# A Novel Essential Prime Implicant Identification Method for Exact Direct Cover Logic Minimization 

Sirzat Kahramanli and Suleyman Tosun<br>Computer Engineering Department<br>Selcuk University<br>Konya, Turkey


#### Abstract

Most of the direct-cover Boolean minimization techniques use a four step cyclic algorithm. First, the algorithm chooses an On-minterm; second, it generates the set of prime implicants that covers the chosen minterm; third, it identifies the essential prime implicant; and fourth, it performs a covering operation. In this study, we focus on the third step and propose a new essential prime implicant identification method. In this method, when the identification of the essential prime implicant is impossible, we postpone dealing with current On-minterm and save a status word for it. Eventually, we retrieve the status words whenever a new essential prime implicant is identified. We compared the proposed minimization method with ESPRESSO-EXACT. The results show that our method obtains exact results faster than other ones.


Keywords: Logic minimization, prime implicant, branch and bound technique, cover.

## 1 Introduction

Two-level logic minimization is a basic problem in logic synthesis [1]. Due to the exponential nature of this problem, state-of-the-art algorithms can typically handle functions with up to hundred products [2]. Therefore, most of the practical applications rely on heuristic minimization methods [2,3] with a complexity which is roughly quadratic in the number of products. There are also methods that produce the optimal (exact) solutions [1,2,3,4]. However, they can only be used for consistently small SOP realizations since they take long run time (CPU time) to find the final result. Heuristic algorithms are noticeably faster than the exact ones; however, they are still noticeably slow considering the exponential nature of the problem and they do not always obtain the optimal solutions [2]. Furthermore, the heuristic algorithms display diversity in realizations. That is, no single heuristic algorithm is consistently better than the others for all logic functions. There are classes of functions where one heuristic algorithm is better than the others [3]. Our studies show that the diversities in realizations of heuristic algorithms arise from the imperfect rules used for the identification of the essential prime implicant (EPI).

In this study, we propose a new EPI identification method that obtains exact minimal solutions. Our minimization algorithm randomly chooses an On-minterm to be handled (named as target minterm (TM)) from the On-set of the function being minimized. It obtains the set of prime implicants that include TM. If this set consists of a single PI this our algorithm selects this PI as EPI to cover the On-set. If there is more than one PI then, to find the EPI, we apply a rule, which selects the PI that covers all On-minterms included by other PIs. If such a PI does not exist in the set then we form a status word (MSW) for the current TM and for the PIs that include this TM. We use MSWs to obtain a new EPI. This procedure is repeated until all of the Onminterms are covered.

Our algorithm has the following differences than the existing ones. First, it is invariant to PIs generating method. Second, the minterm handling order can have a little effect on runtime, but it does not affect the final result. Third, it works in only one loop. Therefore, it is as fast as any heuristic one but generates only exact results.

The rest of the paper is organized as follows: The next section lists the abbreviations and notations used in this paper. Section 3 discusses branch-and-bound technique based EPI identification rules and their problems. Section 4 presents our approach. Section 5 gives the experimental data. Finally, Section 6 concludes this paper.

## 2 Abbreviations and Notations

In this section, we list the abbreviations and notations used in this paper to make the paper easy to follow.

Table 1: The abbreviations used in the paper.

| The term | Abbreviations |
| :--- | :---: |
| Branch and Bound Technique | BBT |
| Direct Cover Principle | DCP |
| Essential Prime Implicant | EPI |
| Minterm Status Word | MSW |
| On-Minterm | OM |
| Prime Implicant | PI |
| Partial Ordering Operation | POO |
| Target Minterm | TM |
| Task Status Word | TSW |

Table 2: The notations used in the paper.

| The term | Notations |
| :--- | :---: |
| Boolean variables <br> specification space | $\{0,1, \mathrm{x}\}$, where x denotes <br> a non essential value |
| Boolean <br> specification space | $\{0,1, \mathrm{~d}\}$, where d denotes <br> an unspecified value |
| The number of variables <br> of a function | n |
| Sharp product (coordinate <br> subtraction) operation | $\mathrm{\#}$ |
| Intersection operation | $\cup$ |
| Uniting operation | $\mathrm{S}_{\text {ON }}$ |
| Current state of the set of <br> On-minterms | $\mathrm{S}_{\mathrm{OFF}}$ |
| Set of the Off-minterms | $\mathrm{S}_{\mathrm{DC}}$ |
| Set of don't care mintems | $\mathrm{PI}(\mathrm{TM})$ |
| PI covering given TM | $\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})$ |
| Set of all PIs covering <br> given TM | $\mathrm{S}_{\mathrm{EPI}}$ |
| Set of EPIs | $\mathrm{S}_{\mathrm{SW}}$ |
| Set of MSWs | $\|\mathrm{S}\|$ |
| The size of a set S |  |

## 3 BBT-based EPI Identification

In this section, we present an EPI identification method using BBT. We also demonstrate the shortcomings of this method on a small example.

