

A Novel Essential Prime Implicant Identification Method

for Exact Direct Cover Logic Minimization

Sirzat Kahramanli and Suleyman Tosun

Computer Engineering Department

Selcuk University

Konya, Turkey

Abstract - Most of the direct-cover Boolean minimization

techniques use a four step cyclic algorithm. First, the

algorithm chooses an On-minterm; second, it generates the

set of prime implicants that covers the chosen minterm;

third, it identifies the essential prime implicant; and fourth,

it performs a covering operation. In this study, we focus on

the third step and propose a new essential prime implicant

identification method. In this method, when the

identification of the essential prime implicant is

impossible, we postpone dealing with current On-minterm

and save a status word for it. Eventually, we retrieve the

status words whenever a new essential prime implicant is

identified. We compared the proposed minimization

method with ESPRESSO-EXACT. The results show that

our method obtains exact results faster than other ones.

Keywords: Logic minimization, prime implicant, branch

and bound technique, cover.

1 Introduction

 Two-level logic minimization is a basic problem in logic

synthesis [1]. Due to the exponential nature of this problem,

state-of-the-art algorithms can typically handle functions

with up to hundred products [2]. Therefore, most of the

practical applications rely on heuristic minimization

methods [2,3] with a complexity which is roughly

quadratic in the number of products. There are also

methods that produce the optimal (exact) solutions

[1,2,3,4]. However, they can only be used for consistently

small SOP realizations since they take long run time (CPU

time) to find the final result. Heuristic algorithms are

noticeably faster than the exact ones; however, they are still

noticeably slow considering the exponential nature of the

problem and they do not always obtain the optimal

solutions [2]. Furthermore, the heuristic algorithms display

diversity in realizations. That is, no single heuristic

algorithm is consistently better than the others for all logic

functions. There are classes of functions where one

heuristic algorithm is better than the others [3]. Our studies

show that the diversities in realizations of heuristic

algorithms arise from the imperfect rules used for the

identification of the essential prime implicant (EPI).

In this study, we propose a new EPI identification method

that obtains exact minimal solutions. Our minimization

algorithm randomly chooses an On-minterm to be handled

(named as target minterm (TM)) from the On-set of the

function being minimized. It obtains the set of prime

implicants that include TM. If this set consists of a single PI

this our algorithm selects this PI as EPI to cover the On-set.

If there is more than one PI then, to find the EPI, we apply

a rule, which selects the PI that covers all On-minterms

included by other PIs. If such a PI does not exist in the set

then we form a status word (MSW) for the current TM and

for the PIs that include this TM. We use MSWs to obtain a

new EPI. This procedure is repeated until all of the On-

minterms are covered.

Our algorithm has the following differences than the

existing ones. First, it is invariant to PIs generating method.

Second, the minterm handling order can have a little effect

on runtime, but it does not affect the final result. Third, it

works in only one loop. Therefore, it is as fast as any

heuristic one but generates only exact results.

The rest of the paper is organized as follows: The next

section lists the abbreviations and notations used in this

paper. Section 3 discusses branch-and-bound technique

based EPI identification rules and their problems. Section 4

presents our approach. Section 5 gives the experimental

data. Finally, Section 6 concludes this paper.

2 Abbreviations and Notations

 In this section, we list the abbreviations and notations

used in this paper to make the paper easy to follow.

Table 1: The abbreviations used in the paper.

The term Abbreviations

Branch and Bound Technique BBT

Direct Cover Principle DCP

Essential Prime Implicant EPI

Minterm Status Word MSW

On-Minterm OM

Prime Implicant PI

Partial Ordering Operation POO

Target Minterm TM

Task Status Word TSW

Table 2: The notations used in the paper.

The term Notations

Boolean variables

specification space
{0,1,x}, where x denotes

a non essential value

Boolean functions

specification space
{0,1,d}, where d denotes

an unspecified value

The number of variables

of a function
n

Sharp product (coordinate

subtraction) operation

Intersection operation ∩

Uniting operation ∪

Current state of the set of

On-minterms
SON

Set of the Off-minterms SOFF

Set of don’t care mintems SDC

PI covering given TM PI(TM)

Set of all PIs covering

given TM
SPI(TM)

Set of EPIs SEPI

Set of MSWs SSW

The size of a set S S

3 BBT-based EPI Identification

In this section, we present an EPI identification method

using BBT. We also demonstrate the shortcomings of this

method on a small example.

