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Abstract - Decision trees have been well studied and 
widely used in knowledge discovery and decision support 
systems. Although the problem of finding an optimal 
decision tree has received attention, it is a hard op-
timization problem.  Here we propose utilizing a genetic 
algorithm to improve on the finding of ap-propriate 
decision trees.  We present a method to encode/decode a 
decision tree to/from a chromo-some where genetic 
operators can be applied. Theo-retical properties of 
decision trees, encoded chro-mosomes, and fitness 
functions are presented. 
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1 Introduction 
  Decision trees approximate discrete-valued target 
functions as trees and are a widely used practical method for 
inductive inference [1]. Decision trees have prospered in 
knowledge discovery and decision support systems because 
of their natural and intuitive paradigm to classify a pattern 
through a sequence of questions. Algorithms for 
constructing decision trees such as ID3 [1,2,3] often use 
heuristics to find a shorter tree. Finding the shortest decision 
tree is a hard optimization problem [4,5]. Here we propose a 
method using genetic algorithms which use an optimization 
technique based on natural evolution [1,2,6,7].  
 
     Several attempts to construct near-optimal decision trees 
appear in the literature (see the extensive survey [8]). 
Gehrke et al developed a bootstrapped optimistic algorithm 
for decision tree construction [9]. For continuous attribute 
data, Zhao and Shirasaka [10] suggested an evolutionary 
design, Bennett and Blue [11] proposed an extreme point 
tabu search algorithm, and Pajunen and girolami [12] 
exploited linear ICA to construct binary decision trees. Here 
we consider constructing binary attribute decision trees.  
 
     Genetic algorithms (GAs) have been used to find near 
optimal decision trees in several ways. GAs were used to 
select attributes to be used to construct decision trees in a 
hybrid or preprocessing manner [13,14, 15].  Other recent 
work applied GAs directly to decision trees [16,17], where 

an attribute can occur more than once in the path of a 
decision tree. In this paper, we propose an alternate method.  
    The rest of the paper is organized as follows. Section 2 
reviews decision trees. Section 3 presents the 
encoding/decoding decision trees to/from chromosomes, 
genetic operators like mutation and crossover, fitness 
functions and their analysis. Finally, section 4 concludes this 
work. 
 
2 Preliminary: Decision Trees 
 A decision tree is a rooted tree T that consists of internal 
nodes representing attributes, leaf nodes representing labels, 
and edges representing the attributes’ possible values. 
Decision trees classify instances by traversing from root 
node to leaf node. The classification process starts from the 
root node of a decision tree, tests the attribute specified by 
this node, and then moves down the tree branch according to 
the attribute value given.  
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Figure 1.  Decision trees consistent with D: T1 by ID-3 and 

T2 by GA. 
 

     Algorithms for decision tree construction take a set of 
training instances D as input and output a learned discrete-
valued target function in the form of a tree. Instances are 
represented by attribute-value pairs where each attribute can 
have a small number of possible disjoint values. Here we 
consider only binary attributes. Hence, the input set has n 
instances where each instance xi consists of d ordered binary 



 

attributes and a target value which is one of c states of 
nature, w. Consider a sample input database D where n = 6, 
d = 4, c = 2, and w = {w1, w2}.  
 
     Among numerous decision trees that are consistent with 
the training database of instances, Fig 1 shows two of them. 
All instances x = {x1, …, x6} are classified correctly by both 
decision trees T1 and T2. However, an unknown instance <0, 
0, 0, 1, ?>, which is not in the training set, is classified 
differently by the two decision trees; T1 classifies the 
instance as w2 whereas T2 classifies it as w1. This inductive 
inference is a fundamental problem in machine learning. 
Albeit controversial, many decision-tree building algorithms 
such as ID3 [3] prefer smaller trees (Occam’s razor). The 
shorter the tree, the fewer the number of questions required. 
Finding a smallest decision tree is an NP-complete problem 
[4,5] and we present a near optimal method using GAs.  
Here are the important properties of a binary decision tree:  
 
Property 1: The size of a decision tree with l leaves is 2l -1.  
 