### 3.1 EPI Identification Rules

DCP based heuristic methods are generally realized similar to the following algorithm [3,5-11].

DCM ( $\left.\mathbf{S}_{\mathbf{O N}}, \mathbf{S}_{\mathbf{O F F}}\right)$. Direct cover minimization algorithm.

```
    while ( }\mp@subsup{\textrm{S}}{\textrm{ON}}{}=\varnothing\mathrm{ ) do
1. TM=X\inS S ON
```

2. $\quad \mathrm{S}_{\mathrm{PI}}(\mathrm{TM})$ _generation $\left(\mathrm{TM}, \mathrm{S}_{\mathrm{OFF}}\right)$;
3. EPI_identification $\left(\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\right)$;
4. $\quad \mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# \mathrm{EPI}$;

First, the algorithm chooses the first element of the set SON as the minterm to be handled to identify its EPI (step 1 in DCM algorithm). This minterm is called the target minterm (TM). Second, it determines the set of PIs (SPI) that covers TM (step 2). Third, it identifies EPI among the elements of the set SPI (step 3). Fourth, it subtracts EPI from the set SON (step 4). This process is repeated until the set SON is empty.

For many functions, the major difficulty of the DCP based minimization lies in BBT [3,5-10] that employs a decision
rule used in the third line of DCM algorithm when the TM is covered by more than one PI. BBT based on POO over the set $\operatorname{SPI}(T M)$ has been explained in [12] and later was improved by different researchers [3,5-11]. However, to the best of our knowledge, there is no POO that guaranties exact identification of EPIs in the literature. We discuss this problematic concept in the following subsections and propose a new method guarantying exact identification of EPIs in Section 4.

### 3.2 Choosing the EPI Randomly

The main idea of DCP based minimization methods is to choose the EPI once the $S_{P I}(T M)$ is obtained by using the following rule [3, 9]:

$$
\begin{align*}
& P I_{k}(T M)>P I_{i}(T M) \leftrightarrow \\
& \left|S_{O N} \cap P I_{k}(T M)\right|>\left|S_{O N} \cap P I_{i}(T M)\right|  \tag{1}\\
& \forall(i, k / i \neq k)
\end{align*}
$$

where $\left\{P I_{i}(T M)\right\}_{i=1}^{k}=S_{P I}(T M)$ is the set of PIs covering the given TM. Then the $\mathrm{PI} \in S_{P I}(T M)$ that covers the largest number of OMs is selected as EPI. If there are more than one such PI then one of them is selected randomly. However, this EPI selecting procedure does not always give the intended results since the exact EPI may not be PI(TM) that covers the largest number of OMs, but it is the one which covers all OMs included totally by all other $\mathrm{PI}(\mathrm{TM})$ s. We demonstrate this problem using the following example.

Example 1: Minimize the following completely specified function using Rule 1.
$S_{O N}=\{0011,0100,0101,0111,1001,1101,1110,1111\}$
Figure 1 shows the initial Karnaugh map for the given function. In this figure, we have five PIs (numbered from one to five in Figure 1) covering eight OMs (starred boxes in Figure 1). Now, we apply Rule 1 to this problem. If we choose the OM $1101(13)^{1}$ as the first TM we obtain the PIs x 1 x 1 and 1 x 01 . Therefore, we have:

$$
\begin{aligned}
& \mathrm{R}(13)_{1}=\mathrm{S}_{\mathrm{ON} 0} \cap \mathrm{x} 1 \mathrm{x} 1=\{0011,0100,0101,0111,1001,1101, \\
& 1110,1111\} \# \mathrm{x} 1 \times 1=\{0101,0111,1101,1111\}
\end{aligned}
$$

$\mathrm{R}(13)_{2}=\mathrm{S}_{\mathrm{ON} 0} \cap 1 \mathrm{x} 01=\{0011,0100,0101,0111,1001,1101$, $1110,1111\} \# 1 \times 01=\{1001,1101\}$
where $\mathrm{R}(13)_{1}$ and $\mathrm{R}(13)_{2}$ are the sets of intersections of PI x 1 x 1 and PI 1 x 01 with the set $\mathrm{S}_{\mathrm{ON}}$, respectively. Since $\left|R(13)_{1}\right|=4$ and $\left|R(13)_{2}\right|=2$, we select $\mathrm{PI}_{1}(1101)=x 1 x 1$ as $\mathrm{EPI}_{1}$. Therefore; $\mathrm{S}_{\mathrm{EPI}}=\{\mathrm{x} 1 \mathrm{x} 1\} ; \mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# \mathrm{x} 1 \mathrm{x} 1=\{0011$, 0100, 1001, 1110\}.