3.1 EPI Identification Rules

DCP based heuristic methods are generally realized similar

to the following algorithm [3,5-11].

DCM (SON, SOFF). Direct cover minimization

algorithm.

 while (SON=∅) do

1. TM=X∈SON;

2. SPI(TM)_generation(TM, SOFF);

3. EPI_identification(SPI(TM));

4. SON= SON#EPI;

First, the algorithm chooses the first element of the set SON

as the minterm to be handled to identify its EPI (step 1 in

DCM algorithm). This minterm is called the target minterm

(TM). Second, it determines the set of PIs (SPI) that covers

TM (step 2). Third, it identifies EPI among the elements of

the set SPI (step 3). Fourth, it subtracts EPI from the set

SON (step 4). This process is repeated until the set SON is

empty.

For many functions, the major difficulty of the DCP based

minimization lies in BBT [3,5-10] that employs a decision

rule used in the third line of DCM algorithm when the TM

is covered by more than one PI. BBT based on POO over

the set SPI(TM) has been explained in [12] and later was

improved by different researchers [3,5-11]. However, to the

best of our knowledge, there is no POO that guaranties

exact identification of EPIs in the literature. We discuss this

problematic concept in the following subsections and

propose a new method guarantying exact identification of

EPIs in Section 4.

3.2 Choosing the EPI Randomly

The main idea of DCP based minimization methods is to

choose the EPI once the SPI(TM) is obtained by using the

following rule [3, 9]:

)/,(

|)(||)(|

)()(

kiki

TMPISTMPIS

TMPITMPI

iONkON

ik

≠∀

∩>∩

↔>

 (1)

where)()}({ 1 TMSTMPI PI
k
ii == is the set of PIs covering

the given TM. Then the PI∈)(TMS PI that covers the

largest number of OMs is selected as EPI. If there are more

than one such PI then one of them is selected randomly.

However, this EPI selecting procedure does not always give

the intended results since the exact EPI may not be PI(TM)

that covers the largest number of OMs, but it is the one

which covers all OMs included totally by all other PI(TM)s.

We demonstrate this problem using the following example.

 Example 1: Minimize the following completely

specified function using Rule 1.

SON = {0011, 0100, 0101, 0111, 1001, 1101, 1110, 1111}

Figure 1 shows the initial Karnaugh map for the given

function. In this figure, we have five PIs (numbered from

one to five in Figure 1) covering eight OMs (starred boxes

in Figure 1). Now, we apply Rule 1 to this problem. If we

choose the OM 1101 (13)
1
 as the first TM we obtain the PIs

x1x1 and 1x01. Therefore, we have:

R(13)1=SON0∩x1x1={0011,0100,0101,0111,1001,1101,

1110,1111}#x1x1={ 0101,0111, 1101, 1111}

R(13)2= SON0∩1x01={0011,0100, 0101, 0111, 1001, 1101,

1110, 1111}#1x01={1001, 1101}

where R(13)1 and R(13)2 are the sets of intersections of PI

x1x1 and PI 1x01 with the set SON, respectively. Since

R(13)1=4 and R(13)2=2, we select PI1(1101)=x1x1

as EPI1. Therefore; SEPI ={x1x1}; SON= SON#x1x1= {0011,

0100, 1001, 1110}.

1
 13 is the decimal equivalent of the binary code 1101.

Figure 1: The initial Karnaugh map for Example 1.

Figure 2: The Karnaugh map of the rest of the function

being minimized after PI 1 is removed as EPI.

As we can see from Figure 2, the set SDC = {0101, 0111,

1101, 1111} of don’t care minterms is appeared, which is

covered by EPI1. Consequentially, the rest of the function

being minimized is the incompletely specified function

represented by sets SON and SDC (see Figure 2).

As Figure 2 shows, all OMs are isolated. Therefore, to

avoid further calculations, we identify all EPIs by

inspection as follows:

EPI2=0x11, EPI3=111x, EPI4=1x01, EPI5=010x, i.e.

