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Abstract - Most of the direct-cover Boolean minimization 

techniques use a four step cyclic algorithm. First, the 

algorithm chooses an On-minterm; second, it generates the 

set of prime implicants that covers the chosen minterm; 

third, it identifies the essential prime implicant; and fourth, 

it performs a covering operation. In this study, we focus on 

the third step and propose a new essential prime implicant 

identification method. In this method, when the 

identification of the essential prime implicant is 

impossible, we postpone dealing with current On-minterm 

and save a status word for it. Eventually, we retrieve the 

status words whenever a new essential prime implicant is 

identified. We compared the proposed minimization 

method with ESPRESSO-EXACT. The results show that 

our method obtains exact results faster than other ones. 

Keywords: Logic minimization, prime implicant, branch 

and bound technique, cover. 

1 Introduction 

 Two-level logic minimization is a basic problem in logic 

synthesis [1]. Due to the exponential nature of this problem, 

state-of-the-art algorithms can typically handle functions 

with up to hundred products [2]. Therefore, most of the 

practical applications rely on heuristic minimization 

methods [2,3] with a complexity  which is roughly  

quadratic in the number of products. There are also 

methods that produce the optimal (exact) solutions 

[1,2,3,4]. However, they can only be used for consistently 

small SOP realizations since they take long run time (CPU 

time) to find the final result. Heuristic algorithms are 

noticeably faster than the exact ones; however, they are still 

noticeably slow considering the exponential nature of the 

problem and they do not always obtain the optimal 

solutions [2]. Furthermore, the heuristic algorithms display 

diversity in realizations. That is, no single heuristic 

algorithm is consistently better than the others for all logic 

functions. There are classes of functions where one 

heuristic algorithm is better than the others [3]. Our studies 

show that the diversities in realizations of heuristic 

algorithms arise from the imperfect rules used for the 

identification of the essential prime implicant (EPI).  

In this study, we propose a new EPI identification method 

that obtains exact minimal solutions. Our minimization 

algorithm randomly chooses an On-minterm to be handled 

(named as target minterm (TM)) from the On-set of the 

function being minimized. It obtains the set of prime 

implicants that include TM. If this set consists of a single PI 

this our algorithm selects this PI as EPI to cover the On-set. 

If there is more than one PI then, to find the EPI, we apply 

a rule, which selects the PI that covers all On-minterms 

included by other PIs. If such a PI does not exist in the set 

then we form a status word (MSW) for the current TM and 

for the PIs that include this TM.  We use MSWs to obtain a 

new EPI. This procedure is repeated until all of the On-

minterms are covered.  

Our algorithm has the following differences than the 

existing ones. First, it is invariant to PIs generating method. 

Second, the minterm handling order can have a little effect 

on runtime, but it does not affect the final result.  Third, it 

works in only one loop. Therefore, it is as fast as any 

heuristic one but generates only exact results.  

The rest of the paper is organized as follows: The next 

section lists the abbreviations and notations used in this 

paper. Section 3 discusses branch-and-bound technique 

based EPI identification rules and their problems. Section 4 

presents our approach. Section 5 gives the experimental 

data. Finally, Section 6 concludes this paper.   

2 Abbreviations and Notations 

 In this section, we list the abbreviations and notations 

used in this paper to make the paper easy to follow.  

Table 1:   The abbreviations used in the paper. 

The term Abbreviations 

Branch and Bound Technique BBT 

Direct Cover Principle DCP 

Essential Prime Implicant EPI 

Minterm Status Word MSW 

On-Minterm OM 

Prime Implicant PI 

Partial Ordering Operation POO 

Target Minterm TM 

Task Status Word TSW 

 



 

Table 2:  The notations used in the paper. 