[^0]

Figure 1: The initial Karnaugh map for Example 1.


Figure 2: The Karnaugh map of the rest of the function being minimized after PI 1 is removed as EPI.

As we can see from Figure 2, the set $\mathrm{S}_{\mathrm{DC}}=\{0101,0111$, $1101,1111\}$ of don't care minterms is appeared, which is covered by $\mathrm{EPI}_{1}$. Consequentially, the rest of the function being minimized is the incompletely specified function represented by sets $\mathrm{S}_{\mathrm{ON}}$ and $\mathrm{S}_{\mathrm{DC}}$ (see Figure 2).

As Figure 2 shows, all OMs are isolated. Therefore, to avoid further calculations, we identify all EPIs by inspection as follows:
$E \mathrm{EP}_{2}=0 \times 11, \mathrm{EPI}_{3}=111 \mathrm{x}, \mathrm{EPI}_{4}=1 \mathrm{x} 01, \mathrm{EPI}_{5}=010 \mathrm{x}$, i.e.
$S_{\mathrm{EPI}}=\{1 \mathrm{x} 1 \mathrm{x}, 0 \mathrm{x} 11,111 \mathrm{x}, 1 \mathrm{x} 01,010 \mathrm{x}\}$
Note that we can obtain the same result if we select the OMs 0101, 1101, and 1111 as first four TMs. Table 3 shows the covering diagram for Example 1. Using this table, we can form the Petrick BBT function [1] as follows:
$\mathrm{S}_{\mathrm{EPI}}=\mathrm{BE}(\mathrm{A}+\mathrm{E})(\mathrm{A}+\mathrm{B}) \mathrm{D}(\mathrm{A}+\mathrm{D}) \mathrm{C}(\mathrm{A}+\mathrm{C})=\mathrm{BEDC}=\mathrm{BCDE}$ $\Rightarrow\{0 \mathrm{x} 11,111 \mathrm{x}, 1 \mathrm{x} 01,010 \mathrm{x}\}$

This function shows that the PI $(13)_{1}=x 1 \times 1$, which has been identified above as $\mathrm{EPI}_{1}$, actually is not EPI. Hence, $\mathrm{S}_{\mathrm{EPI}}$ $=\{0 \mathrm{x} 11,111 \mathrm{x}, 1 \mathrm{x} 01,010 \mathrm{x}\}$.

Our analysis of the Example 1 shows that the exact result can be reached only in $4!=24$ cases when we choose the isolated OMs; 0011, 0100, 1001 and 1110 as first four TMs. Furthermore, the number of choosing orders leading

Table 3: Covering diagram for Example 1

|  |  | $\stackrel{8}{8}$ | $8$ | $0$ | $\begin{aligned} & 0 \\ & \\ & \hline \end{aligned}$ | - | $\stackrel{\rightharpoonup}{\circ}$ | $\stackrel{\square}{\circ}$ | Э |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | x1x1 |  |  | + | + |  | + |  | + |
| B | 0x11 | + |  |  | + |  |  |  |  |
| C | 111x |  |  |  |  |  |  | + | + |
| D | 1x01 |  |  |  |  | + | + |  |  |
| E | 010x |  | + | + |  |  |  |  |  |

to non-exact results is $4 \times 4!=96$. Namely, the percentage of a fail is $96 /(96+24)=80 \%$. The general estimation of ratios of the good and worst results generating by non-exact minimization methods is given in $[1,3]$.

### 3.3 Minterm Ordering Based on Adjacency Factors

To avoid the possible faulty results like the one we demonstrated in the previous subsection, the improved DCP method has been proposed [3,6]. In this method, for each PI, the efficiency factor, which is equal to the number of OMs that the PI covers divided by its cost, is calculated and the PI with the largest efficiency factor is chosen as EPI. If there are more than one PI with the same largest efficiency factors, one of them is chosen randomly. However, this method is also problematic and may not always give the exact minimal results. One may not identify the EPI among the PIs with the same efficiency factor. Moreover, the calculations of the efficiency factors can take very long time for the large On-sets. If $\left|\mathrm{S}_{\mathrm{ON}}\right|=\mathrm{N}=\mathrm{k} 2^{\mathrm{n}}$ then, the calculations of the efficiency factors requires comparisons (each of which consist of one EXOR operation and several others to detect result containing 1 only in one bit position and 0 's in all others) the count of which is expressed by the following formula.

$$
\begin{aligned}
& W C_{1}=\sum_{i=1}^{N-1} i=\frac{1+N-1}{2} \times(N-1)=\frac{N(N-1)}{2} \\
& \cong \frac{N^{2}}{2}=\frac{\left(k \times 2^{n}\right)^{2}}{2}=\frac{k^{2}}{2} \times 2^{n} \Rightarrow O\left(2^{2 n}\right)
\end{aligned}
$$

That is, this ordering has the exponential time-complexity which is undesirable [9].