SEPI={1x1x, 0x11, 111x, 1x01,010x}

Note that we can obtain the same result if we select the

OMs 0101, 1101, and 1111 as first four TMs. Table 3

shows the covering diagram for Example 1. Using this

table, we can form the Petrick BBT function [1] as follows:

SEPI = BE(A+E)(A+B)D(A+D)C(A+C) = BEDC = BCDE

⇒ {0x11, 111x, 1x01, 010x}

This function shows that the PI (13)1=x1x1, which has been

identified above as EPI1, actually is not EPI. Hence, SEPI

={0x11, 111x, 1x01,010x}.

Our analysis of the Example 1 shows that the exact result

can be reached only in 4!=24 cases when we choose the

isolated OMs; 0011, 0100, 1001 and 1110 as first four

TMs. Furthermore, the number of choosing orders leading

Table 3: Covering diagram for Example 1

 PIs OMs

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
1

1
0

0
1

1
1

0
1

1
1

1
0

1
1

1
1

A x1x1 + + + +

B 0x11 + +

C 111x + +

D 1x01 + +

E 010x + +

to non-exact results is 4x4!=96. Namely, the percentage of

a fail is 96/(96+24)=80%. The general estimation of ratios

of the good and worst results generating by non-exact

minimization methods is given in [1,3].

3.3 Minterm Ordering Based on Adjacency

Factors

To avoid the possible faulty results like the one we

demonstrated in the previous subsection, the improved DCP

method has been proposed [3,6]. In this method, for each

PI, the efficiency factor, which is equal to the number of

OMs that the PI covers divided by its cost, is calculated and

the PI with the largest efficiency factor is chosen as EPI. If

there are more than one PI with the same largest efficiency

factors, one of them is chosen randomly. However, this

method is also problematic and may not always give the

exact minimal results. One may not identify the EPI among

the PIs with the same efficiency factor. Moreover, the

calculations of the efficiency factors can take very long

time for the large On-sets. If SON=N=k2
n
 then, the

calculations of the efficiency factors requires comparisons

(each of which consist of one EXOR operation and several

others to detect result containing 1 only in one bit position

and 0’s in all others) the count of which is expressed by the

following formula.

)2(2
22

)2(

2

2

)1(
)1(

2

11

2
222

1

1

1

nn
n

N

i

O
kkN

NN
N

N
iWC

⇒×=
×

=≅

−
=−×

−+
==∑

−

=

That is, this ordering has the exponential time-complexity

which is undesirable [9].

4 Our EPI Identification Method

4.1 Main Minimization Algorithm

We give the pseudo code of the main algorithm for the

DCP based minimization of the single-output two-level

Boolean functions as follows:

 * 10

* d d 11

 d d * 01

 * 00

10 11 01 00

2

5 4 3

 * 10

* * * 11

 * * * 01

 * 00

10 11 01 00

2

1

5 4 3

MAIN (SON , SOFF). Main algorithm.

 SEPI=∅;

M1: if (SON =∅) then go to M3;

 TM = SON[m1];

 CALL SPI(TM, SOFF);

M2: if (CF=∅) then go to M1;

 CALL CP(CF, SON);

 if (SSW =∅) then go to M1;

 CALL SWH(SON, CF, N);

 Go to M2;

 M3: if (SSW =∅) then go to M4;

 CALL PP(SSW);

 M4: end

Our algorithm starts by selecting a minterm as TM from the

set SON then calls the procedure SPI(TM, SOFF) to find the

set SPI(TM) and to identify EPI from this set. If this

procedure cannot find any EPI the algorithm selects a new

minterm to continue. In the meantime, the SPI(TM,SOFF)

procedure saves a status word (MSW) for the minterm of

which we could not find any EPI. This procedure will be

explained in the next subsection in detail.

After finding the EPI, we call the covering procedure CP

(CF, SON). If we do not have any MSW saved, we continue

selecting a new minterm and try to find its correspondent

EPI. Otherwise, (i.e. we have some status words saved), we

call the MSWs handling procedure SWH (SON, CF, N).

This procedure looks MSWs one at a time to identify and

use for covering PIs that have become EPIs. This part of

the algorithm is repeated until the On-set is empty. The

process is completed if there are no saved MSWs left.

