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Abstract. Obstacle avoidance is one of the essential and indispensable functions for autonomous mobile robots. Most of the
existing solutions are typically based on single condition constraint and cannot incorporate sensor data in a real-time manner,
which often fail to respond to unexpected moving obstacles in dynamic unknown environments. In this paper, a novel real-time
multi-constraints obstacle avoidance method based on Light Detection and Ranging(LiDAR) is proposed, which is able to, based
on the latest estimation of the robot pose and environment, find the sub-goal defined by a multi-constraints function within the
explored region and plan a corresponding optimal trajectory at each time step iteratively, so that the robot approaches the goal
over time. Meanwhile, at each time step, the improved Ant Colony Optimization(ACO) algorithm is also used to re-plan optimal
paths from the latest robot pose to the latest defined sub-goal position. While ensuring convergence, planning in this method is
done by repeated local optimizations, so that the latest sensor data from LiDAR and derived environment information can be
fully utilized at each step until the robot reaches the desired position. This method facilitates real-time performance, also has little
requirement on memory space or computational power due to its nature, thus our method has huge potentials to benefit small
low-cost autonomous platforms. The method is evaluated against several existing technologies in both simulation and real-world
experiments.
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1. Introduction

In recent years, the autonomous mobile robot tech-
nique has made considerable progress and keeps at-
tracting more attention from engineers and researchers
around the world. The characteristics of robots, like
cost, size, flexibility, safety, etc., drive them to be in-
creasingly popular on various applications from dif-
ferent fields, such as military reconnaissance, surveil-
lance, transportation, traffic monitoring[1,2].

*Corresponding author. E-mail: sunjian10@mail.xjtu.edu.cn

One of the major challenges robots having is to
avoid obstacles and perform path planning in dynamic
environments. Robots should be able to perceive the
surrounding environment, be prepared for potential
threats, identify new obstacles in the scene, and modify
or re-plan trajectory with the latest knowledge, ideally
also achieving optimality in some measurable sense at
a low cost on memory space and computation.

Generally, path planning can be divided into two
categories; one is global path planning that gener-
ates an optimal off-line path with prior knowledge
of the environment. Even if the environment is pre-
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mapped, this type of path planning algorithms still suf-
fers from unexpected obstacles that are moving or sim-
ply werenâĂŹt mapped. The other type does not re-
quire the environment to be pre-mapped, but rather, as-
suming a dynamic environment, work with real-time
sensor data to perform online planning locally[3]. For
this type of planning, characteristics of sensor data
should be taken into consideration during the system
design stage to best utilize the information available.

Therefore, the challenges for robot obstacle avoid-
ance algorithms are: (1) insufficient environment in-
formation in dynamic environments; (2) sensors’ in-
formation is often not effectively utilized at each local
optimization.

A novel multi-constraints autonomous obstacle avoid-
ance method based on LiDAR is proposed in this pa-
per, which enables robots equipped with LiDAR to
avoid obstacles autonomously in dynamic situations at
a lower cost. It establishes a customized cost function
with multi-constraints to analyze effectively the real-
time scanning data of the LiDAR, and then extract an
optimal sub-goal within the scanning area. Meanwhile,
the improved ACO is used to quickly re-plan an op-
timal sub-path from the current robot position to the
sub-goal position. The said process is done iteratively
at each step until the pre-specified goal is reached. In
our system set up, single-beam 2-dimensional LiDAR,
instead of multi-beam 3-dimensional LiDAR, is used
because the performance of the former is sufficient for
detecting the surroundings and identify obstacles, and
it has lower cost and lower requirements on computa-
tion and storage. Both simulation and experiments are
conducted, to validate our method and demonstrate its
effectiveness and availability.

The rest of the paper is organized as follows. Section
2 reviews some important research results related to
obstacle avoidance algorithms. Section 3 presents the
proposed algorithm. Section 4 demonstrates the simu-
lation and experiment results. Section 5 concludes the
paper.

