

Constructing Binary Decision Trees using Genetic
Algorithms

Sung-Hyuk Cha, and Charles Tappert

Computer Science Department, Pace University
Pleasantville, NY, USA

Email: {scha,ctappert}@pace.edu

Abstract - Decision trees have been well studied and
widely used in knowledge discovery and decision support
systems. Although the problem of finding an optimal
decision tree has received attention, it is a hard op-
timization problem. Here we propose utilizing a genetic
algorithm to improve on the finding of ap-propriate
decision trees. We present a method to encode/decode a
decision tree to/from a chromo-some where genetic
operators can be applied. Theo-retical properties of
decision trees, encoded chro-mosomes, and fitness
functions are presented.

Keywords: Binary decision tree, Genetic Algorithm.

1 Introduction
 Decision trees approximate discrete-valued target
functions as trees and are a widely used practical method for
inductive inference [1]. Decision trees have prospered in
knowledge discovery and decision support systems because
of their natural and intuitive paradigm to classify a pattern
through a sequence of questions. Algorithms for
constructing decision trees such as ID3 [1,2,3] often use
heuristics to find a shorter tree. Finding the shortest decision
tree is a hard optimization problem [4,5]. Here we propose a
method using genetic algorithms which use an optimization
technique based on natural evolution [1,2,6,7].

 Several attempts to construct near-optimal decision trees
appear in the literature (see the extensive survey [8]).
Gehrke et al developed a bootstrapped optimistic algorithm
for decision tree construction [9]. For continuous attribute
data, Zhao and Shirasaka [10] suggested an evolutionary
design, Bennett and Blue [11] proposed an extreme point
tabu search algorithm, and Pajunen and girolami [12]
exploited linear ICA to construct binary decision trees. Here
we consider constructing binary attribute decision trees.

 Genetic algorithms (GAs) have been used to find near
optimal decision trees in several ways. GAs were used to
select attributes to be used to construct decision trees in a
hybrid or preprocessing manner [13,14, 15]. Other recent
work applied GAs directly to decision trees [16,17], where

an attribute can occur more than once in the path of a
decision tree. In this paper, we propose an alternate method.
 The rest of the paper is organized as follows. Section 2
reviews decision trees. Section 3 presents the
encoding/decoding decision trees to/from chromosomes,
genetic operators like mutation and crossover, fitness
functions and their analysis. Finally, section 4 concludes this
work.

2 Preliminary: Decision Trees
 A decision tree is a rooted tree T that consists of internal
nodes representing attributes, leaf nodes representing labels,
and edges representing the attributes’ possible values.
Decision trees classify instances by traversing from root
node to leaf node. The classification process starts from the
root node of a decision tree, tests the attribute specified by
this node, and then moves down the tree branch according to
the attribute value given.

D

A

B B

C

0 1

0

0

0

0

1

11

1

w1 w2

w1 w1 w2

w2

A

B

C

B

0 1

0

0

01 1

1

w2

w1 w2w1

w1

1T 2T
w20100x6
w20011x5
w21100x4
w10101x3
w10110x2

0
D

w1000x1
wCBAD

Figure 1. Decision trees consistent with D: T1 by ID-3 and

T2 by GA.

 Algorithms for decision tree construction take a set of
training instances D as input and output a learned discrete-
valued target function in the form of a tree. Instances are
represented by attribute-value pairs where each attribute can
have a small number of possible disjoint values. Here we
consider only binary attributes. Hence, the input set has n
instances where each instance xi consists of d ordered binary

attributes and a target value which is one of c states of
nature, w. Consider a sample input database D where n = 6,
d = 4, c = 2, and w = {w1, w2}.

 Among numerous decision trees that are consistent with
the training database of instances, Fig 1 shows two of them.
All instances x = {x1, …, x6} are classified correctly by both
decision trees T1 and T2. However, an unknown instance <0,
0, 0, 1, ?>, which is not in the training set, is classified
differently by the two decision trees; T1 classifies the
instance as w2 whereas T2 classifies it as w1. This inductive
inference is a fundamental problem in machine learning.
Albeit controversial, many decision-tree building algorithms
such as ID3 [3] prefer smaller trees (Occam’s razor). The
shorter the tree, the fewer the number of questions required.
Finding a smallest decision tree is an NP-complete problem
[4,5] and we present a near optimal method using GAs.
Here are the important properties of a binary decision tree:

Property 1: The size of a decision tree with l leaves is 2l -1.