## 4 Our EPI Identification Method

### 4.1 Main Minimization Algorithm

We give the pseudo code of the main algorithm for the DCP based minimization of the single-output two-level Boolean functions as follows:

MAIN ( $\mathbf{S}_{\mathbf{O N}}, \mathbf{S}_{\mathbf{O F F}}$ ). Main algorithm.

```
    \(S_{\text {EPI }}=\varnothing\);
M1: if \(\left(\mathrm{S}_{\mathrm{ON}}=\varnothing\right)\) then go to M3;
        \(\mathrm{TM}=\mathrm{S}_{\mathrm{ON}}\left[\mathrm{m}_{1}\right]\);
        CALL \(\mathrm{S}_{\mathrm{PI}}\left(\mathrm{TM}, \mathrm{S}_{\mathrm{OFF}}\right)\);
M2: if \((\mathrm{CF}=\varnothing)\) then go to M 1 ;
    CALL CP (CF, \(\mathrm{S}_{\mathrm{ON}}\) );
        if \(\left(\mathrm{S}_{\mathrm{SW}}=\varnothing\right)\) then go to M1;
        CALL \(\operatorname{SWH}\left(\mathrm{S}_{\mathrm{ON}}, \mathrm{CF}, \mathrm{N}\right)\);
        Go to M2;
M3: if \(\left(\mathrm{S}_{\mathrm{SW}}=\varnothing\right)\) then go to M4;
        CALL \(\operatorname{PP}\left(\mathrm{S}_{\mathrm{sw}}\right)\);
M4: end
```

Our algorithm starts by selecting a minterm as TM from the set $\mathrm{S}_{\mathrm{ON}}$ then calls the procedure $\mathrm{S}_{\mathrm{PI}}\left(\mathrm{TM}, \mathrm{S}_{\mathrm{OFF}}\right)$ to find the set $\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})$ and to identify EPI from this set. If this procedure cannot find any EPI the algorithm selects a new minterm to continue. In the meantime, the $\mathrm{S}_{\mathrm{PI}}\left(\mathrm{TM}, \mathrm{S}_{\mathrm{OFF}}\right)$ procedure saves a status word (MSW) for the minterm of which we could not find any EPI. This procedure will be explained in the next subsection in detail.

After finding the EPI, we call the covering procedure CP (CF, $\mathrm{S}_{\mathrm{ON}}$ ). If we do not have any MSW saved, we continue selecting a new minterm and try to find its correspondent EPI. Otherwise, (i.e. we have some status words saved), we call the MSWs handling procedure SWH ( $\mathrm{S}_{\mathrm{ON}}, \mathrm{CF}, \mathrm{N}$ ). This procedure looks MSWs one at a time to identify and use for covering PIs that have become EPIs. This part of the algorithm is repeated until the On-set is empty. The process is completed if there are no saved MSWs left. Otherwise, we call Petrick procedure and obtain a minimal subset of PIs covering the TM parts of saved MSWs

### 4.2 Our TM Handling Method

In this subsection, we explain the procedure $\mathrm{S}_{\mathrm{PI}}\left(\mathrm{TM}, \mathrm{S}_{\mathrm{OFF}}\right)$ that identifies the EPI to cover the given TM. We give the pseudo code of this procedure as follows:
$\mathbf{S}_{\mathbf{P I}}\left(\mathbf{T M}, \mathbf{S}_{\text {OFF }}\right)$. The procedure for calculating the set $S_{P I}(T M)$, identifying EPIs and forming MSWs.

```
\(\mathrm{P}_{\mathrm{E}}: \mathrm{S}_{\mathrm{OFF}} \longrightarrow \mathrm{S}_{\mathrm{E}} ; \mathrm{P}_{\mathrm{EO}}: \mathrm{S}_{\mathrm{E}} \longrightarrow \mathrm{S}_{\mathrm{EP}} ;\)
\(\mathrm{R}=\mathrm{xx} \ldots \mathrm{x} \mathrm{\#} \mathrm{~S}_{\mathrm{EP}} ; \mathrm{P}_{\mathrm{EO}}: \mathrm{R} \longrightarrow \mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\);
PI1: if \(\left(\left|\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\right|>1\right)\) then go to PI2;
\(\mathrm{CF}=\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\); Go to PI3;
PI2: \(\mathrm{CF}=\varnothing\);
SW(TM) \(=\{\) TM \(\{\operatorname{SPI}(\mathrm{TM})\}\}\);
\(\mathrm{S}_{\mathrm{sw}}=\mathrm{S}_{\mathrm{sw}} \cup \mathrm{SW}(\mathrm{TM}) ;\)
PI3: return
```