2. Related work

Several research studies focus on obstacle avoid-
ance for robot path planning[4], the methods for solv-
ing path planning are as follows: probabilistic, heuris-
tic, and meta-heuristic methods. Probabilistic mainly
consists of Rapidly-exploring Random Trees(RRT)[5],
Probabilistic Roadmaps (PRM)[6]. In the heuristic
and meta-heuristic approaches are the Artificial Neu-

ral Networks(ANN)[7], Genetic Algorithms(GA)[8],
Simulated Annealing[9], ACO[10], Bacterial Forag-
ing Optimization(BFO)[11]. Each of the methods pre-
sented above has its strengths and weaknesses. In
many situations, some of them are combined to de-
rive the desired path planner in the most effective
mode[12,13].

The Artificial Potential Field(APF) method was a
sophisticated and efficient obstacle avoidance method,
first proposed by Oussama Khatib[14] and applied it
to obstacle avoidance[11,15,16], while it is extremely
easy to fall into the local minima. Bence KovÃącs[17]
presented a method from animal motion attributes
based on APF for robot path planning, and the Bug al-
gorithm was used to solve the local minima problem
of APF. However, it has not solved the disadvantages
that the Bug algorithm is incapable of exploiting the
sensorâĂŹs data and still cannot ensure that the path
is optimal. Dieter Fox proposed a Dynamic Window
Approach(DWA) in[18,19], which took into account
the inertia factor of the robot and is suitable for robots
with high speed and robots with limited motor torque;
but, it cannot be used in unstructured dynamic en-
vironments. In[11] BFO algorithm produced impres-
sive simulation results for obstacle avoidance on a mo-
bile robot path planning, this method requires many
samples for estimation, the more samples, the greater
the memory consumption, the higher the complexity
of the algorithm[20]; conversely, the fewer the par-
ticles, the worse the path smoothness. Reference[21]
proposed an obstacle avoidance bubble bug algorithm
(BBA), it defined a bubble around the robot, the ra-
dius of the bubble indicates the range of the sensor,
the strategy was to limit the robot to the maximum
distance from the obstacle all the time. Some schol-
ars are working to solve the problem of robot naviga-
tion and obstacle avoidance by Simultaneous Localiza-
tion and Mapping (SLAM)[22,23] based on LiDAR or
vision[24,25,26,27].

In contrast to the mentioned approaches, this paper
focuses on building a multi-constraints mathematical
model to best utilize the real-time scanning informa-
tion of LiDAR in a dynamic environment. As a result,
the robot is able to, in a real-time manner, computes
the optimal path to avoid unexpected threats and un-
certain obstacles at a lower cost.

3. Proposed method

In this section, the cost function with multi-constraints
is introduced to analyze the local known informa-
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tion, including the current position and orientation (to-
gether, the pose) of the robot, the LiDAR scanning area
(obstacle areas and collision-free space), and the goal
position.

3.1. Environment model

LiDAR is mounted on the top of the robot and used
to detect environment information in a 2D scanning
plane, with a maximum scanning range. Note that the
2D LiDAR can only scan one plane. In practice, if the
height of the obstacle is less than the height of the
LiDAR, it cannot be detected. Therefore, the installa-
tion height of LiDAR needs to weigh the actual appli-
cation environment and should not be fixed. At each
scanning period, LiDAR gives 360-degree surround-
ing scanning and generates Np data points, also called
lase-point cloud. Scanning data can be expressed as
(dti, θ

t
i), where the dti and θti respectively denotes the

relative distance and orientation centered on the robot,
with the LiDAR scanned objects for i = 1, . . . , Np at
the time t. As shown in figure 1, the original data of
the LiDAR in polar coordinates is shown, where the
green dots indicate the obstacles, R represents the Li-
DAR scanning radius, and the white triangle denotes
the robot.

Fig. 1. Original data of LiDAR

Within the scanning area, every object can be sim-
plified as multiple points. If there are obstacles, a se-
ries of point sets are generated to represent obstacles;
otherwise, there are no data points. It is not convenient
to use the original LiDAR data directly to represent
surroundings because of the data points are discrete.
A single point does not indicate an obstacle, but clus-
ters the data points. There have been several studies
focusing on clustering methods for point cloud data.
In this paper, the scanning area is equally divided into
Nm sectors, and each sector is given a unique number
id (id = 1, . . . , Nm). Generally, that is meaningful to
equally divide the scanning area, the smaller the sec-
tor division, the more flexible the path planning, while
the amount of calculation is increased. All data points

will be distributed in the sector corresponding to the
(dti, θ

t
i) within the scanning area. In the way, only need

to pay attention to which sectors are distributed with
data points; the remaining sectors belong to collision-
free space. A local grid map is constructed within the
LiDAR scanning area, which is used to analyze the
current environment.