 

The term Notations 

Boolean variables 

specification space 
{0,1,x}, where x denotes 

a non essential value 

Boolean functions 

specification space 
{0,1,d}, where d denotes 

an unspecified value 

The number of variables 

of a function 
n 

Sharp product (coordinate 

subtraction) operation 
# 

Intersection operation ∩ 

Uniting  operation ∪ 

Current  state of the set of 

On-minterms 
SON 

Set of the Off-minterms SOFF 

Set of don’t care mintems SDC 

PI covering given TM PI(TM) 

Set of all PIs covering 

given TM 
SPI(TM) 

Set of  EPIs SEPI 

Set of MSWs SSW 

The size  of a set S S 

 

3 BBT-based EPI Identification 

In this section, we present an EPI identification method 

using BBT. We also demonstrate the shortcomings of this 

method on a small example. 

3.1 EPI Identification Rules 

DCP based heuristic methods are generally realized similar 

to the following algorithm [3,5-11]. 

 

DCM (SON, SOFF). Direct cover minimization 

algorithm. 

 

   while (SON=∅) do 

1.                  TM=X∈SON;              

2.                  SPI(TM)_generation(TM, SOFF); 

3.                  EPI_identification(SPI(TM)); 

4.                  SON= SON#EPI; 

                   

 

First, the algorithm chooses the first element of the set SON 

as the minterm to be handled to identify its EPI (step 1 in 

DCM algorithm). This minterm is called the target minterm 

(TM). Second, it determines the set of PIs (SPI) that covers 

TM (step 2). Third, it identifies EPI among the elements of 

the set SPI (step 3). Fourth, it subtracts EPI from the set 

SON (step 4). This process is repeated until the set SON is 

empty.  

For many functions, the major difficulty of the DCP based 

minimization lies in BBT [3,5-10] that employs a decision 

rule used in the third line of DCM algorithm when the TM 

is covered by more than one PI. BBT based on POO over 

the set SPI(TM) has been explained in [12] and later was 

improved by different researchers [3,5-11]. However, to the 

best of our knowledge, there is no POO that guaranties 

exact identification of EPIs in the literature. We discuss this 

problematic concept in the following subsections and 

propose a new method guarantying exact identification of 

EPIs in Section 4. 

3.2 Choosing the EPI Randomly 

The main idea of DCP based minimization methods is to 

choose the EPI once the SPI(TM) is obtained by using the 

following rule [3, 9]:  
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k
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the given TM. Then the PI∈ )(TMS PI that covers the 

largest number of OMs is selected as EPI. If there are more 

than one such PI then one of them is selected randomly.  

However, this EPI selecting procedure does not always give 

the intended results since the exact EPI may not be PI(TM) 

that covers the largest number of OMs, but it is the one 

which covers all OMs included totally by all other PI(TM)s. 

We demonstrate this problem using the following example.   

 Example 1:  Minimize the following completely 

specified function using Rule 1. 

SON = {0011, 0100, 0101, 0111, 1001, 1101, 1110, 1111} 

Figure 1 shows the initial Karnaugh map for the given 

function. In this figure, we have five PIs (numbered from 

one to five in Figure 1) covering eight OMs (starred boxes 

in Figure 1). Now, we apply Rule 1 to this problem. If we 

choose the OM 1101 (13)
1
 as the first TM we obtain the PIs  

x1x1 and 1x01.  Therefore, we have: 

R(13)1=SON0∩x1x1={0011,0100,0101,0111,1001,1101, 

1110,1111}#x1x1={ 0101,0111, 1101, 1111} 

R(13)2= SON0∩1x01={0011,0100, 0101, 0111, 1001, 1101, 

1110, 1111}#1x01={1001, 1101} 

where R(13)1 and R(13)2 are the sets of intersections of PI 

x1x1 and PI 1x01 with the set SON, respectively. Since 

R(13)1=4  and R(13)2=2,  we select PI1(1101)=x1x1 

as EPI1. Therefore; SEPI ={x1x1}; SON= SON#x1x1= {0011, 

0100, 1001, 1110}. 

                                                           
1
 13 is the decimal equivalent of the binary code 1101. 



 

 

Figure 1: The initial Karnaugh map for Example 1. 