Property 2: The lower and upper bounds of l are c and n;

c ≤ l ≤ n.

If D represents a c-class classification problem, the number
of leaves in the corresponding trees must be at least c in the
best cases. In the worst cases, the number of leaves will be
the size of D with each instance corresponding to a leaf.
Consider a full binary decision tree Tf

3 where each path from
the root to a leaf contains all the attributes exactly once as
exemplified in Fig 2. There are 2d leaves where d is the
height of the full decision tree. Note that real decision trees
can be sparse because some internal nodes can be leaves as
long as they are homogeneous.

C

A D

D B

B B D D

B B

A A A A

0 1

0

0 0 0 0

0 11

1111

3
fT

d2

d

0 1

w1 w1

0 1

w1 w1

0 1

w2 w2

0 1

w2 w2

0 1

w2 w1

0 1

w1 w1

0 1

w2 w2

0 1

w2 w2

{x1,x2,x3,x4,x5,x6}

{x1, x5} {x2,x3,x4,x6}

{x1} {x5} {x4}{x2,x3,x6}

{x2}{x3,x6}{x5}

{x5}

{x1}

{x1} {x6} {x3} {x2}

{x4}

{x4} ∅∅∅∅

∅

∅

∅ ∅

∅∅ ∅∅∅

 Figure 2. A sample full binary decision tree structure.

Branches represent the attributes’ possible values, left
branches having values of 0 and right branch values of 1.
For simplicity we omit the value labels in later figures.

3 Algorithm
 Genetic algorithms can provide good solutions to
many optimization problems [6,7]. They are based on
natural processes of evolution and the survival-of-the-fittest
idea. In order to use the genetic algorithm process, one must
define at least the following four steps: encoding, genetic
operators such as mutation and crossover, decoding, and
fitness function.

3.1 Encoding
 For genetic algorithms to construct decision trees the
decision trees must be encoded so that the genetic operators,
such as mutation and crossover, can be applied. We
illustrate and describe the process by considering the full
binary decision tree in Fig 2.

 Let A = {a1, a2,…, ad} be the attribute list. Consider the
full binary decision tree Tf

3, A = {A, B, C, D}. Graphically
speaking, the encoding process converts the attribute names
in Tf

3 to the index of the attribute according to A recursively
starting from the root as illustrated in Fig. 3. For example,
the root is C and its index in A is 3. Recursively, for each
subtree, update A to A-{C} attribute list. The possible
integer values at a node in the i-th level in the encoded
decision tree Te are from 1 to d – i + 1. Finally, take the
breadth-first traversal to generate the chromosome string.
For Tf

3 the string is given in Fig 3 (b).

3

1 3

2 1 2 2

{1~4}

{1~3}

{1~2}

4321
DCBA

321
DBA

321
DBA

21
DB

21
DB

21
BA

21
BA

3 1 3 2 1 2 2

(a)

(b)

{1~4} {1~3} {1~2}

3
eT

3S

Figure 3. A Encoding and decoding schema: (a) encoded
tree for in Fig 2 and (b) its chromosome attribute-selection

scheduling string.

T1and T2 in Fig 1 are encoded into <4, 1, *, 1, *, *, *> and
<1, 1, 1, 1, *, *, *>, respectively, where * can be any
number within the restricted bounds. Let us call this a
chromosome attribute-selection scheduling string, S, where
genetic operators can be applied. Properties of S include:

Property 3: The parent position of position i is 2/i ,
except for i = 1, the root.

Property 4: The left and right child positions of position i
are 2i and 2i + 1, respectively, if i ≤ 2d-2 - 1 ; otherwise,
there are no children.

Property 5: The length of the S’s is exponential in d:

| S | = 2d-1 - 1 .

Property 6: Possible integer values at position i are 1 to

 1)1log(−+− id : }1)1log(,..,1{ −+−∈ idsi .

Property 7: The number of possible S, |π (S)|, is
exponential: ()iS

i idS 1)1log(|)(| ||
1 −+−∏= =π or

 equivalently ()
121

1| () | 1
id

iS d xπ
−

−
== ∏ − + .

The lower and upper bounds of |π (S)| are o(2|S|) and Ω (d|S|),
respectively.