The scanning area is further divided into small grid
cells that can accurately locate the obstacle in the spe-
cific grid units. Because roughly creating a grid map
in a circular scanning area of radius R may produce
some incomplete grid units, making it impossible to
assign a corresponding coordinate position to some
grid units. In order to solve the problem that the incom-
plete grid cells cannot be assigned coordinates, in this
paper, the largest square space in a circular scanning
area is used to replace the LiDAR scanning area, and
then the square is divided into several grid cells. So
each clustered data points can be allocated in a specific
grid.

In this paper, the robot moves on the horizontal
ground and obtains real-time pose information by
reading the odometry. Its position and orientation can
be simplified as P trobot (xr, yr, ψr) in the 2D space at
time t, and ψr indicates the yaw angle. In fact, given
the error of the odometry, the application environment
is limited to small indoor scenes. It can be easily cal-
culated that grid units position P t,igrid (xi, yi) based on
the P trobot (xr, yr, ψr) at time t.(

xi
yi

)
=

(
xr
yr

)
+

(
dti · cos (ψr − θti)
dti · sin (ψr − θti)

)
(1)

In the grid map, an expansion coefficient is set for
each obstacle, and if a grid unit is occupied by an ob-
stacle, its adjacent eight grid units are not included in
the collision-free space. However, how to logically re-
plan an optimal sub-path among these collision-free
grids to achieve the avoidance obstacles at a lower cost
is the problem to be solved in this paper.

3.2. The cost function

The robot can re-plan an optimal path online toward
sub-goal and successfully avoid unexpected obstacles
or threats at a lower cost. As a sub-goal selected at a
specific moment, it employs the key criterion for con-
vergence to the goal position. On the other hand, the
sub-goal is locally optimal and globally convergent,
because the cost function based on multi-constraints is
capable of analyzing thoroughly the detection informa-
tion of the LiDAR. Concerning known local environ-
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ment information, each grid cell in collision-free space
is estimated by the cost function, the result of the cost
function denotes the cost of the corresponding grid cell
as a sub-goal, the smaller the value, the smaller the
cost.

The significance of the customized cost function
consisting ofds

(
P t,jgrid, Pgoal

)
,θ1

(
P trobot, P

t,j
grid

)
and

θ2

(
P t,jgrid, Pgoal

)
is to comprehensively evaluate the

real-time information, including the current pose in-
formation of the robot, the LiDAR scanning area, and
the goal position, to generate the sub-goal. Pgoal is
the goal position information, P trobot denotes the robot
pose information at the time t, and P t,jgrid indicates the
position information of the j-th grid unit in collision-
free space at the time t.
ds(P t,jgrid, Pgoal) is used to calculate the euclidean

distance between P t,jgrid and Pgoal at time t, an essen-
tial contributionds(P t,jgrid, Pgoal)is to ensure the global
convergence of sub-goal. In the specific implementa-
tion, the scanning information is maximized to achieve
the local optimal obstacle avoidance result. Only the
most marginal grid units in the collision-free space are
selected, which can promote the processing efficiency.
The higher the distance to the obstacle, the more flexi-
ble the path to avoid the obstacle, which means a more
substantial area around the robots are unobstructed.
θ1(P trobot, P

t,j
grid) returns the azimuth angle from

P trobot to P t,jgrid at time t, which is angle with the
yaw(ψ) of robots. As one of the constraint factors,
θ1(P trobot, P

t,j
grid) embodies the angle deviation re-

lationship between the robot and the grid cells in
collision-free space.
θ2(P t,jgrid, Pgoal) generates the azimuth angle from

P t,jgrid to Pgoal at time t, which is used to indicate the
magnitude of deviation of the selected grid unit from
the goal position. The additional contribution of con-
straints factors θ1(P trobot, P

t,j
grid) and θ2(P t,jgrid, Pgoal)

are to ensure the smoothness of the path.
The proposed cost function is defined as Eq.(2):