 

 
 

Figure 2:  The Karnaugh map of the rest of the function 

being minimized after PI 1 is removed as EPI. 

 

As we can see from Figure 2, the set SDC = {0101, 0111, 

1101, 1111} of don’t care minterms is appeared, which is 

covered by EPI1. Consequentially, the rest of the function 

being minimized is the incompletely specified function 

represented by sets SON and SDC (see Figure 2). 

As Figure 2 shows, all OMs are isolated. Therefore, to 

avoid further calculations, we identify all EPIs by 

inspection as follows: 

EPI2=0x11, EPI3=111x, EPI4=1x01, EPI5=010x, i.e.  

SEPI={1x1x, 0x11, 111x, 1x01,010x} 

Note that we can obtain the same result if we select the 

OMs 0101, 1101, and 1111 as first four TMs. Table 3 

shows the covering diagram for Example 1. Using this 

table, we can form the Petrick BBT function [1] as follows: 

SEPI = BE(A+E)(A+B)D(A+D)C(A+C) = BEDC = BCDE 

⇒ {0x11, 111x, 1x01, 010x} 

This function shows that the PI (13)1=x1x1, which has been 

identified above as EPI1, actually is not EPI.  Hence, SEPI 

={0x11, 111x, 1x01,010x}. 

Our analysis of the Example 1 shows that the exact result 

can be reached only in 4!=24 cases when we choose the 

isolated OMs; 0011, 0100, 1001 and 1110 as first four 

TMs. Furthermore, the number of choosing orders leading  

Table 3: Covering diagram for Example 1 

   PIs       OMs 

0
0

1
1

 

0
1

0
0

 

0
1

0
1

 

0
1

1
1

 

1
0

0
1

 

1
1

0
1

 

1
1

1
0

 

1
1

1
1

 

A x1x1   + +  +  + 

B 0x11 +   +     

C 111x       + + 

D 1x01     + +   

E 010x  + +      

 

to non-exact results is 4x4!=96.  Namely, the percentage of 

a fail is 96/(96+24)=80%. The general estimation of ratios 

of the good and worst results generating by non-exact 

minimization methods is given in [1,3]. 

3.3 Minterm Ordering Based on Adjacency 

Factors 

To avoid the possible faulty results like the one we 

demonstrated in the previous subsection, the improved DCP 

method has been proposed [3,6]. In this method, for each 

PI, the efficiency factor, which is equal to the number of 

OMs that the PI covers divided by its cost, is calculated and 

the PI with the largest efficiency factor is chosen as EPI. If 

there are more than one PI with the same largest efficiency 

factors, one of them is chosen randomly. However, this 

method is also problematic and may not always give the 

exact minimal results. One may not identify the EPI among 

the PIs with the same efficiency factor. Moreover, the 

calculations of the efficiency factors can take very long 

time for the large On-sets. If SON=N=k2
n
   then, the 

calculations of the efficiency factors requires comparisons 

(each of which consist  of one EXOR operation and several 

others to detect result containing 1 only in one bit position 

and 0’s in all others) the count of which is expressed by the 

following formula. 
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That is, this ordering has the exponential time-complexity 

which is undesirable [9]. 

4 Our EPI Identification Method 

4.1 Main Minimization Algorithm 

We give the pseudo code of the main algorithm for the 

DCP based minimization of the single-output two-level 

Boolean functions as follows:   

 

  *  10 

* d d  11 

 d d * 01 

 *   00 

10 11 01 00  

2 

5 4 3 

  *  10 

* * *  11 

 * * * 01 

 *   00 

10 11 01 00  

2 

1 

5 4 3 



 

 

MAIN (SON ,  SOFF).  Main algorithm. 