Property 2: The lower and upper bounds of l are c and n; 

c ≤  l ≤  n.  
 
If D represents a c-class classification problem, the number 
of leaves in the corresponding trees must be at least c in the 
best cases. In the worst cases, the number of leaves will be 
the size of D with each instance corresponding to a leaf. 
Consider a full binary decision tree Tf

3 where each path from 
the root to a leaf contains all the attributes exactly once as 
exemplified in Fig 2. There are 2d  leaves where d is the 
height of the full decision tree. Note that real decision trees 
can be sparse because some internal nodes can be leaves as 
long as they are homogeneous.  
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 Figure 2.  A sample full binary decision tree structure. 
 

Branches represent the attributes’ possible values, left 
branches having values of 0 and right branch values of 1. 
For simplicity we omit the value labels in later figures. 
 

3 Algorithm 
 Genetic algorithms can provide good solutions to 
many optimization problems [6,7]. They are based on 
natural processes of evolution and the survival-of-the-fittest 
idea. In order to use the genetic algorithm process, one must 
define at least the following four steps: encoding, genetic 
operators such as mutation and crossover, decoding, and 
fitness function. 

3.1 Encoding 
 For genetic algorithms to construct decision trees the 
decision trees must be encoded so that the genetic operators, 
such as mutation and crossover, can be applied. We 
illustrate and describe the process by considering the full 
binary decision tree in Fig 2.  
 
     Let A = {a1, a2,…, ad} be the attribute list. Consider the 
full binary decision tree Tf

3, A = {A, B, C, D}. Graphically 
speaking, the encoding process converts the attribute names 
in Tf

3 to the index of the attribute according to A recursively 
starting from the root as illustrated in Fig. 3. For example, 
the root is C and its index in A is 3. Recursively, for each 
subtree, update A to A-{C} attribute list. The possible 
integer values at a node in the i-th level in the encoded 
decision tree Te are from 1 to d – i + 1. Finally, take the 
breadth-first traversal to generate the chromosome string. 
For Tf

3 the string is given in Fig 3 (b).  
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Figure 3.  A Encoding and decoding schema: (a) encoded 
tree for   in Fig 2 and (b) its chromosome attribute-selection 

scheduling string. 

 
T1and T2 in Fig 1 are encoded into <4, 1, *, 1, *, *, *> and 
<1, 1, 1, 1, *, *, *>, respectively, where * can be any 
number within the restricted bounds. Let us call this a 
chromosome attribute-selection scheduling string, S, where 
genetic operators can be applied. Properties of S include: 
 



 

Property 3: The parent position of position i is  2/i , 
except for i = 1, the root.  
 
Property 4: The left and right child positions of position i 
are 2i and 2i + 1, respectively, if i ≤  2d-2 - 1 ; otherwise, 
there are no children.  
 
Property 5: The length of the S’s is exponential in d:  

| S | = 2d-1 - 1 .  
 
Property 6: Possible integer values at position i are 1 to 

  1)1log( −+− id :    }1)1log(,..,1{ −+−∈ idsi .  
 
Property 7: The number of possible S, |π (S)|, is 
exponential:  ( )iS

i idS 1)1log(|)(| ||
1 −+−∏= =π  or 

 equivalently ( )
121

1| ( ) | 1
id

iS d xπ
−

−
== ∏ − + . 

 
The lower and upper bounds of |π (S)| are o(2|S|) and Ω (d|S|), 
respectively. 

3.2 Genetic Operators 
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Figure 4. Mutation Operator. 

 
Two of the most common genetic operators are mutation 

and crossover. The mutation operator is defined as changing 
the value of a certain position in a string to one of the 
possible values in the range. We illustrate the mutation 
process on the attribute selection scheduling string s3 <3, 1, 
3, 2, 1, 2, 2> in Fig 4. If a mutation occurs in the first 
position and changes the value to 4, which is in the range 
{1,..,4}, Tf

4 is generated. If a mutation happens in the third 
position and changes the value to 2, which is in the range 
{1,.. ,3}, then Tf

5 is generated. As long as the changed value 
is within the allowed range, the resulting new string always 
generates a valid full binary decision tree.  
 