In this procedure, first we expand the minterms in the set $\mathrm{S}_{\text {OFF }}$ by using current TM and remove the non-prime cubes from this set. Then, we subtract the result from the $n$-cube and again remove the non-prime cubes from the set $\mathrm{S}_{\mathrm{PI}}$. If the TM at hand is covered more than one PI, we apply the following POO to identify the EPI among the PIs (PI1 in the above pseudo code).

$$
\begin{align*}
& P I_{k}(Y M)>P I_{i}(T M) \leftrightarrow\left(S_{O N} \cap P I_{k}(T M)\right.  \tag{2}\\
& \supseteq\left(S_{O N} \cap P I_{i}(T M)\right), \forall(i, k / i \neq k)
\end{align*}
$$

The principal difference between Rule (1) and Rule (2) is that the former compares the size of the sets $R_{i}(T M)=S_{O N} \cap P I_{i}(T M)$ and $R_{j}(T M)=S_{O N} \cap P I_{j}(T M)$ whereas the latter compares the contents of these sets; therefore, Rule (2) leads to the exact minimal results. That is, the $\mathrm{PI}_{\mathrm{k}}(\mathrm{TM})$ is EPI if and only if it covers all OMs included by all others $\mathrm{PI}(\mathrm{TM}) \mathrm{s}$.

If the condition expressed by Rule (2) is not satisfied by any of the PIs, the problem of choosing the EPI is revealed. To solve this problem, we postpone the handling of the TM at hand until one of the $\mathrm{PI}_{\mathrm{k}}(\mathrm{TM})$ s satisfies the condition. To resume handling of the postponed TM we use the following information called a Minterm Status Word (MSW).

$$
\operatorname{MSW}\left(\mathrm{TM}_{\mathrm{i}}\right)=\left\{\mathrm{TM}_{\mathrm{i}}, \mathrm{~S}_{\mathrm{PI}}\left(\mathrm{TM}_{\mathrm{i}}\right)\right\}
$$

where $\mathrm{S}_{\mathrm{PI}}\left(\mathrm{TM}_{\mathrm{i}}\right)=\left\{\mathrm{PI}_{2}\left(\mathrm{TM}_{\mathrm{i}}\right), \ldots, \mathrm{PI}_{\mathrm{m}}\left(\mathrm{TM}_{\mathrm{i}}\right)\right\}$ is the set of PIs including $\mathrm{TM}_{\mathrm{i}}$.

Handling of TM for which there is no PI satisfying the condition expressed by Rule (2) may be postponed by stopping of handling of TM, forming a MSW for it and including this MSW into the set $\mathrm{S}_{\mathrm{Sw}}$. In addition, the existence of different postponed TMs and appropriate MSWs in different loops of the algorithm request to use the information about the last state of the task being solved. This information is called a Task State Word (TSW) and has the following structure:

$$
\mathrm{TSW}=\left\{\mathrm{S}_{\mathrm{ON}}, \mathrm{~S}_{\mathrm{EPI}}, \mathrm{~S}_{\mathrm{SW}}\right\}
$$

where, $\mathrm{S}_{\mathrm{ON}}$ is the current (last) state of the set of Onminterms, $S_{\text {EPI }}$ is the current state of the set of EPIs, $S_{S W}$ is the current state of the set of MSWs.

Example 2: Let us illustrate how MSW is used in our method. To do this, assume we have $\mathrm{S}_{\mathrm{ON}}=\{001,010,011$, $110\}$, $\mathrm{TM}=011(3)$ and $\mathrm{S}_{\mathrm{PI}}(011)=\{01 \mathrm{x}, 0 \mathrm{x} 1\}$. Then, $R(3)_{1}=\{001, \quad 010, \quad 011,110\} \cap 01 x \quad=\{010,011\}$; $R(3)_{2}=\{001,010,011,110\} \cap 0 \times 1=\{001,011\}$. Since $\mathrm{R}(3)_{1} \not \subset \mathrm{R}(3)_{2}$ and $\mathrm{R}(3)_{2} \not \subset \mathrm{R}(3)_{1}$, handling of $\mathrm{TM}=011$ may be postponed as follows:

TMP(TM, $\left.\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\right)$
Stop handling of $\mathrm{TM}=011$,
Form MSW as set $\{011,\{01 \mathrm{x}, 0 \mathrm{x} 1\}\}$,
Include this MSW into the set $\mathrm{S}_{\text {sw }}$.

