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Non-invasive brain signal interface for a wheelchair navigation
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Abstract: This work presents that, only using non-invasively captured brain signals, a person can navigate an electric
wheelchair with no serious training for a long term. Only two electrodes are set on the scalp non-invasively to detect a
P300 EEG signal and a reference signal. A simple signal processing interprets the measured signals to decide a movement
direction of the wheelchair. The whole devices are loaded on the wheelchair. No external system is required. The
experimental results demonstrate the feasibility of the simple BCI processing to achieve reasonable performance.
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1. INTRODUCTION

BRAIN computer interface (BCI) has become a highly
recognized research area. Especially, non-invasive ap-
proaches to monitor brain activity are of main interest to
researchers due to its attractiveness on practical applica-
tions. It is not really new to use EEG signals for BCI.
Researchers have developed technologies to use EEG as
human commands to machines much as mobile robots
[1], wheelchair [2] and a humanoid robot [3]. Espe-
cially, navigating a wheelchair using brain signal com-
munication is challenging and risky because a human
should sit on it and continuously keep monitoring the
wheelchair’s behavior. Simple communication process
not required any pre-training or learning period will fa-
cilitate its navigation. Some results have been reported
about the brain-based control of a wheelchair. Some in-
vestigators controlled a wheelchair only using EEG sig-
nals [2]. However, they required many trials for pat-
tern generation and the EEG measuring system was not
boarded on the wheelchair. In Craig and Nguyen’s work
[4], EEG signal classification provided three commands
to the wheelchair with five commands by head move-
ments. Their work also required training for classifica-
tion. In another case, 64 channels were used to apply
spatial filtering to select three steering commands [5]. A
study demonstrated a possibility that a tetraplegic con-
trols a wheelchair using EEG signals, however, it was
tested only in virtual reality [6]. A P300 EEG based-
BCI application to wheelchair control was investigated
recently [7]. P300 signal is an event-related response, a
positive potential peak evoked about 300ms after a vi-
sual stimulus is recognized. They used the brain signal to
select a destination item on the menu not steering com-
mands. Then, a wheelchair navigates along a predefined
path. Therefore, this method requires preprogramming
of all guiding paths in a given environment. P300-based
BCI approach is generally advantageous because no seri-
ous user training is required. Another study about P300-
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Fig. 1 The wheelchair system setup

based BCI to a wheelchair is reported [8]. P300 signals
from multi-channels are recorded to decide a steering di-
rection. They design a classification method based on a
Bayesian approach. This work aims the development of a
simple BCI approach to the control of a wheelchair using
minimal EEG information and simple signal processing
neither requiring significant training nor adaptive algo-
rithms.

2. METHOD
2.1 Wheelchair Design

An electric wheelchair (Fig. 1) was constructed by
adding two 24V 200W 300RPM DC motors to a commer-
cial wheelchair. Torque generated by each motor is trans-
mitted to each main wheel through chains. Two parallel
12V lead-acid batteries supply powers. Ultrasonic dis-
tance sensors are attached on every side of the wheelchair
to provide anti-collision system. A laptop computer com-
municates with the motor controller through USB serial.
We use two communication channels, one for controlling
two motors (PWM control), and the other for communi-
cating with the ultrasonic sensors. The laptop computer is
also used for EEG data acquisition and processing. The



computer’s operation is under an Intel Core2 Duo @ 2
GHz running Windows OS. The ultrasonic sensors detect
distance information in a real-time. Atmega-128 board
buffers the sensed information and send it to the computer
where situation recognition algorithm is run. The recog-
nition algorithm reads distance information every 30ms.
If sensed distance from any among four sensors is less
than 30m, motor operation stops promptly. This system
is designed for safe navigation during tests. Hand-brake
system is also equipped to protect from urgent situations.

2.1.1 EEG data acquisition and processing
To detect the EEG signals, we use the Biopac MP150

EEG system which consists of an electrode attached a
cap, signal amplifier, an electrode box, an analog-to-
digital (A/D) converter. The EEG system is connected to
the laptop computer mentioned previously. An electrode
is located on the scalp of a subject to detect the P300 vi-
sually evoked potential. The reference electrode is placed
on the earlobe. The EEG signal is recorded at sampling
rate of 1kHz. To avoid artifacts during EEG recording,
we used a bandpass filter of 1-35Hz. Artifact removal by
filtering is not perfect so that a subject is asked to mini-
mize the movements of his or her body and eyes during
operation. The EEG system with its padded bottom is
loaded on the wheelchair. The EEG system uses a sepa-
rated power supply from motors to reduce noise signals.
The detected EEG signals are sent to the computer via
10Mbps Ethernet.