     Consider S1  <4, 1, 3, 1, 2, 2, 1>. A full binary decision 
tree is built according to this schedule. The final decision 
tree for S1 will be T1  <4, 1, *, 1, *, *, *> in Fig 1. There are 
3 × 2 × 2 × 2 = 24 equivalent schedules that produce T1. 
Therefore, for the mutation to be effective we apply the 
mutation operators only to those positions that are not *.  
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Figure 5. Crossover Operator. 

     We illustrate the crossover operator in Fig 5. Consider 
the two parent attribute selection scheduling strings, P1 and 
P2, in Fig 5. After randomly selecting a split point, the first 
part of P1 and the last part of P2 contribute to yield a child 
string s6. Reversing the crossover produces a second Child s7. 
The resulting full binary decision trees for these two 
children are T6 and T7, respectively.  
 
3.3 Decoding 
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Figure 6. Decoded decision trees. 

 Decoding is the reverse of the encoding process in Fig 3. 
Starting from the root node, we place the attribute according 
to the chromosome schedule S which contains the index 
values of attribute list A. When an attribute a is selected, D 
is divided into left and right branches DL and DR. DL  
consists of all the xi  having a value of 0 and DR consists of 



 

all the xi having a value of 1. For each pair of sub-trees we 
repeat the process recursively with the new attribute list A = 
A - {a}. When a node becomes homogeneous, i.e., all class 
values in D are the same, we label the leaf. Fig 7 displays 
the decision trees from s3, s4, s5 , s6, and s7, respectively. 
 

Sometimes a chromosome introduces mutants. For 
instance, consider a chromosome s8 <3, 3, 2, 1, 1, 1, 2> 
which results T8, in Fig 7. The ⊗  occurs when D at the node 
attribute a has non-homogeneous labels but the a column in 
D has either all 0’s or all 1’s.  In other words, the a attribute 
provides no information gain. We refer to such a decision 
tree as a mutant tree for two reasons. First, what values 
should we put in ⊗ ? The label may be chosen at random 
but D provides no clue. Second, if we allow entering a value 
for ⊗ , it may violate property 2; the number of leaves l may 
exceed n. Indeed, T8 behaves identically to T6 with respect to 
D. Thus, mutant decision trees will not be chosen as the 
fittest trees according to the fitness functions.  
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Figure 7. Mutant binary decision tree. 

 
3.4 Fitness functions 
 Each attribute selection scheduling string S must be 
evaluated according to a fitness function. We consider two 
cases: in the first case D contains no contradicting instances 
and d is a small finite number, in the other case d is very 
large. Contradicting instances are those whose attribute 
values are identical but their target values are different. The 
case with small d and no contradicting instances has 
application to network function representation [18].  
 
Theorem 1: Every attribute selection scheduling string S 
produces a consistent full binary decision tree as long as the 
set of instances contains no contradicting instances.  
 
Proof: Suppose one adds nodes at the d - 1 level with the 
remaining one attribute to the full binary decision tree. One 
also adds the leaves with target values in the set of instances 
accordingly. If the target value is not available in the 

training set, add a random target value. This becomes a 
complete truth table as the number of leaves are 2d. The 
predicted value by the decision tree is always consistent with 
the actual target value.                                                       ■ 
 
     Since the databases we consider contain no contradicting 
instances, one obvious fitness function is the size of the tree; 
the fitness function fs is the size, the total number of nodes, 
e.g., fs(T1) = 11 and fs(T2) = 9. Here, however, we use a 
different fitness function fd, i.e., the sum of the depth of the 
leaf nodes for each instance. This is equivalent to the sum of 
questions to be asked for each instance, e.g., fd(T1) = 18  and 
fd(T2) = fd(T6) = 15 as shown in Table 1. This requires the 
assumption that each instance in D has equal prior 
probability. Both of these evaluation functions suggest that 
T2 and T6 are better than T1 which is produced by the ID3 
algorithm.  
 