   

  SEPI=∅; 

M1:    if (SON  =∅) then go to M3;            

  TM = SON[m1]; 

  CALL SPI(TM, SOFF);              

M2:    if (CF=∅) then go to M1;       

         CALL CP(CF, SON);                 

          if (SSW  =∅) then go to M1;   

        CALL SWH(SON, CF, N);               

        Go to M2;                                             

       M3: if (SSW  =∅) then go to M4;  

          CALL PP(SSW);       

       M4: end 

 

Our algorithm starts by selecting a minterm as TM from the 

set SON then calls the procedure SPI(TM, SOFF) to find the 

set SPI(TM) and to identify EPI from this set. If this 

procedure cannot find any EPI the algorithm selects a new 

minterm to continue. In the meantime, the SPI(TM,SOFF) 

procedure saves a status word (MSW) for the minterm of 

which we could not find any EPI. This procedure will be 

explained in the next subsection in detail.  

After finding the EPI, we call the covering procedure CP 

(CF, SON). If we do not have any MSW saved, we continue 

selecting a new minterm and try to find its correspondent 

EPI. Otherwise, (i.e. we have some status words saved), we 

call the MSWs handling procedure SWH (SON, CF, N). 

This procedure looks MSWs one at a time to identify and 

use for covering PIs that have become EPIs. This part of 

the algorithm is repeated until the On-set is empty. The 

process is completed if there are no saved MSWs left.   

Otherwise, we call Petrick procedure and obtain a minimal 

subset of PIs covering the TM parts of saved MSWs 

4.2 Our TM Handling Method 

In this subsection, we explain the procedure SPI(TM, SOFF) 

that identifies the EPI to cover the given TM. We give the 

pseudo code of this procedure as follows:  

 

SPI(TM,SOFF). The procedure for calculating the set 

SPI(TM), identifying EPIs and forming MSWs. 

 

PE:SOFF  →   SE ; PEO:SE  →   SEP;                                                 

                 R=xx…x# SEP;   PEO:R  →   SPI(TM);                             
PI1:  if ( SPI(TM)> 1) then go to PI2;          

CF= SPI(TM); Go to PI3; 

   PI2: CF=∅; 

SW(TM)={TM {SPI(TM)}};                 

SSW =SSW ∪ SW(TM); 

    PI3: return 

 

In this procedure, first we expand the minterms in the set 

SOFF by using current TM and remove the non-prime cubes 

from this set. Then, we subtract the result from the n-cube 

and again remove the non-prime cubes from the set SPI. If 

the TM at hand is covered more than one PI, we apply the 

following POO to identify the EPI among the PIs (PI1 in 

the above pseudo code). 
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The principal difference between Rule (1) and Rule (2) is 

that the former compares the size of the sets 

Ri(TM)=SON∩PIi(TM) and  Rj(TM)= SON∩ PIj(TM) whereas 

the latter compares the contents of these sets; therefore, 

Rule (2)  leads to the exact minimal results. That is, the 

PIk(TM) is EPI if and only if it covers all OMs included by 

all others PI(TM)s.  

If the condition expressed by Rule (2) is not satisfied by 

any of the PIs, the problem of choosing the EPI is revealed. 

To solve this problem, we postpone the handling of the TM 

at hand until one of the PIk(TM)s satisfies the condition. To 

resume handling of the postponed TM we use the following 

information called a Minterm Status Word (MSW).  

 MSW(TMi)={TMi, SPI(TMi)}  

where SPI(TMi)={PI2(TMi) ,…,PIm(TMi)} is the set of PIs 

including TMi.  

Handling of TM for which there is no PI satisfying the 

condition expressed by Rule (2) may be postponed by 

stopping of handling of TM, forming a MSW for it and 

including this MSW into the set SSW.   In addition, the 

existence of different postponed TMs and appropriate 

MSWs in different loops of the algorithm request to use the 

information about the last state of the task being solved. 

This information is called a Task State Word (TSW) and 

has the following structure: 

 

 TSW ={SON, SEPI, SSW} 

where, SON is the current (last) state of the set of On-

minterms, SEPI is the current state of the set of EPIs,  SSW is 

the current state of the set of MSWs. 