F (j) =

∣∣∣∣∣∣
β
α
ω

∣∣∣∣∣∣
T

·

∣∣∣∣∣∣∣∣∣
θ1

(
P trobot, P

t,j
grid

)
ds
(
P t,jgrid, Pgoal

)
θ2

(
P trobot, P

t,j
grid

)
∣∣∣∣∣∣∣∣∣ (2)

α, β and ω is the weight coefficient respectively.
The above three constraints are not directly added

after calculation, but are normalized first, and then
added. Since the cost function is composed of multi-
ple constraints, and different constraints represent in-

formation in different dimensions, such as distance and
different angle. To prevent a certain constraint from be-
ing too dominant in the cost function,and the normal-
ized method is used to smooth the constraint in this
paper.

nor (ds(j)) =
ds
(
P t,jgrid, Pgoal

)
∑
j

ds
(
P t,jgrid, Pgoal

)

nor (θ1(j)) =
θ1

(
P trobot, P

t,j
grid

)
∑
j

θ1

(
P trobot, P

t,j
grid

)

nor (θ2(j)) =
θ2

(
P t,jgrid, Pgoal

)
∑
j

θ2

(
P t,jgrid, Pgoal

)

(3)

Since the latest local known information is different
each time, the number of available grids is different
each time.

Finally, with the appropriate weight parameters, the
normalized constraints are introduced into the cost
function to estimate the cost for each available grid cell
and choose the minimum cost.

Psg(x, y) = min


∣∣∣∣∣∣
β
α
ω

∣∣∣∣∣∣
T

·

∣∣∣∣∣∣
nor (θ1(j))
nor(ds(j))
nor (θ2(j))

∣∣∣∣∣∣
 (4)

Based on the latest local known information each
time, the grid cell corresponding to the minimum cost
value is selected as the sub-goal Psg(x, y), which sat-
isfies the optimization criterion such as distance, time,
and cost in a limited scanning area, so the robot is ca-
pable of immediately responding to any moving ob-
stacles within the scanning area of LiDAR. In the grid
map of the scanning area, the path of the robot is con-
nected by multiple grid cells. Although the robot is ca-
pable of moving in any direction in a 2D plane, the
motion model of the robot is further defined in this pa-
per, assuming that the robot is only allowed to move
along the front, rear, left, right, and diagonal lines be-
tween adjacent grids. The resolution of the grid cell is
small enough not to affect the smoothness of the path.
Therefore, how to quickly re-plan a sub-path from the
current robot position to the sub-goal position is ur-
gently needed. Generally, a straight motion is consid-
ered as the primary solution because straight-line mo-
tion usually indicates that the path is the shortest, while
the shortest path is not necessarily the optimal path in
many practical problems.
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3.3. Improved ACO algorithm

The improved ACO, in this paper, is used to plan op-
timal sub-path from the latest robot position to the lat-
est defined sub-goal, The robot moves one step along
the sub-path, then sets the current position as the start
point, extracts the local sub-goal position based on the
latest local known information, and calls ACO to re-
plan the sub-path to avoid moving obstacles until it
reaches the goal position. The flowchart of the pro-
posed method is shown in figure 2.

Fig. 2. Flowchart of the proposed algorithm

Note that the next sub-goal position is calculated if
and only if the robot reaches the sub-goal point, which
will cause a delay in updating the environmental in-
formation, and the robot will not be able to respond
to moving obstacles before reaching the sub-goal po-
sition.

The ACO algorithm has the characteristics of global
optimization, parallelism, and strong robustness, and
has been widely used in offline path planning prob-
lems. In this paper, the ACO algorithm is used to on-
line re-plan the optimal sub-path of the robot from the
current position to the sub-goal position in the grid
map of the scanning area. The fundamental definition
of the ACO algorithm is typically given by Eq.(5):

P kij(t)=


[τij(t)]

φ·[ηij(t)]γ∑
s∈Jk(i)

[τis(t)]
φ·[ηis(t)]γ

, ifj ∈Jk(i)

0, ifj /∈Jk(i)