Table 1. Training instances and their depths in decision 
trees. 

X 1T 2T 3T 4T  
5T  

6T  
7T 8T

x1 4 3 2 3 2 2 3 3
x2 3 2 3 4 2 2 4 2
x3 3 2 4 3 4 3 3 3
x4 1 3 2 1 3 3 1 3
x5 3 2 2 3 2 2 3 3
x6 4 3 4 4 4 3 4 3

sum 18 15 17 18 17 15 18 17
 
With two decision trees of the same size (2l - 1) where l is 
the number of leaves, the number of questions to be asked 
could be different by theorem 2.  
 
Theorem 2: There exist Tx and Ty such that fs(Tx) = fs(Ty) 
and fd(Tx) < fd(Ty). 
 
Proof: Let Tx be a balanced binary tree and Ty be a skewed 
or linear binary tree. Then fd(Tx) = Θ (nlog n) whereas 

)()()(
1

2 ∑=
Θ=Θ=

n

iyd inTf .                                                    ■ 

 
Corollary 1: 1)(log

1
−≤≤ ∑ =

n

ixd iTfcn  where n is the number 

of instances.  
 
Proof: By property 2, in the best case the decision tree will 
have l = c leaves. In the best case, the tree is completely 
balanced with height log c. Thus the lower bound for  fd(Tx) 
is nlog c. In the worst case, the number of leaves is n by 
property 2 and the decision tree forms a skewed or linear 
binary tree. Thus the upper bound is )1(

1
−∑ =

n

i
i .                 ■ 

 
If  fd(Tx) < nlog c, Tx classifies only a subset of classes, never 
classifying one or more classes. Regardless of the size, this 
tree should not be selected. If 

1
( ) 1

n
d x i

f T i
=

> −∑ , there is a 

mutant node and Tx can be shortened.  



 

     When d is large, the size of the chromosome will explode 
by the property 3. In this case we must limit the height of the 
decision tree. The chromosome has a finite length and 
guides to select attributes up to a certain height. Since n ≪  
2d  typically, a good choice of the height of the decision tree 
is nlog , i.e., |s| ≈  n. 

  

Figure 8. Decision trees with respect to fd and accuracy fa. 

We randomly generated a 26 binary attribute training 
database and limited the tree height to 8. Fig 8 shows 100 
genetically generated decision trees after 100 generations in 
respect to their fd(Tx) and accuracy fa(Tx) on the training 
examples. 

 

4 Conclusions 
 In this paper, we reviewed binary decision trees and 
utilized genetic algorithms to build them.  By limiting the 
tree’s height the presented method guarantees finding a 
better or equal decision tree than the best known algorithms 
since such trees can be put in the initial population.  
 
     Methods that apply GAs directly to decision trees [16,17] 
can yield subtrees that are never visited as shown in Fig 9. 
After mutation operator in ‘O’ node in T9, T11 has a dashed 
subtree that is never visited.  After crossover between T9 and 
T10, the child trees T12 and T13 also have dashed subtrees. 
These unnecessary subtrees occur whenever an attribute 
occurs more than once in the path of a decision tree. 
However, by encoding the decision tree, this problem never 
occurs as in Fig 10.  
 
     When d is large, limiting the height is recommended. 
However, pre-order depth first traversal rather than the 
breadth first traversal is an answer as decision trees are often 
sparse as shown in Fig 10. Mutation shown in this paper is 
still valid in pre-order depth first traversal representation but 
crossover may cause a mutant when two subtrees to be 

switched are at different levels. The index number of a node 
may exceed the limit due to a crossover. Thus mutation after 
crossover is inevitable. Analyzing and implementing the 
depth first traversal of encoded decision tree remains 
ongoing work. Encoding and decoding non-binary decision 
trees where different attributes have different possible 
values is an open problem. 
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Figure 9. Direct GA on decision trees. 
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Figure 10. Pre-order depth first traversal for decision trees. 
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