Otherwise, we call Petrick procedure and obtain a minimal

subset of PIs covering the TM parts of saved MSWs

4.2 Our TM Handling Method

In this subsection, we explain the procedure SPI(TM, SOFF)

that identifies the EPI to cover the given TM. We give the

pseudo code of this procedure as follows:

SPI(TM,SOFF). The procedure for calculating the set

SPI(TM), identifying EPIs and forming MSWs.

PE:SOFF → SE ; PEO:SE → SEP;

 R=xx…x# SEP; PEO:R → SPI(TM);
PI1: if ( SPI(TM)> 1) then go to PI2;

CF= SPI(TM); Go to PI3;

 PI2: CF=∅;

SW(TM)={TM {SPI(TM)}};

SSW =SSW ∪ SW(TM);

 PI3: return

In this procedure, first we expand the minterms in the set

SOFF by using current TM and remove the non-prime cubes

from this set. Then, we subtract the result from the n-cube

and again remove the non-prime cubes from the set SPI. If

the TM at hand is covered more than one PI, we apply the

following POO to identify the EPI among the PIs (PI1 in

the above pseudo code).

)/,()),((

)(()()(

kikiTMPIS

TMPISTMPIYMPI

iON

kONik

≠∀∩⊇

∩↔>
 (2)

The principal difference between Rule (1) and Rule (2) is

that the former compares the size of the sets

Ri(TM)=SON∩PIi(TM) and Rj(TM)= SON∩ PIj(TM) whereas

the latter compares the contents of these sets; therefore,

Rule (2) leads to the exact minimal results. That is, the

PIk(TM) is EPI if and only if it covers all OMs included by

all others PI(TM)s.

If the condition expressed by Rule (2) is not satisfied by

any of the PIs, the problem of choosing the EPI is revealed.

To solve this problem, we postpone the handling of the TM

at hand until one of the PIk(TM)s satisfies the condition. To

resume handling of the postponed TM we use the following

information called a Minterm Status Word (MSW).

 MSW(TMi)={TMi, SPI(TMi)}

where SPI(TMi)={PI2(TMi) ,…,PIm(TMi)} is the set of PIs

including TMi.

Handling of TM for which there is no PI satisfying the

condition expressed by Rule (2) may be postponed by

stopping of handling of TM, forming a MSW for it and

including this MSW into the set SSW. In addition, the

existence of different postponed TMs and appropriate

MSWs in different loops of the algorithm request to use the

information about the last state of the task being solved.

This information is called a Task State Word (TSW) and

has the following structure:

 TSW ={SON, SEPI, SSW}

where, SON is the current (last) state of the set of On-

minterms, SEPI is the current state of the set of EPIs, SSW is

the current state of the set of MSWs.

 Example 2: Let us illustrate how MSW is used in our

method. To do this, assume we have SON= {001, 010, 011,

110}, TM=011(3) and SPI(011)= {01x, 0x1}. Then,

R(3)1={001, 010, 011,110}∩01x ={010, 011};

R(3)2={001, 010, 011, 110}∩0x1={001, 011}. Since

R(3)1⊄ R(3)2 and R(3) 2⊄ R(3)1, handling of TM=011 may

be postponed as follows:

TMP(TM, SPI(TM))

 Stop handling of TM =011,

 Form MSW as set {011,{01x, 0x1}},

 Include this MSW into the set SSW.

4.3 The Remaining Procedures in the Main

Algorithm

In this subsection, we present the other procedures included

in our main algorithm. These are the direct covering

(CP(CF, SON), MSWs handling (SWH(SON, CF, N), and the

Petrick (PP(SSW)) procedures.

CP(CF, SON). Direct covering procedure.

SON =SON# CF; SEPI=SEPI ∪ CF; CF=∅;

return

Direct covering procedure subtracts the found EPI that

presents in the connection field CF from the set SON and

includes this EPI into the set SEPI. After that, it empties the

CF.