(5)

where the P kij(t) is the transition probability of ant k
moving from i(xi, yi) to j(xj , yj) at the time t; τij(t)
denotes the pheromone from i(xi, yi) to j(xj , yj) at
the time t; φ is the relative importance of pheromone, γ

is the relative importance of heuristic factor, Jk(i) is a
collection of positions that allows the ant to walk next;
and ηij(t) represent the heuristic factor from i(xi, yi)
to j(xj , yj) at the time t,

ηij(t) =
1

dij
(6)

dij is the distance from i(xi, yi) to j(xj , yj).
After all ants complete once iteration, the pheromone

update method is as follows:

τij(t+ 1) = (1− ρ)τij(t) + ∆τij(t) (7)

∆τij(t) =

m∑
k=1

∆τkij(t) (8)

∆τkij(t) =

{
Q
Lk
, if ant k travels on edge (i, j)

0, otherwise
(9)

where the ρ ∈ (0, 1) is the rate of pheromone evap-
oration, and 1 − ρ is the residual pheromone fac-
tor; ∆τij(t) is the amount of deposited pheromone
from i (xi, yi) to j (xj , yj) at time t, and ∆τkij(t) is
the amount of deposited pheromone from i (xi, yi) to
j (xj , yj) by ant k at time t; Q is positive constant; m
and N are the set of ants colony and the number of it-
erations, respectively; Lk indicates the path length by
ant k in this iteration.

Based on the traditional ACO algorithm, to enhance
the stability of robot movement, corner heuristic infor-
mation is introduced into the path transition probabil-
ity function to reduce the number of large corners and
the number of corners in the path. The improved path
transition probability function is as follows:

P kij(t)=


[τij(t)]

φ·[ηij(t)]γ·[vij(t)]∑
s∈Jk(i)

[τis(t)]
φ·[ηis(t)]γ·[vis(t)]

, ifj∈Jk(i)

0, ifj/∈ Jk(i)

(10)

vij(t) is the corner heuristic function from i (xi, yi) to
j (xj , yj) at time t. vij(t) and θij are inversely propor-
tional.

vij(t) =

{ 1
θij
, if θij 6= 0

1, othersize
(11)

θij = atan 2 (yj − yi, xj − xi) (12)

In the pheromone update phase, on the one hand, the
traditional ACO algorithm updates the pheromone of
all ants, including the worst ants, which will be mis-
leading for the next generation. On the other hand, only
the length of the path is considered, as shown in Eq.
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(7), (8) and (9). To coordinate the smoothness of the
path and the convergence speed of our method. each
ant gets a score based on its path length and num-
ber of corners, and ranks the score in descending or-
der. The improved pheromone update rule is that the
pheromone increment is determined by weighting the
path length and the number of path corners, which can
ensure the smoothness of the sub-path. At the same
time, only some good ants with higher scores are up-
dated to avoid the impact of the worst ants on the off-
spring ants, thereby improving the convergence speed
of the algorithm.

∆τkij(t) =

{ Q
S(wk)

, rank ≤ (m− 1)

0, otherwise
(13)

wk = |δ ζ| ·
∣∣∣∣LkTk

∣∣∣∣ , (k = 1, . . . ,m) (14)

wk is the weighted score of the path length and num-
ber of corners of ant k, S (wk) is the sort function to
sort wk from large to small, δ and ζ are the positive
weight coefficients, Tk indicates the number of corners
of the path generated by ant k. rank is the ant order
after reordering

The implementation steps of the improved ACO
method are as follows:

Step 1: Algorithm initialization,P trobot andPsg(x, y)
are initialized to the ant colony start position and sub-
goal position respectively, and the search space is the
known grid map of the scanning area.

Step 2: Calculate the path transition probability of
each ant according to the Eq(10) and choose the next
feasible position j according to the roulette rule. If j is
the sub-goal point, the step 3 is performed; otherwise,
still, execute the step 2.

Step 3: After all ants have completed an iteration,
Hk
n records the path trajectory generated by ant k in the

n-th iteration. Find the ant in Hk
n that does not reach

the sub-goal point as the set U. Randomly select an ant
s to re-modify its path trajectory in this iteration.

s =

{
random(U), if U 6= null
random(m), if U = null

(15)

Hs
n = f

(
Hk
n−1

)
, (k = 1, . . . ,m) (16)

f
(
Hk
n−1

)
is the optimal path before the n-th iteration.