### 4.3 The Remaining Procedures in the Main Algorithm

In this subsection, we present the other procedures included in our main algorithm. These are the direct covering ( $\mathrm{CP}\left(\mathrm{CF}, \mathrm{S}_{\mathrm{ON}}\right)$, MSWs handling ( $\mathrm{SWH}\left(\mathrm{S}_{\mathrm{ON}}, \mathrm{CF}, \mathrm{N}\right)$, and the Petrick $\left(\mathrm{PP}\left(\mathrm{S}_{\mathrm{sw}}\right)\right)$ procedures.
$\mathbf{C P}\left(\mathbf{C F}, \mathbf{S}_{\text {ON }}\right)$. Direct covering procedure.
$\mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# \mathrm{CF} ; \mathrm{S}_{\mathrm{EPI}}=\mathrm{S}_{\mathrm{EPI}} \cup \mathrm{CF} ; \mathrm{CF}=\varnothing$;
return
Direct covering procedure subtracts the found EPI that presents in the connection field CF from the set $\mathrm{S}_{\text {ON }}$ and includes this EPI into the set $\mathrm{S}_{\text {EPr }}$. After that, it empties the CF.

```
SWH(S \(\left.\mathbf{S}_{\text {ON }}, \mathbf{C F}, \mathbf{N}\right)\). Minterm status words handling
procedure.
    \(\mathrm{i}=1\);
SW1: select \(\mathrm{MSW}_{\mathrm{i}}\);
    \(\mathrm{TM}_{\mathrm{C}}=\mathrm{MSW}_{\mathrm{i}}[\mathrm{TM}] ; \mathrm{TM}_{\mathrm{C}}=\mathrm{TM}_{\mathrm{C}} \# \mathrm{CF}\);
    if \(\left(\mathrm{TM}_{\mathrm{C}}=\varnothing\right)\) then go to SW 2 ;
    \(\mathrm{S}_{\mathrm{PIO}}=\mathrm{POO}: \mathrm{S}_{\mathrm{PI}}\);
    if \(\left(\left|S_{\text {PIO }}\right|>1\right)\) then go to SW 3 ;
    \(\mathrm{CF}=\mathrm{S}_{\mathrm{PIO}} ; \mathrm{MSW}_{\mathrm{i}}[\mathrm{TM}]=\varnothing\); Go to SW 4 ;
SW2: \(\mathrm{MSW}_{\mathrm{i}}[\mathrm{TM}]=\varnothing\);
SW3: \(\mathrm{i}=\mathrm{i}+1\);
    if \((\mathrm{i} \leq \mathrm{N})\) then go to SW1;
    CF = \(\varnothing\);
SW4: Delete all MSW with MSW[TM]= \(\varnothing\);
    Update the value of N ;
    return;
```

Minterm status word handling procedure first selects the first MSW from the set $\mathrm{S}_{\text {Sw }}$. Then, it picks the TM part ( $\mathrm{TM}_{\mathrm{C}}$ ) of this MSW and subtracts the last founded EPI from $\mathrm{TM}_{\mathrm{C}}$. If the result is empty then the procedure removes the content of TM part of MSW at hand and selects the next MSW. Otherwise, the procedure partially orders the $S_{\text {PI }}$ part of the current MSW to identify EPI. If the EPI is found (the content of $\mathrm{S}_{\text {PIo }}$ is the new EPI if $\left|S_{\text {PIO }}\right|=1$ ) then the procedure sends it into the connection filed CF, and removes the content of TM part of MSW at hand. When the TM part of MSW is not covered by the last founded EPI and the procedure does not identify the new EPI, the procedure handles the second MSW in the same
way. This part of the procedure is repeated until the new EPI is found or all of MSWs are handled. Then the procedure deletes all of MWSs the TM parts of which are empty and returns.

## $\mathbf{P P}\left(\mathbf{S}_{\mathrm{sw}}\right)$. Petrick procedure.

```
\(\mathrm{i}=1\);
while ( \(\mathrm{S}_{\mathrm{Sw}} \neq \varnothing\) )
        Select \(\mathrm{SW}_{\mathrm{i}}\);
        \(\mathrm{S}_{\mathrm{PII}}=\mathrm{SW}_{\mathrm{i}}\left[\mathrm{S}_{\mathrm{PI}}(\mathrm{TM})\right]\);
        \(\mathrm{IF}_{\mathrm{i}}=\bigcup_{i=1}^{m} L_{i m} ;\) Delete \(\mathrm{SW}_{\mathrm{i}} ; \mathrm{i}=\mathrm{i}+1 ;\)
end while
        \(\mathrm{PF}=\left\{\bigcap_{i=1}^{K} I F_{i}\right\}\);
    \(\mathrm{PR}=\min \{\mathrm{L}(\mathrm{PT} \in \mathrm{PF})\}\);
    \(\mathrm{L}_{\mathrm{im}} \leftarrow \mathrm{PI}_{\mathrm{im}}\);
        \(\mathrm{PC}=\bigcup_{i m} P_{i m} ; \mathrm{RMC}=\mathrm{S}_{\mathrm{EPI}} \cup \mathrm{PC} ;\)
    return
```