 Example 2: Let us illustrate how MSW is used in our 

method. To do this, assume we have SON= {001, 010, 011, 

110}, TM=011(3) and SPI(011)= {01x, 0x1}. Then, 

R(3)1={001, 010, 011,110}∩01x ={010, 011};      

R(3)2={001, 010, 011, 110}∩0x1={001, 011}. Since 

R(3)1⊄ R(3)2 and R(3) 2⊄ R(3)1, handling of TM=011 may 

be postponed as follows: 

 



 

TMP(TM, SPI(TM)) 

       Stop handling of TM =011, 

       Form MSW as set {011,{01x, 0x1}},   

       Include this MSW into the set SSW. 

 

4.3 The Remaining Procedures in the Main 

Algorithm 

In this subsection, we present the other procedures included 

in our main algorithm. These are the direct covering 

(CP(CF, SON), MSWs handling (SWH(SON, CF, N), and the 

Petrick (PP(SSW)) procedures. 

 

CP(CF, SON).  Direct covering procedure.  

 

SON =SON# CF; SEPI=SEPI ∪ CF; CF=∅; 

return 

 

Direct covering procedure subtracts the found EPI that 

presents in the connection field CF from the set SON and 

includes this EPI into the set SEPI. After that, it empties the 

CF. 

 

SWH(SON,CF,N). Minterm status words handling 

procedure. 

 

i=1; 

SW1:  select  MSWi; 

TMC=MSWi[TM]; TMC=TMC#CF;                                   

if  (TMC=∅) then go to SW2;    

SPIO = POO: SPI;                      

if ( SPIO >1) then go to SW3;        

CF = SPIO; MSWi[TM]=∅; Go to SW4; 

SW2:  MSWi[TM]=∅;                             

SW3:  i=i+1; 

if (i≤N) then go to SW1;     

CF =∅; 

SW4:  Delete all MSW with MSW[TM]=∅;   

Update the value of N;    

return; 

 

Minterm status word handling procedure first selects the 

first MSW from the set SSW. Then, it picks the TM part 

(TMC) of this MSW and subtracts the last founded EPI 

from TMC. If the result is empty then the procedure 

removes the content of TM part of MSW at hand and 

selects the next MSW.  Otherwise, the procedure partially 

orders the SPI part of the current MSW to identify EPI. If 

the EPI is found (the content of SPIO is the new EPI if 

SPIO=1) then the procedure sends it into the connection 

filed CF, and removes the content of TM part of MSW at 

hand. When the TM part of MSW is not covered by the last 

founded EPI and the procedure does not identify the new 

EPI, the procedure handles the second MSW in the same 

way. This part of the procedure is repeated until the new 

EPI is found or all of MSWs are handled. Then the 

procedure deletes all of MWSs the TM parts of which are 

empty and returns. 

 

PP(SSW). Petrick procedure. 

 

i=1; 

while (SSW ≠ ∅) 

Select  SWi; 

             SPIi = SWi[SPI(TM)]; 

         IFi = U
m

i

imL
1=

; Delete SWi; i=i+1; 

            end while 

                 PF={I
K

i

iIF
1=

}; 

                 PR = min{L(PT∈ PF)}; 

            Lim ←PIim;                           

       PC= U
im

imP ; RMC=SEPI∪PC; 

   return 

 

Petrick procedure selects each MSWs and employs the 

inclusion function (IF) for its PIs part, where m=|SPIi| and 

Lim=PIim∈SPIi. Then it takes the product of these inclusion 

functions. Afterwards, it selects the -product term (PT) 

formed by minimum count of literals. If there is more than 

one such PT then it selects one of them randomly. After 

selecting PT, it replaces each literal with appropriate PI.  

Example 3:  Minimize the function given in the Example 1 

using Rule (2). 

Let us first explain a task state word by ordered set TSW 

={SON; SEPI; SSW}.  According to this format the initial state 

of the given task is:   

TSW0= {{0011, 0100, 0101,0111,1001,1101, 1110, 1111}; 

∅;∅} 

In the following enumerations such as 1.1., first number 

represents the iteration number and the second one 

represents the current step of the iteration. 