When set U is valid, randomly select one ant s in U
and assign f

(
Hk
n−1

)
to it ; if all ants reach the target

point, randomly select anyone to assign.
Step 4: According to the Eq(14) to calculate the

score of each ant, and then update the pheromone of
the selected ant according to the Eq(13).

Step 5: Determine whether the number of iterations
reaches the maximum number of iterations N . If it
does, the step 6 is performed. Otherwise, steps 2 to 5
are executed cyclically.

Step 6: The optimal sub-path described by Eq(17),
l1 represents the position of the grid cell correspond-
ing to P trobot, lµ is the position of the grid cell corre-
sponding to sub-goal Psg(x, y).

Ppath (l1, l2, . . . , lµ) = f
(
Hk
N

)
(17)

adding Ppath (l1, l2, . . . , lµ) to the desired path, the
robot moves one step along the sub-path to the next po-
sition l2. Repeat the steps 1 to 6 until the robot reaches
the goal position.

The convergence speed of improved ACO algorithm
is shown in figure 3. The black solid line shows the
convergence speed of the improved ACO algorithm.
The concept of corners is involved in both the transi-
tion probability phase and the pheromone update phase
to build up the smoothness of the path. Update only
some good ants to avoid the impact of the worst ants
on the offspring ants. It can be seen that the improved
ACO has faster convergence speed. At the same time,
it should be pointed out that it is not advisable to assign
multiple ants in once iteration, which will increase the
probability that the algorithm falls into the local min-
ima.

Fig. 3. Comparison of ACO convergence

4. Experimental results

4.1. Simulation results

Before the real experiment of the robot, a simulation
of the algorithm is implemented in MATLAB to com-
pare the effect of different parameters on the results.
In order to simulate the actual environment more re-
alistically, an obstacle map is loaded by a grid map in
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(a) step = 1 (b) step = 20 (c) step = 30

(d) step = 35 (e) step = 40 (f) end
Fig. 4. Consecutive instants in the map

the simulation program, which corresponds to a 40m
square real area. Black areas indicate the collision-free
area, and the white grids denote the obstacles, which
also called occupied units. In the simulation of this pa-
per, each grid cell in the grid map corresponds to a
1.5m square area. Eight grid cells adjacent to the oc-
cupied unit are excluded from collision-free space as a
safe distance.

4.1.1. Simulation 1 - environment test
In order to demonstrate the availability and optimal-

ity of the proposed algorithm under multiple obstacles
situation, figure 4 shows the simulation results of the
proposed algorithm in more detail in the form of mul-
tiple consecutive instants.

In real application, the robot only knows the infor-
mation within the LiDAR detection range at a certain
moment. The detection radius of the LiDAR is four
grid cells centered on the robot, which includes a total
of 80 grid cells adjacent to each other. The simulation
program window shows that the white vector arrows
denote the LiDAR scanning area, and the solid white
circle is the goal position. The red pentagram marks
the sub-goal position calculated by the cost function
proposed in this paper at a specific moment, and the
solid green line is the corresponding sub-path that re-
planed by the improved ACO algorithm in real-time.
Figure 5 shows that the robot adjusts the pose in real-
time during the movement to meet the current state
based on the latest local information.

(a)

(b)

Fig. 5. Path trajectory and algorithm convergence

Figure 5(a) shows the paths generated by different
algorithms, including the mainstream APF and BFO
obstacle avoidance algorithms. By comparing the three
paths, it is possible to see that the improved obstacle
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avoidance algorithm generates a solution with fewer
fluctuations and shorter lengths.

For the given scenario, by computing the real-time
distance between the robot and the goal position to
compare the convergence characteristics of the three
algorithms, as shown in figure 5(b). Considering path
length, smoothness, and convergence properties. It can
be concluded that the path generated by the proposed
algorithm is not only globally convergent but also lo-
cally optimal.