3.2 Genetic Operators

D

A C

C B

B B C C

B B

A A A A

3 1 3 2 1 2 2

{1~4} {1~3} {1~2}

4 2

C

A B

D B

B B D D

D D

A A A A

4
fT 5

fT

4 1 3 2 1 2 2

3 1 2 2 1 2 2

3S

4S

5S

Figure 4. Mutation Operator.

Two of the most common genetic operators are mutation

and crossover. The mutation operator is defined as changing
the value of a certain position in a string to one of the
possible values in the range. We illustrate the mutation
process on the attribute selection scheduling string s3 <3, 1,
3, 2, 1, 2, 2> in Fig 4. If a mutation occurs in the first
position and changes the value to 4, which is in the range
{1,..,4}, Tf

4 is generated. If a mutation happens in the third
position and changes the value to 2, which is in the range
{1,.. ,3}, then Tf

5 is generated. As long as the changed value
is within the allowed range, the resulting new string always
generates a valid full binary decision tree.

 Consider S1 <4, 1, 3, 1, 2, 2, 1>. A full binary decision
tree is built according to this schedule. The final decision
tree for S1 will be T1 <4, 1, *, 1, *, *, *> in Fig 1. There are
3 × 2 × 2 × 2 = 24 equivalent schedules that produce T1.
Therefore, for the mutation to be effective we apply the
mutation operators only to those positions that are not *.

C

A B

D B

B B D D

A D

D D A A

3 1 3 2 1 2 2

D

C C

B A

A A B B

B B

A A A A

4 3 2 2 1 1 2
P1 :

P2 :

3 1 2 2 1 1 2
4 3 3 2 1 2 2

:

:

6
fT 7

fT

6S

7S

Figure 5. Crossover Operator.

 We illustrate the crossover operator in Fig 5. Consider
the two parent attribute selection scheduling strings, P1 and
P2, in Fig 5. After randomly selecting a split point, the first
part of P1 and the last part of P2 contribute to yield a child
string s6. Reversing the crossover produces a second Child s7.
The resulting full binary decision trees for these two
children are T6 and T7, respectively.

3.3 Decoding

D

A

C B

B

4T

w2

w2w1w1

w1w2

C

A B

D

A

5T

w2w1 w1

w2

w1w2

6T C

A B

Aw2w1 w1

w1w2

D

C

B A

7T

w2

w1w2w1 B

w1w2

C

A D

B

A

3T

w2w1 w2

w1

w1w2

Figure 6. Decoded decision trees.

 Decoding is the reverse of the encoding process in Fig 3.
Starting from the root node, we place the attribute according
to the chromosome schedule S which contains the index
values of attribute list A. When an attribute a is selected, D
is divided into left and right branches DL and DR. DL
consists of all the xi having a value of 0 and DR consists of

all the xi having a value of 1. For each pair of sub-trees we
repeat the process recursively with the new attribute list A =
A - {a}. When a node becomes homogeneous, i.e., all class
values in D are the same, we label the leaf. Fig 7 displays
the decision trees from s3, s4, s5 , s6, and s7, respectively.

Sometimes a chromosome introduces mutants. For
instance, consider a chromosome s8 <3, 3, 2, 1, 1, 1, 2>
which results T8, in Fig 7. The ⊗ occurs when D at the node
attribute a has non-homogeneous labels but the a column in
D has either all 0’s or all 1’s. In other words, the a attribute
provides no information gain. We refer to such a decision
tree as a mutant tree for two reasons. First, what values
should we put in ⊗ ? The label may be chosen at random
but D provides no clue. Second, if we allow entering a value
for ⊗ , it may violate property 2; the number of leaves l may
exceed n. Indeed, T8 behaves identically to T6 with respect to
D. Thus, mutant decision trees will not be chosen as the
fittest trees according to the fitness functions.

w2011x5

0

D

w100x1

wBA

w2000x6
w2100x4

w1001x3

w1010x2

D wBA

w200x6

w210x4

w101x3

D wA

w211x5

w100x1

wBA

w10x1

wB

w21x5

wB

w100x2

D wA

w10x3

D w

w20x6

w21x4

D w

8T
C

D B

A w1

w1w2

A

w2w1

Figure 7. Mutant binary decision tree.

3.4 Fitness functions
 Each attribute selection scheduling string S must be
evaluated according to a fitness function. We consider two
cases: in the first case D contains no contradicting instances
and d is a small finite number, in the other case d is very
large. Contradicting instances are those whose attribute
values are identical but their target values are different. The
case with small d and no contradicting instances has
application to network function representation [18].