 1.1. Let us, as in Example 1, first choose TM =1101 

for which SPI(1101)= {x1x1,1x01}. In other words, this 

minterm is included by the PIs x1x1 and 1x01. Since 

SPI(1101)>1, it is necessary to subject the set SPI(1101) to 

POO.  

 1.2. R13,1=SON∩x1x1={0101,0111,1101, 1111}; 

R13,2= SON∩1x01={1001, 1101}. 



 

Since R13,1⊄R13,2 and R13,2 ⊄ R13,1,  none of the PIs can be 

identified as EPI. Therefore, it is necessary to form an 

MSW for TM as MSW1 ={1101,{x1x1,1x01}} which 

changes TSW0 into: 

TSW1= {{0011, 0100, 0101, 0111, 1001, 1101, 1110, 

1111}; ∅;  {{1101,{x1x1,1x01}}} 

 2.1. Now, let us choose TM =1110 for which SPI 

contains single cube 111x that is EPI1 (see Figure 1) and 

must be used for covering the set SON. 

 2.2. SON= SON#111x={0011, 0100, 0101, 0111, 1001, 

1101}.  Therefore, 

TSW2= {{0011, 0100, 0101, 0111, 1001, 1101}; {111x}; 

{{1101, {x1x1, 1x01}}} 

 2.3. Since the new EPI is identified, it is necessary to 

handle MSWs that have been saved. 

SSW={SW1}={{1101,{x1x1,1x01}};  

TMC=MSW1[TM]#EPI1=1101#111x=1101≠∅ 

Since the TM of MSW1 is uncovered by EPI1, it is 

necessary to subject to POO the PIs part of MSW1. 

R13,1=SON∩x1x1={0101,0111,101};  

R13,2=SON∩1x01={1001, 1101} 

Since R13,1⊄R13,2 and R13,2 ⊄ R13,1, none of PIs can be 

identified as EPI. Therefore, there is no change in MSW1 

and in other parts of TSW2. 

 3.1. Let us choose the next TM as TM=1001, for 

which SPI contains single cube 1x01 that is EPI2 (see Figure 

1) and must be used for covering the set SON. 

 3.2. SON= SON#1x01={0011, 0100, 0101, 0111}. 

Consequentially, 

TSW3.1 = {{0011, 0100, 0101, 0111}; {111x, 1x01}; 

{{1101, {x1x1, 1x01}}} 

 3.3. Since the new EPI is identified it is necessary to 

handle the MSWs that have been saved. 

SSW={SW1}={{1101,{x1x1,1x01}}; 

TMC=MSW1[TM]#EPI2=1101#1x01=∅ 

Since the TM of MSW1 is covered by EPI2=1x01, it is 

necessary to delete MSW1, i.e.  

TSW3.2={{0011, 0100, 0101,0111 };{111x, 1x01}; ∅}. 

 4.1. Now, let as choose TM= 0011.  This minterm is 

included by the single cube 0x11 that is the EPI3  (see 

Figure 1). Therefore, 

SON= SON# 0x11={ 0100, 0101}.  

Consequentially,  

TSW4={{0100, 0101};{111x, 1x01,0x11}; ∅}. 

 5.1. Let us now choose TM=0100.  This minterm is 

included by the single cube 010x that is the EPI4. 

 5.2. Since SON=SON#010x=∅, TSW5={∅; {111x, 

1x01, 0x11, 010x}; ∅}. Consequently, the minimization 

process is completed. The exact minimal result is  

SEPI={111x, 1x01,0x11, 010x} 

5 Experimental Results 

In this section, we evaluate the performance of our method 

by using the standard MCNC benchmarks [13-15]. We 

compared our method with ESPRESSO-EXACT [14,15].  