SWH(SON,CF,N). Minterm status words handling

procedure.

i=1;

SW1: select MSWi;

TMC=MSWi[TM]; TMC=TMC#CF;

if (TMC=∅) then go to SW2;

SPIO = POO: SPI;

if ( SPIO >1) then go to SW3;

CF = SPIO; MSWi[TM]=∅; Go to SW4;

SW2: MSWi[TM]=∅;

SW3: i=i+1;

if (i≤N) then go to SW1;

CF =∅;

SW4: Delete all MSW with MSW[TM]=∅;

Update the value of N;

return;

Minterm status word handling procedure first selects the

first MSW from the set SSW. Then, it picks the TM part

(TMC) of this MSW and subtracts the last founded EPI

from TMC. If the result is empty then the procedure

removes the content of TM part of MSW at hand and

selects the next MSW. Otherwise, the procedure partially

orders the SPI part of the current MSW to identify EPI. If

the EPI is found (the content of SPIO is the new EPI if

SPIO=1) then the procedure sends it into the connection

filed CF, and removes the content of TM part of MSW at

hand. When the TM part of MSW is not covered by the last

founded EPI and the procedure does not identify the new

EPI, the procedure handles the second MSW in the same

way. This part of the procedure is repeated until the new

EPI is found or all of MSWs are handled. Then the

procedure deletes all of MWSs the TM parts of which are

empty and returns.

PP(SSW). Petrick procedure.

i=1;

while (SSW ≠ ∅)

Select SWi;

 SPIi = SWi[SPI(TM)];

 IFi = U
m

i

imL
1=

; Delete SWi; i=i+1;

 end while

 PF={I
K

i

iIF
1=

};

 PR = min{L(PT∈ PF)};

 Lim ←PIim;

 PC= U
im

imP ; RMC=SEPI∪PC;

 return

Petrick procedure selects each MSWs and employs the

inclusion function (IF) for its PIs part, where m=|SPIi| and

Lim=PIim∈SPIi. Then it takes the product of these inclusion

functions. Afterwards, it selects the -product term (PT)

formed by minimum count of literals. If there is more than

one such PT then it selects one of them randomly. After

selecting PT, it replaces each literal with appropriate PI.

Example 3: Minimize the function given in the Example 1

using Rule (2).

Let us first explain a task state word by ordered set TSW

={SON; SEPI; SSW}. According to this format the initial state

of the given task is:

TSW0= {{0011, 0100, 0101,0111,1001,1101, 1110, 1111};

∅;∅}

In the following enumerations such as 1.1., first number

represents the iteration number and the second one

represents the current step of the iteration.

 1.1. Let us, as in Example 1, first choose TM =1101

for which SPI(1101)= {x1x1,1x01}. In other words, this

minterm is included by the PIs x1x1 and 1x01. Since

SPI(1101)>1, it is necessary to subject the set SPI(1101) to

POO.

 1.2. R13,1=SON∩x1x1={0101,0111,1101, 1111};

R13,2= SON∩1x01={1001, 1101}.

Since R13,1⊄R13,2 and R13,2 ⊄ R13,1, none of the PIs can be

identified as EPI. Therefore, it is necessary to form an

MSW for TM as MSW1 ={1101,{x1x1,1x01}} which

changes TSW0 into:

TSW1= {{0011, 0100, 0101, 0111, 1001, 1101, 1110,

1111}; ∅; {{1101,{x1x1,1x01}}}

 2.1. Now, let us choose TM =1110 for which SPI

contains single cube 111x that is EPI1 (see Figure 1) and

must be used for covering the set SON.

 2.2. SON= SON#111x={0011, 0100, 0101, 0111, 1001,

1101}. Therefore,

TSW2= {{0011, 0100, 0101, 0111, 1001, 1101}; {111x};

{{1101, {x1x1, 1x01}}}

 2.3. Since the new EPI is identified, it is necessary to

handle MSWs that have been saved.

SSW={SW1}={{1101,{x1x1,1x01}};

TMC=MSW1[TM]#EPI1=1101#111x=1101≠∅

Since the TM of MSW1 is uncovered by EPI1, it is

necessary to subject to POO the PIs part of MSW1.

R13,1=SON∩x1x1={0101,0111,101};

R13,2=SON∩1x01={1001, 1101}

Since R13,1⊄R13,2 and R13,2 ⊄ R13,1, none of PIs can be

identified as EPI. Therefore, there is no change in MSW1

and in other parts of TSW2.