Theorem 1: Every attribute selection scheduling string S
produces a consistent full binary decision tree as long as the
set of instances contains no contradicting instances.

Proof: Suppose one adds nodes at the d - 1 level with the
remaining one attribute to the full binary decision tree. One
also adds the leaves with target values in the set of instances
accordingly. If the target value is not available in the

training set, add a random target value. This becomes a
complete truth table as the number of leaves are 2d. The
predicted value by the decision tree is always consistent with
the actual target value. ■

 Since the databases we consider contain no contradicting
instances, one obvious fitness function is the size of the tree;
the fitness function fs is the size, the total number of nodes,
e.g., fs(T1) = 11 and fs(T2) = 9. Here, however, we use a
different fitness function fd, i.e., the sum of the depth of the
leaf nodes for each instance. This is equivalent to the sum of
questions to be asked for each instance, e.g., fd(T1) = 18 and
fd(T2) = fd(T6) = 15 as shown in Table 1. This requires the
assumption that each instance in D has equal prior
probability. Both of these evaluation functions suggest that
T2 and T6 are better than T1 which is produced by the ID3
algorithm.

Table 1. Training instances and their depths in decision
trees.

X 1T 2T 3T 4T
5T

6T
7T 8T

x1 4 3 2 3 2 2 3 3
x2 3 2 3 4 2 2 4 2
x3 3 2 4 3 4 3 3 3
x4 1 3 2 1 3 3 1 3
x5 3 2 2 3 2 2 3 3
x6 4 3 4 4 4 3 4 3

sum 18 15 17 18 17 15 18 17

With two decision trees of the same size (2l - 1) where l is
the number of leaves, the number of questions to be asked
could be different by theorem 2.

Theorem 2: There exist Tx and Ty such that fs(Tx) = fs(Ty)
and fd(Tx) < fd(Ty).

Proof: Let Tx be a balanced binary tree and Ty be a skewed
or linear binary tree. Then fd(Tx) = Θ (nlog n) whereas

)()()(
1

2 ∑=
Θ=Θ=

n

iyd inTf . ■

Corollary 1: 1)(log

1
−≤≤ ∑ =

n

ixd iTfcn where n is the number

of instances.

Proof: By property 2, in the best case the decision tree will
have l = c leaves. In the best case, the tree is completely
balanced with height log c. Thus the lower bound for fd(Tx)
is nlog c. In the worst case, the number of leaves is n by
property 2 and the decision tree forms a skewed or linear
binary tree. Thus the upper bound is)1(

1
−∑ =

n

i
i . ■

If fd(Tx) < nlog c, Tx classifies only a subset of classes, never
classifying one or more classes. Regardless of the size, this
tree should not be selected. If

1
() 1

n
d x i

f T i
=

> −∑ , there is a

mutant node and Tx can be shortened.

 When d is large, the size of the chromosome will explode
by the property 3. In this case we must limit the height of the
decision tree. The chromosome has a finite length and
guides to select attributes up to a certain height. Since n ≪
2d typically, a good choice of the height of the decision tree
is nlog , i.e., |s| ≈ n.

Figure 8. Decision trees with respect to fd and accuracy fa.

We randomly generated a 26 binary attribute training
database and limited the tree height to 8. Fig 8 shows 100
genetically generated decision trees after 100 generations in
respect to their fd(Tx) and accuracy fa(Tx) on the training
examples.

4 Conclusions
 In this paper, we reviewed binary decision trees and
utilized genetic algorithms to build them. By limiting the
tree’s height the presented method guarantees finding a
better or equal decision tree than the best known algorithms
since such trees can be put in the initial population.

 Methods that apply GAs directly to decision trees [16,17]
can yield subtrees that are never visited as shown in Fig 9.
After mutation operator in ‘O’ node in T9, T11 has a dashed
subtree that is never visited. After crossover between T9 and
T10, the child trees T12 and T13 also have dashed subtrees.
These unnecessary subtrees occur whenever an attribute
occurs more than once in the path of a decision tree.
However, by encoding the decision tree, this problem never
occurs as in Fig 10.