4.1.2. Simulation 2 - tune parameters on the
evaluation results

The cost function and the improved ACO algorithm
both contain different weight parameters as described
in section 3 in this paper. In this part, the effects of
different azimuth factors and smoothing factor ζ on
robot real-time path are mainly discussed. The dis-
tance factor ensures that the sub-goal is globally con-
vergent, while the azimuth factors are responsible for
the smoothness of the global path. To compares the ef-
fects of different weight parameters on the simulation
results. Three sets of parameters are selected for simu-
lation comparison. Finally, a set of optimal weight pa-
rameters is determined. Table 1 lists three different sets
of parameters.

Table 1
Different parameters

groups Parameters
α β ω δ ζ

First group 4 1.8 1 1 0
Second group 4 1.8 1 0.7 0.3
Third group 4 2 3 0.7 0.3

As shown in figure 6, the simulation program gen-
erates paths based on three different groups of param-
eters. It should be noted that this path is only one of
the results of the simulation program that runs multiple
times. Figure 6 shows that different parameters have a
significant influence on the path length and number of
turns.

The differences between the first group and the sec-
ond group of parameters are that the first group does
not take into account the influence of the number
of turns in the sub-path planning. While, the second
group of parameters incorporates the turning factor,
with the appropriate parameters, the result is smoother
than the other path. In the third group, the azimuth fac-
tors are used to increase the smoothness of the path,
but if its weight is too large, it will affect the conver-
gence of the algorithm, as shown in figure 6.

Fig. 6. The effect of parameters on the simulation path

In order to quantitatively analyze the different paths
generated by the simulation, 10 simulations were per-
formed for each set of parameters. Table 2 lists the path
length and the number of turns of the global path gen-
erated by the simulation using different parameters, re-
spectively. The simulation results consist of the best,
worst, and average value. With appropriate weight pa-

Table 2
Simulation results in terms of different parameters

Results Group 1 Group 2 Group 3
Path

length
corners

Path
length

corners
Path

length
corners

Best 78.84 28 73.8 22 85.14 29
Worst 88.68 35 79.25 27 98.91 51

Average 81.2 35 75.8 25 89.84 41

rameters, the simulation results have demonstrated that
the proposed algorithm is capable of avoiding obsta-
cles successfully and generating paths with a shorter
length and few fluctuations.

4.2. Robot experiments

Refer to the above simulation results, the robot ex-
periment platform of this paper is shown in figure 7(a).
The proposed algorithm needs real-time information
and process data online, including robot state, real-
time environment information. So a 360◦ LiDAR and
an onboard computer installed on the EAI robot. EAI
is a differential drive mobile robot with a maximum
speed of 0.8 m/s and the drive wheel diameter of 125
mm, and this differential drive allows the implemen-
tation and measurements of path-planning algorithms.
The architecture of the robot platform is illustrated in
detail in figure 7(b). According to the actual exper-
iment environment, the installation height of the Li-
DAR in two experiments is 0.6m. Also, the LiDAR
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scans the environmental information around the robot
in real-time at 5Hz and publishes it. The onboard com-
puter runs complex algorithms at high frequency, in-
cluding LiDAR data collection and processing, obsta-
cle analysis, and online path planning.

(a)

(b)

Fig. 7. Mobile robot and block diagram of the architecture

In order to highlight the accuracy and practicality of
the proposed algorithm to solve unexpected threats or
uncertain obstacles, the first experiment scene was set
in a real narrow corridor of 2.1m wide with static ob-
stacles consisting of multiple cubes of 0.6×0.6×0.9m.
EAI robot radius is 0.203m and a safe distance of 0.2m
from the obstacle. Further, the detection distance of
the LiDAR is set to 1.2m to reduce the response time
of the robot in scene 1. Scenario 2 is selected to ver-
ify the availability of the proposed algorithm in an un-
structured, dynamic environment. Two real experimen-
tal scenarios with different effects are shown in figure
8. The onboard computer records the trajectory data
of the robot, the real experiment environment is dis-
played in a certain proportion in MATLAB, and the

(a) (b)

Fig. 8. Arrangement of real robot experiment environment

saved robot trajectory is drawn at the same time. The
complex U-shaped obstacles and L-shaped obstacles
are used to verify the robustness and practicality of the
proposed algorithm in figure 8(a), the closest distance
between obstacles is about 0.9m, and the maximum
width is 1.2m. Due to the extremely narrow corridor,
the robot speed is 0.2m/s. In fact, the robot analyzes
the LiDAR data in real-time to make the best decision
in line with the current state. Similarly, the implemen-
tation of the algorithm is presented in the form of mul-
tiple consecutive instants in figure 9.