Petrick procedure selects each MSWs and employs the inclusion function (IF) for its PIs part, where $\mathrm{m}=\left|\mathrm{S}_{\mathrm{pri}}\right|$ and $\mathrm{L}_{\mathrm{im}}=\mathrm{PI}_{\mathrm{im}} \in \mathrm{S}_{\text {PII }}$. Then it takes the product of these inclusion functions. Afterwards, it selects the -product term (PT) formed by minimum count of literals. If there is more than one such PT then it selects one of them randomly. After selecting PT, it replaces each literal with appropriate PI.

Example 3: Minimize the function given in the Example 1 using Rule (2).

Let us first explain a task state word by ordered set TSW $=\left\{\mathrm{S}_{\mathrm{ON}} ; \mathrm{S}_{\mathrm{EP}} ; \mathrm{S}_{\mathrm{SW}}\right\}$. According to this format the initial state of the given task is:

TSW0 $=\{\{0011,0100,0101,0111,1001,1101,1110,1111\} ;$ $\varnothing ; \varnothing\}$

In the following enumerations such as 1.1., first number represents the iteration number and the second one represents the current step of the iteration.
1.1. Let us, as in Example 1, first choose $\mathrm{TM}=1101$ for which $\mathrm{S}_{\mathrm{PI}}(1101)=\{\mathrm{x} 1 \times 1,1 \mathrm{x} 01\}$. In other words, this minterm is included by the PIs $x 1 x 1$ and $1 \times 01$. Since $\left|\mathrm{S}_{\mathrm{PI}(1101)}\right|>1$, it is necessary to subject the set $\mathrm{S}_{\mathrm{PI}}(1101)$ to POO.

$$
\begin{aligned}
& 1.2 . \mathrm{R}_{13,1}=\mathrm{S}_{\text {ON }} \cap 1 \times 1=\{0101,0111,1101, \quad 1111\} ; \\
& \mathrm{R}_{13,2}=\mathrm{S}_{\mathrm{ON}} \cap 1 \times 01=\{1001,1101\} .
\end{aligned}
$$

Since $\mathrm{R}_{13,1} \not \subset \mathrm{R}_{13,2}$ and $\mathrm{R}_{13,2} \not \subset \mathrm{R}_{13,1}$, none of the PIs can be identified as EPI. Therefore, it is necessary to form an MSW for TM as $\mathrm{MSW}_{1}=\{1101,\{\mathrm{x} 1 \mathrm{x} 1,1 \mathrm{x} 01\}\}$ which changes TSW0 into:

TSW1 $=\{\{0011,0100,0101,0111,1001,1101,1110$, $1111\} ; \varnothing ;\{\{1101,\{x 1 x 1,1 x 01\}\}\}$
2.1. Now, let us choose $T M=1110$ for which $\mathrm{S}_{\mathrm{PI}}$ contains single cube 111x that is $\mathrm{EPI}_{1}$ (see Figure 1) and must be used for covering the set $\mathrm{S}_{\mathrm{ON}}$.
2.2. $\mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# 111 \mathrm{x}=\{0011,0100,0101,0111,1001$, 1101\}. Therefore,

TSW2 $=\{\{0011,0100,0101,0111,1001, \underline{1101}\} ;\{111 \mathrm{x}\} ;$ \{\{1101, \{x1x1, 1x01\}\}\}
2.3. Since the new EPI is identified, it is necessary to handle MSWs that have been saved.
$\mathrm{S}_{\mathrm{SW}}=\left\{\mathrm{SW}_{1}\right\}=\{\{1101,\{\mathrm{x} 1 \mathrm{x} 1,1 \mathrm{x} 01\}\}$;
$\mathrm{TM}_{\mathrm{C}}=\mathrm{MSW}_{1}[\mathrm{TM}] \# \mathrm{EPI}_{1}=1101 \# 111 \mathrm{x}=1101 \neq \varnothing$
Since the TM of $\mathrm{MSW}_{1}$ is uncovered by $\mathrm{EPI}_{1}$, it is necessary to subject to POO the PIs part of MSW ${ }_{1}$.
$\mathrm{R}_{13,1}=\mathrm{S}_{\mathrm{ON}} \cap \mathrm{x} 1 \mathrm{x} 1=\{0101,0111,101\} ;$
$\mathrm{R}_{13,2}=\mathrm{S}_{\mathrm{ON}} \cap 1 \mathrm{x} 01=\{1001,1101\}$

