters procedure that is invoked by the aiwhen they complete. Wakeup-waiters examines the listof waiters chained from the waiters slot in its threadargument. A waiter whose wait-count becomes zero isenqueued on the ready queue of some VP. The TC in-vokes wakeup-waiters whenever a thread T completes(i.e., whenever it terminates or abnormally exits). Allthreads waiting on T 's completion are thus rescheduled.Given these two procedures wait-for-one can be de�nedsimply:(define (wait-for-one block-group)(block-on-group 1 block-group)

Case Timings(in �seconds)Thread Creation 8.9Thread Fork and Value 44.9Scheduling a Thread 18.9Synchronous Context Switch 3.77Stealing 7.7Thread Block and Resume 27.9Tuple-Space 170Speculative Fork (2 threads) 68.9Barrier Synchronization (2 threads) 144.8Figure 6: Baseline timings.(map thread-terminate block-group)If T executes wait-for-one , it blocks on all the threadsin its block-group argument. When T is resumed, it isplaced on a queue of ready threads in the policy managerof some available virtual processor. The map procedureexecuted upon T 's resumption terminates all threads inits group.Sting's wait-for-all procedure can omit this operationsince all threads in its block-group are guaranteed tohave completed before the thread executing this operationis resumed.5 PerformanceSting is currently implemented on an 8 processor SiliconGraphics MIPS R3000 shared-memory (cache-coherent)multiprocessor. The physical machine con�guration mapsphysical processors to lightweight Unix threads; each nodein the machine runs one such thread. We ran the bench-marks shown below using a virtual machine in which eachphysical processor implements a single virtual processor.Fig. 6 gives baseline �gures for various thread operations;these timings were derived using a single LIFO queue.The \Thread Creation" timing is the cost to create athread not placed in the genealogy tree, and which hasno dynamic state. \Thread Fork and Value" measuresthe cost to create a thread that evaluates the null pro-cedure and returns. \Scheduling a Thread" is the costof inserting a thread into the ready queue of the cur-rent VP. A \Synchronous Context Switch" is the costto make a yield-processor call in which the callingthread is resumed immediately. The cost for \Stealing"does not include the time to schedule the thread beingstolen. \Thread Block and Resume" is the cost to blockand resume a null thread. \Tuple Space" is the cost tocreate a tuple-space, insert and then remove a singletontuple. The speculative synchronization timings re
ects11



the cost to compute two null threads speculatively; thebarrier synchronization is the cost to build a barrier syn-chronization point on two threads both computing thenull procedure. We present detailed benchmarks of sev-eral application programs in a companion paper[18].6 Related Work and ConclusionsInsofar as sting is a programming system that permitsthe creation and management of lightweight threads ofcontrol, it shares several common traits with thread pack-age systems developed for other high-level languages[9,10, 23]. These systems also view threads as a manifestdatatype, support preemption in varying degrees, and incertain restricted cases, permit programmers to specify aspecialized scheduling regimen. The thread abstractionde�nes the coordination sublanguage in these systems.There are some important di�erences however that clearlydistinguish sting from these other systems. First, thescheduling and migration protocol sting uses is completelycustomizable; di�erent applications can run di�erent sched-ulers without modifying the thread manager or the virtualprocessor abstraction; such customization can be appliedto the organization of the virtual machine itself. Second,sting's support for data locality, storage optimization,and process throttling via stealing is absent in other sys-tems. Moreover, all thread operations are implementeddirectly within the sting virtual machine: there is no con-text switch to a lower level kernel that must be performedin order to execute a thread operation. Sting is builton abstract machine intended to support long-lived appli-cations, persistent objects, and multiple address spaces.Thread packages provide none of this functionality since(by de�nition) they do not de�ne a complete program en-vironment.Sting also di�ers from programming languages that pro-vide high-level abstractions (e.g., continuations[34, 14] tomodel concurrency. Because we designed sting as a sys-tems programming language, it provides low-level con-currency abstractions { application libraries can directlycreate thread objects, and can de�ne their own schedulingand thread migration strategies. High-level concurrencyconstructs are realizable using threads, but the systemdoes not prohibit users from directly using thread oper-ations in the ways described above if e�ciency consider-ations warrant. In particular, the same application mayde�ne concurrency abstractions with di�erent semanticsand e�ciency concerns within the same runtime environ-ment.In certain respects, sting resembles other advanced multi-threaded operating system environments[1, 22]: for exam-ple, it supports non-blocking I/O calls with call-back, usercontrol over interrupts, and local address space manage-ment as user-level operations. It cleanly separates user-level and kernel-level concerns: physical processors han-dle (privileged) system operations and operations acrossvirtual machines; virtual processors implement all user-level thread and local address-space functionality. How-ever, because sting is an extended dialect of Scheme, it

provides the functionality and expressivity of a high-levelprogramming language (e.g., �rst-class procedures, gen-eral exception handling, and rich data abstractions) thattypical operating system environments do not o�er.Sting is a platform for building asynchronous program-ming primitives and experimenting with new parallel pro-gramming paradigms. In addition, the design also allowsdi�erent concurrency models to be evaluated competi-tively. Scheme o�ers an especially rich environment inwhich to undertake such experiments because of its well-de�ned semantics, its overall simplicity, and its e�ciency.However, the sting design itself is language independent;we believe it could be incorporated fairly easily into anyhigh-level programming language.Sting does not merely provide hooks for each concur-rency paradigm and primitive we considered interesting.We focussed instead on basic structures and functional-ity common to a broad range of parallel programmingstructures; thus, the implementation of blocking is easilyused to support speculative computation, the \stealing"optimization used to throttle the execution of threads iswell-suited for implementing futures and tuple-space syn-chronization, and, �nally, customizable policy managersmake it possible to build fair and e�cient schedulers fora variety of other paradigms.References[1] Thomas Anderson, Edward Lazowska, and HenryLevy. The Performance Implications of ThreadManagement Alternatives for Shared Memory Mul-tiProcessors. IEEE Transactions on Computers,38(12):1631{1644, December 1989.[2] Thomas E. Anderson, Brian N. Bershad, Edward D.Lazowska, and Henry M. Levy. Scheduler acti-vations: e�ective kernel support for the user-levelmanagement of parallelism. In Proceedings of 13thACM Symposium on Operating Systems Principles,pages 95{109. Association for Computing MachinerySIGOPS, October 1991.[3] Arvind, Rishiyur Nikhil, and Keshav Pingali. I-Structures: Data Structures for Parallel Computing.Transactions on Programming Languages and Sys-tems, 11(4):598{632, October 1989.[4] Peter Bishop. Computer Systems with a Very LargeAddress Space and Garbage Collection. PhD thesis,MIT Laboratory for Computer Science, 1977.[5] David Black. Scheduling Support for Concurrencyand Parallelism in the Mach Operating System.IEEE Computer, 23(5):35{43, May 1990.[6] Nick Carriero and David Gelernter. How to WriteParallel Programs: A Guide to the Perplexed. ACMComputing Surveys, 21(3), September 1989.[7] Nick Carriero and David Gelernter. Linda in Con-text. Communications of the ACM, 32(4):444 { 458,April 1989.12
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