2.1.2 BCI system setup
We use P300 signal as BCI command to indicate the

movement direction of the wheelchair in real time. To
enable to do so, we first had to evaluate and calibrate
the P300 signal acquisition and processing protocols off-
line. The off-line signal acquisition experiment is imple-
mented as follows. A subject sits at desk wearing a cap
equipped with electrodes and connected to the EEG de-
tection system. EEG signals are recorded from 16 elec-
trode channels placed on the scalp according to stan-
dard electrode system [????]. In experiment, the sub-
ject watches commands quickly flashing at the center
of a computer monitor. Four possible commands {Left.
Right, Forward, Backward} flash. The commands flicker
every 200ms in a random sequence. P300 peaks would
evoke whenever the subject detects expected commands
visually. While commands other than the expected pop
up, no P300 signal appearance is expected. The P300
signal detection is operated in the interval of 250ms af-
ter each command disappears. A P300 signal is detected
in about 100ms if it really exists because the flash lasts
200ms. To detect P300 signals, we come up with two
approaches. First, we test the support vector machine
(SVM). Using an open resource [9], the best perform-
ing classifier to distinguish existence and nonexistence of
P300 signal is automatically determined based on exper-
imental data. However, this approach cannot predict if
a P300-like signal is really evoked due to proper visual
stimuli or any other artifacts. This method works well

Fig. 2 Recorded P300 signal profiles

in static condition, but not much while a person moves
on a wheelchair so that undesired possible noises can af-
fect brain signals. Next, we suggest averaging brain sig-
nal profile samples. From recording section, all poten-
tial P300-like signal profiles in every 250ms after correct
commands flash are averaged. Averaging out mediates
the noise effect. On the other hands, expected profiles
of non P300 signals every after wrong commands flash
are also averaged. Throughout the off-line experiment,
we concluded an electrode channel is express enough to
command. This is good regarding the convenience and
simplicity of the interface device design. Also, the place-
ment of the channel is chosen to be Parietal Cortex (Pz),
where P300 signal is well detected.

2.1.3 Motion execution protocol
Real time detection of P300 signal requires a differ-

ent protocol from batch detection. We use the averaging
method mentioned previously. Before navigation begins,
Off-line EEG recording is implemented for 2 minutes.
Using the data obtained in this period, we compute av-
eraged profile of P300 signals in the interval of 250ms,
which is to be a basis profile of P300 signal. Once navi-
gation begins, a subject tries to detect a desired command
fixating attention to 10 flashing commands every 200ms.
Among 10 flashes, the desired command exists at least
one time. Detected P300-like signal profiles responding
the desired commands are averaged out. Brain signal pro-
files for other corresponding commands are also respec-
tively averaged out. The whole averaged profiles have
the duration of 250ms. Then, each averaged profile is
compared with the basis profile obtained before execu-
tion. By calculating the root mean square (RMS) of two
profiles, the basis and an averaged profile corresponding
to each command, a command is selected. An average
profile of which corresponding RMS value is smallest is
most likely to be a P300 signal profile. Therefore, the
wheelchair executes according to the corresponding com-
mand. The reason of averaging signals is to attenuate any
artifacts.

3. EXPERIMENT
To evaluate the application of the proposed algorithm

to the wheelchair navigation, we conduct experiments. A
person sits on the designed wheelchair and spends about



Fig. 3 Desired path trajectory

2 minutes to do training. Detected P300 signals during
the training are used to set a basic profile of P300 for the
specific person. In the experiment, the person is asked to
control the wheelchair to a destination position as in Fig.
3. The subject was able to drive the wheelchair along the
desired trajectory using only brain signals. The trajectory
is roughly 8 meters long and it took about 170 seconds for
the subject to make the wheelchair follow the trajectory.
The system runs with two separate phases. At the first
phase, user’s P300 signal is analyzed to recognize the in-
tended command. After the first phase, the wheelchair is
operated according to the recognized command. Hence
there are some delays in between two consecutive com-
mands. Each picture in the Fig. 4 shows the execution of
each command.

4. DISCUSSION

We present the wheelchair navigation system suc-
cessfully using non-invasively captured brain signals.
The system is capable of navigating the desired trajec-
tory with just a few number of electrodes. While the
wheelchair is moving, lots of noises from the power unit
of motors keep the P300 classifier from distinguishing
desired commands. Even the wheelchair is not mov-
ing, sometimes the EEG signals are disturbed by some
noise. To attenuate this undesired phenomena, the EEG
system uses a separated power supply from motors to re-
duce noise signals. and the system was designed to have
two separate phases. For the same reason, we repeat the
P300 detection procedure for several times to get reliable
result. We can get the robust system, but the undesirable
repetition causes the system delay. The average delay
caused by choosing a command is about 20s. Minimizing
the delay would be a good research topic for the future
work. The simultaneous structure where the system rec-
ognize a command while it executes the previous one, can
be realized using appropriate noise modeling and filtering
methods.

(a)T = 8s (b)T = 28s

(c)T = 56s (d)T = 72s

(e)T = 90s (f)T = 112s

(g)T = 124s (h)T = 144s

(i)T = 144s (j)T = 168s

Fig. 4 Experiment result
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