 3.1. Let us choose the next TM as TM=1001, for

which SPI contains single cube 1x01 that is EPI2 (see Figure

1) and must be used for covering the set SON.

 3.2. SON= SON#1x01={0011, 0100, 0101, 0111}.

Consequentially,

TSW3.1 = {{0011, 0100, 0101, 0111}; {111x, 1x01};

{{1101, {x1x1, 1x01}}}

 3.3. Since the new EPI is identified it is necessary to

handle the MSWs that have been saved.

SSW={SW1}={{1101,{x1x1,1x01}};

TMC=MSW1[TM]#EPI2=1101#1x01=∅

Since the TM of MSW1 is covered by EPI2=1x01, it is

necessary to delete MSW1, i.e.

TSW3.2={{0011, 0100, 0101,0111 };{111x, 1x01}; ∅}.

 4.1. Now, let as choose TM= 0011. This minterm is

included by the single cube 0x11 that is the EPI3 (see

Figure 1). Therefore,

SON= SON# 0x11={ 0100, 0101}.

Consequentially,

TSW4={{0100, 0101};{111x, 1x01,0x11}; ∅}.

 5.1. Let us now choose TM=0100. This minterm is

included by the single cube 010x that is the EPI4.

 5.2. Since SON=SON#010x=∅, TSW5={∅; {111x,

1x01, 0x11, 010x}; ∅}. Consequently, the minimization

process is completed. The exact minimal result is

SEPI={111x, 1x01,0x11, 010x}

5 Experimental Results

In this section, we evaluate the performance of our method

by using the standard MCNC benchmarks [13-15]. We

compared our method with ESPRESSO-EXACT [14,15].

The sets of PIs were calculated by the Off-set expanding

method [16]. We used the outputs of MCNC benchmarks as

the 50 different single-output functions. Table 4 gives the

results of our experiments. In this table, first four columns

are the name of the benchmark, the number of variables, the

size of SON, and the size of SOFF. Column five and six show

the runtime (as milliseconds) of our method and

EXPRESSO-EXACT, respectively. The last column of

Table 4 gives the runtime ratio of our method and

EXPRESSO-EXACT. As we observed, our method takes

less time to solve 66% of the benchmarks whereas

EXPRESSO-EXACT has better runtimes from our method

for 6% of the benchmarks. For the remaining (for 28%) of

the benchmarks our method and EXPRESSO-EXACT

obtain the exact minimal result at the same time. In general,

the relative speed of our method is increased by decreasing

the ratio SOFF/SON. For example, the first output of the

benchmark prom1 depending on 9 variables and having the

ratioSOFF/SON= 14/488=0.03 was solved by our method

408 times faster than ESPRESSO-EXACT. On the other

hand, the first output of the benchmark bcb depending on

26 variables and having the ratio SOFF/SON=

289/10=29, was solved by our method 1.5 times slower

than ESPRESSO-EXACT.

6 Conclusions

In this study we propose a single-output two-level Boolean

function minimization algorithm. The proposed algorithm is

as fast as any single loop heuristic minimization algorithm

and generates exact result. It is invariant to the minterm

choosing order from the final result point of view.

However, this order can have a little effect on the runtime.

To overcome this problem, we postpone the handling of

minterms and save a status word for them. We use the use

status words later when we revisit the postponed minterms.

From this point of view, the most complex tasks for this

algorithm are the ones that have prime implicants forming

cyclic graphs. However, this kind of tasks is rare in

practice. Our essential prime implicant identification rule

can also be used for multiple-output Boolean functions

without any improvement.

7 Acknowledgement

This project is supported by Selcuk University project

number 06701088.

8 References

[1] T. Sasao, “Worst and Best Irredundant Sum-of-Product

Expressions”, IEEE Trans. Comp., Vol. 50, No 9, 2001, pp.

935-947.

[2] A. Mishchenco and T. Sasao, “Large-Scale SOP minimization

Using Decomposition and Functional Properties”, DAC

2003, pp. 149-154.

[3] P.P. Tirumalai and J.T. Butler, “Minimization Algorithms for

Multiple-Valued Programmable Logic Arrays”, IEEE

Transactions on Computers, Vol. 40, No2, 1991, pp.167-177.