Fig. 9. Consecutive instants in the real experiment 1

In the real experiment, a camera is mounted on the
top of the robot and records the motion of the robot
in video form. The robot successfully avoids the ob-
stacle and reaches the goal position with minimal cost
and smooth route, as shown in figure 10. However, the
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Fig. 10. Robot real trajectory in experiment 1

other methods fail to work well with LiDAR data, and
the path length is long and not smooth enough.

In order to analyze the experiment results quantita-
tively, table 3 lists the results of each algorithm running
five times at a speed of 0.2m/s. The recorded video can
be downloaded from the link in Appendix A.

Table 3
Comparison of experiment results of different algorithms

Algorithm
Optimal

Path length /m
Average

Path length /m
Average
Time /s

Proposed method 15.5 16.2 81
Conventional

ACO
16 17.06 85.3

APF 18.2 18.5 92.5
BFO 16.6 17.6 88

It can be seen from table 3 that the method pro-
posed in this paper takes less time, which means that
the convergence speed is faster. Also, the smooth char-
acteristics of the path have been compared in Table 2.
Thus, considering time, path length, smoothness, and
convergence properties, that the path generated by the
proposed algorithm is not only globally convergent but
also locally optimal.

As shown in figure 8(b), experiment 2 aims to ver-
ify the feasibility and robustness of the proposed al-
gorithm under an unstructured, dynamic scenario with
sudden external disturbances. In real experiments, the
robot moves at a speed of 0.4 m/s and 0.6 m/s with-
out external interference. Then, when the robot moves
again at a speed of 0.6 m/s, a plurality of unexpected
moving obstacles appears around the robot to hinder
its movement. The trajectory of the robot is converted
to convergence to illustrate the robustness of the algo-
rithm, as shown in figure 11. At the same time, the cor-
responding video can be downloaded from the link in
Appendix B.

Fig. 11. Algorithm convergence in experiment 2

In Figure 11, in the absence of external distur-
bance, the convergence curve is relatively smooth, cor-
responding to the trajectory generated by the robot
moving at a speed of 0.4 m/s and 0.6 m/s, respec-
tively. For external disturbances, although there is jitter
in the convergence curve due to sudden external dis-
turbances, the jitter is minimal, which further demon-
strate that our method can effectively deal with dy-
namic obstacles under an unstructured, changing sce-
nario.

5. Conclusions

In this paper, a new multi-constraints obstacle avoid-
ance method based on LiDAR was proposed. The
main contributions of this method are its cost func-
tion for optimization is able to utilize the real-time Li-
DAR scanning data and the latest state estimation of
the robot more comprehensively in dynamic environ-
ments. Compared with the traditional method, the ad-
vantage is that since the sub-goals and sub-paths are
only related to the local regions, the optimal path is
achieved at a lower cost in terms of computation and
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storage, thereby avoiding the construction of a com-
plex global environment model and reducing the com-
plexity.

The real experiments and simulation results also
very strongly validated the feasibility and advantages
of our method in contrast to other state-of-art solutions
for this problem.

The future work related to this proposed method in-
clude incorporating more dynamic characteristics of
obstacles, finding better ways to fine-tune parameters
of the cost function, testing the method to a even more
complex environment, and implementing the method
on a drone to extend its performance to 3D space. An-
other potentially interesting research direction is to in-
clude the "unseen" area of environments into optimiza-
tion cost function, by extracting features of the point
cloud to better describe the obstacles and then predict-
ing potential threats to the planned path of the robot,
based on features of the obstacles.

6. Appendix A

Supplementary video material for experiment 1 re-
lated to this article can be found online at https://
www.youtube.com/watch?v=Y2p7dcd1A3k

7. Appendix B

moving obstacles video for experiment 2 related
to this article can be found online at https://
www.youtube.com/watch?v=LsA_xv-97YM&
feature=youtu.be
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