 When d is large, limiting the height is recommended.
However, pre-order depth first traversal rather than the
breadth first traversal is an answer as decision trees are often
sparse as shown in Fig 10. Mutation shown in this paper is
still valid in pre-order depth first traversal representation but
crossover may cause a mutant when two subtrees to be

switched are at different levels. The index number of a node
may exceed the limit due to a crossover. Thus mutation after
crossover is inevitable. Analyzing and implementing the
depth first traversal of encoded decision tree remains
ongoing work. Encoding and decoding non-binary decision
trees where different attributes have different possible
values is an open problem.

B

J

9T O

R

V

10T
K

O

M

B

C

AJ

K

B

J

11T

K

K

M

B

J

12T

B

C

AJ

K

O

R

V

13T

K

O

M

Figure 9. Direct GA on decision trees.

2

9

'9T 15

17

20

'10T
10

13

11

2

2

18

10

2

22
14
eT

10

13

11

2

9
15
eT

2

2

18

10

15

17

20

16
eT

10

13

11

B

W

14T
K

O

M

B

J

15T
C

D

AK

L

O

R

V

16T
J

N

L

Figure 10. Pre-order depth first traversal for decision trees.

5 References
[1] Mitchell, T. M., "Machine Learning", McGraw-hill,

1997
[2] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern

Classification, 2nd ed. Wiley interscience, 2001
[3] Quinlan, J. R., Induction of decision trees, Machine

Learning, 1(1), 81-106
[4] L. Hyafil and R. L. Rivest, “ Constructing optimal

binary decision trees is NP-complete ,” Information
Processing Letters, vol. 5, No. 1, 15-17, 1976.

[5] Bodlaender, L.H. and Zantema H., Finding Small
Equivalent Decision Trees is Hard, International Journal

of Foundations of Computer Science, Vol. 11, No. 2
World Scientific Publishing, 2000, pp 343-354

[6] Goldberg D. L., "Genetic Algorithms in Search,
Optimization, and Machine Learning", Addison-Wesley,
1989

[7] Mitchell, M., "An Introduction to Genetic Algorithms",
Massachusetts Institute of Technology, 1996.

[8] Safavian, S.R. and Landgrebe, D., A survey of decision
tree classifier methodology, IEEE Transactions on
Systems, Man and Cybernetics, vol 21, num 3, pp 660-
674, 1991

[9] Gehrke, J., Ganti, V., Ramakrishnan R., and Loh, W.,
BOAT-Optimistic Decision Tree Construction, in Proc.
of the ACM SIGMOD Conference on Management of
Data, 1999, p169-180

[10] Zhao, Q. and Shirasaka, M., A Study on Evolutionary
Design of Binary Decision Trees, in Proceedings of the
Congress on Evolutionary Computation, vol 3, IEEE,
1999, pp 1988-1993

[11] Bennett , K. and Blue, J., Optimal decision trees, Tech.
Rpt. No. 214 Department of Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, New York.,
1996

[12] Pajunen, P. and Girolami, M., "Implementing decisions
in binary decision trees using independent component
analysis", in Proc. of ICA, 2000, pages 477-481.

[13] Kyoung Min Kim, Joong Jo Park, Myung Hyun Song,
In Cheol Kim, and Ching Y. Suen, Binary Decision
Tree Using Genetic Algorithm for Recognizing Defect
Patterns of Cold Mill Strip, LNCS vol 3060, Springer,
2004, pp1611-3349

[14] Teeuwsen, S.P., Erlich, I., El-Sharkawi, M.A., and
Bachmann, U., Genetic algorithm and decision tree-
based oscillatory stability assessment, IEEE
Transactions on Power Systems, Vol 21, Issue 2, May
2006 p 746-753

[15] Bala, J., Huang, J., Vafaie, H., DeJong, K., and
Wechsler, H., Hybrid learning using genetic algorithms
and decision tress for pattern classification. in Proc. of
the 14th International Joint Conference on Artificial
Intelligence, Montreal, Canada, 1995, pp. 719-724.

[16] Papagelis, A. and Kalles, D., GA Tree: genetically
evolved decision trees, in Procc of 12th IEEE
International Conference on Tools with Artificial
Intelligence, 2000, p 203-206

[17] Fu, Z., An Innovative GA-Based Decision Tree
Classifier in Large Scale Data Mining, LNCS Vol. 1704,
Springer, 1999, pp 348 – 353.

[18] Martinez, T. R. and Campbell, D. M., A Self-
Organizing Binary Decision Tree For Incrementally
Defined Rule Based Systems, Systems, IEEE Systems,
Man, and Cybernetics, vol. 21, No. 5, pp.1231-1238,
1991.