[4] R.K. Brayton et al., “Logic minimization algorithms for VLSI

synthesis”, Boston, Kluwer Academic Publications, 1984.

[5] G. Promper and J. Armstrong, “Representation of Multivalued

functions using the direct cover method”, IEEE Trans. Comp.,

pp 674-679, 1981.

[6] P.W. Besslich, “Heuristic Minimization of MUL functions: A

direct cover approach”, IEEE Trans. Comp., pp 134-144,

1986.

[7] G.W. Dueck and D.M. Miller, “A direct cover MUL

minimization using the truncated sum”, Proc. of the 17th Int.

Sem. Multiple-Valued Logic, 1987, pp 221-227.

[8] O. Coudert, “Two Level Logic Minimization: An Overview”,

Integration. The VLSI Journal, 17-2, pp 97-140, 1994.

[9] Ch. Umans, “The Minimum Equivalent DNF Problem and

Shortest Implicants”, Journal of Computer and System

Sciences, 63, 2001, pp. 597-611.

[10] P. Fiser and J. Hlavicka, “BOOM- A Heuristic Boolean

Minimizer” , Journal of Computing and Informatics, Vol. 22,

pp. 1001-1033, 2003.

[11] S. J. Hong and S. Muroga, “Absolute Minimization of

Complete Specified Switching Functions”, IEEE Trans.

Comp., Vol.40 , No 1, pp 53-65, 1991.

[12] R.E. Miller, “Switching Theory”, Vol. 1, New York, 1965.

 [14]ftp://ftp.menc.org/pub/benchmark/Benchmark_dirs/

LGSynth93/testcases/pla/

[14] ftp://ic.eecs.berkeley.edu

[15] http://eda.seodu.co.kr/~ chang//download/espresso/

[16] S. Kahramanlı and N. Allahverdi, “An Algebraic Approach to

the Transformations on Hypercube System”, Mathematical &

Computational Applications, 4(1), 1996, pp. 50-59.

Table 3: Runtimes for the standard MCNC benchmarks

Runtime (msec.)
Benchmarks

Number of

variables
Size of SON Size of SOFF

Our method

(TP)

Espresso

(TE)

TE/

TP

check / wim 04 4/9 9/1 15,6 31,3 2

check1

/check2/check3
04 4/4/8 8/6/5 15,6 15,6 1

p82 / squar 05 11/9 13/23 15,6 15,6 1

m / new2/ sqr 06 27/3/18 5/4/46 15,6 31,3 2

m5 / poperom 06 27/56 5/8 15,6 15,6 1

Inc/ z5xp1 07 12/25 22/103 15,6 15,6 1

linrom 07 65 63 15,6 46,9 3

max128/ max3/ sqn 07 29/12/48 99/116/48 15,6 31,3 2

Dist /ex5 08 53/33 203/223 15,6 31,3 2

e 08 65 128 15,6 46,9 3

exp 08 18 52 15,6 15,6 1

exps / f51m/ m3/ m4 08 65/128/98/223 131/128/30/26 15,6 46,9 3

exp1 08 19 47 15,6 31,3 2

mlp4 08 32 224 31,3 31,3 1

root 08 15 241 15,6 31,3 2

rd84 08 120 136 31,3 46,9 3

apex4/max4/min 09 4/38/82 434/8/51 15,6 31,3 2

max512 09 258 254 15,6 46,9 3

prom1 09 488 14 31,3 12781,3 408,3

prom2 09 142 145 15,6 15,6 1

Max1024 10 516 508 15,6 31,3 2

T10 10 113 201 78,1 93,8 1,2

T11 10 266 371 93,8 109,4 1,17

T12 10 266 758 140,6 78,1 0,55

br11/ br1/ br2/ t3 12 29/29/33/27 5/5/2/121 15,6 31,3 2

pdc 16 24 1891 15,6 46,9 3

spla 16 67 2036 62,5 46,9 0,75

den 18 24 3 15,6 31,3 2

bca /bcc 26 9/3 292/242 31,3/46,9 31,3/46,9 1

bcb 26 10 289 46,9 31,3 0,67