The sets of PIs were calculated by the Off-set expanding 

method [16]. We used the outputs of MCNC benchmarks as 

the 50 different single-output functions.  Table 4 gives the 

results of our experiments. In this table, first four columns 

are the name of the benchmark, the number of variables, the 

size of SON, and the size of SOFF.  Column five and six show 

the runtime (as milliseconds) of our method and 

EXPRESSO-EXACT, respectively. The last column of 

Table 4 gives the runtime ratio of our method and 

EXPRESSO-EXACT. As we observed, our method takes 

less time to solve 66% of the benchmarks whereas 

EXPRESSO-EXACT has better runtimes from our method 

for 6% of the benchmarks. For the remaining (for 28%) of 

the benchmarks our method and EXPRESSO-EXACT 

obtain the exact minimal result at the same time. In general, 

the relative speed of our method is increased by decreasing 

the ratio SOFF/SON. For example, the first output of the 

benchmark prom1 depending on 9 variables and having the 

ratioSOFF/SON= 14/488=0.03 was solved by our method 

408 times faster than ESPRESSO-EXACT. On the other 

hand, the first output of the benchmark bcb depending on 

26 variables and having the ratio SOFF/SON= 

289/10=29, was solved by our method 1.5 times slower 

than ESPRESSO-EXACT.  

6 Conclusions 

In this study we propose a single-output two-level Boolean 

function minimization algorithm. The proposed algorithm is 

as fast as any single loop heuristic minimization algorithm 

and generates exact result. It is invariant to the minterm 

choosing order from the final result point of view.  

However, this order can have a little effect on the runtime. 



 

To overcome this problem, we postpone the handling of 

minterms and save a status word for them. We use the use 

status words later when we revisit the postponed minterms.  

From this point of view, the most complex tasks for this 

algorithm are the ones that have prime implicants forming 

cyclic graphs. However, this kind of tasks is rare in 

practice. Our essential prime implicant identification rule 

can also be used for multiple-output Boolean functions 

without any improvement. 
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Table 3: Runtimes for the standard MCNC benchmarks 

Runtime (msec.) 
Benchmarks 

Number of 

variables 
Size of SON Size of SOFF 

Our method 

(TP) 

Espresso 

(TE) 

TE/ 

TP 

check / wim 04 4/9 9/1 15,6 31,3 2 

check1 

/check2/check3 
04 4/4/8 8/6/5 15,6 15,6 1 

p82 / squar 05 11/9 13/23 15,6 15,6 1 

m / new2/ sqr 06 27/3/18 5/4/46 15,6 31,3 2 

m5 / poperom 06 27/56 5/8 15,6 15,6 1 

Inc/ z5xp1 07 12/25 22/103 15,6 15,6 1 

linrom 07 65 63 15,6 46,9 3 

max128/ max3/ sqn 07 29/12/48 99/116/48 15,6 31,3 2 

Dist /ex5 08 53/33 203/223 15,6 31,3 2 

e 08 65 128 15,6 46,9 3 

exp 08 18 52 15,6 15,6 1 

exps / f51m/ m3/ m4 08 65/128/98/223 131/128/30/26 15,6 46,9 3 

exp1 08 19 47 15,6 31,3 2 

mlp4 08 32 224 31,3 31,3 1 

root 08 15 241 15,6 31,3 2 

rd84 08 120 136 31,3 46,9 3 

apex4/max4/min 09 4/38/82 434/8/51 15,6 31,3 2 

max512 09 258 254 15,6 46,9 3 

prom1 09 488 14 31,3 12781,3 408,3 

prom2 09 142 145 15,6 15,6 1 

Max1024 10 516 508 15,6 31,3 2 

T10 10 113 201 78,1 93,8 1,2 

T11 10 266 371 93,8 109,4 1,17 

T12 10 266 758 140,6 78,1 0,55 

br11/ br1/ br2/ t3 12 29/29/33/27 5/5/2/121 15,6 31,3 2 

pdc 16 24 1891 15,6 46,9 3 

spla 16 67 2036 62,5 46,9 0,75 

den 18 24 3 15,6 31,3 2 

bca /bcc 26 9/3 292/242 31,3/46,9 31,3/46,9 1 

bcb 26 10 289 46,9 31,3 0,67 

  