Since $\mathrm{R}_{13,1} \not \subset \mathrm{R}_{13,2}$ and $\mathrm{R}_{13,2} \not \subset \mathrm{R}_{13,1}$, none of PIs can be identified as EPI. Therefore, there is no change in MSW ${ }_{1}$ and in other parts of TSW2.
3.1. Let us choose the next TM as $\mathrm{TM}=1001$, for which $\mathrm{S}_{\mathrm{PI}}$ contains single cube 1 x 01 that is $\mathrm{EPI}_{2}$ (see Figure $1)$ and must be used for covering the set $S_{\mathrm{ON}}$.
3.2. $\mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# 1 \mathrm{x} 01=\{0011,0100,0101,0111\}$. Consequentially,

TSW3.1 $=\{\{0011,0100,0101,0111\} ;\{111 x, 1 x 01\} ;$ \{\{1101, \{x1x1, 1x01\}\}\}
3.3. Since the new EPI is identified it is necessary to handle the MSWs that have been saved.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{SW}}=\left\{\mathrm{SW}_{1}\right\}=\{\{1101,\{\mathrm{x} 1 \mathrm{x} 1,1 \mathrm{x} 01\}\} ; \\
& \mathrm{TM}_{\mathrm{C}}=\mathrm{MSW}_{1}[\mathrm{TM}] \mathrm{EPI}_{2}=1101 \# 1 \mathrm{x} 01=\varnothing
\end{aligned}
$$

Since the TM of $\mathrm{MSW}_{1}$ is covered by $\mathrm{EPI}_{2}=1 \mathrm{x} 01$, it is necessary to delete $\mathrm{MSW}_{1}$, i.e.

TSW3.2 $=\{\{0011,0100,0101,0111\} ;\{111 \mathrm{x}, 1 \mathrm{x} 01\} ; \varnothing\}$.
4.1. Now, let as choose $\mathrm{TM}=0011$. This minterm is included by the single cube $0 \times 11$ that is the $\mathrm{EPI}_{3}$ (see Figure 1). Therefore,
$S_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# 0 \times 11=\{0100,0101\}$.
Consequentially,
TSW4 $=\{\{0100,0101\} ;\{111 \mathrm{x}, 1 \mathrm{x} 01,0 \mathrm{x} 11\} ; \varnothing\}$.
5.1. Let us now choose $\mathrm{TM}=0100$. This minterm is included by the single cube $010 x$ that is the $\mathrm{EPI}_{4}$.
5.2. Since $\mathrm{S}_{\mathrm{ON}}=\mathrm{S}_{\mathrm{ON}} \# 010 \mathrm{x}=\varnothing, \mathrm{TSW} 5=\{\varnothing ;\{111 \mathrm{x}$, $1 x 01,0 x 11,010 x\} ; \varnothing\}$. Consequently, the minimization process is completed. The exact minimal result is
$S_{E P I}=\{111 x, 1 x 01,0 x 11,010 x\}$

## 5 Experimental Results

In this section, we evaluate the performance of our method by using the standard MCNC benchmarks [13-15]. We compared our method with ESPRESSO-EXACT [14,15]. The sets of PIs were calculated by the Off-set expanding method [16]. We used the outputs of MCNC benchmarks as the 50 different single-output functions. Table 4 gives the results of our experiments. In this table, first four columns are the name of the benchmark, the number of variables, the size of $S_{\text {ON }}$, and the size of $S_{\text {OFF. }}$. Column five and six show the runtime (as milliseconds) of our method and EXPRESSO-EXACT, respectively. The last column of Table 4 gives the runtime ratio of our method and EXPRESSO-EXACT. As we observed, our method takes less time to solve $66 \%$ of the benchmarks whereas EXPRESSO-EXACT has better runtimes from our method for $6 \%$ of the benchmarks. For the remaining (for 28\%) of the benchmarks our method and EXPRESSO-EXACT obtain the exact minimal result at the same time. In general, the relative speed of our method is increased by decreasing the ratio $\left|\mathrm{S}_{\text {OFF }}\right| /\left|\mathrm{S}_{\text {ON }}\right|$. For example, the first output of the benchmark proml depending on 9 variables and having the ratio $\left|\mathrm{S}_{\text {OFF }}\right| /\left|\mathrm{S}_{\text {ON }}\right|=14 / 488=0.03$ was solved by our method 408 times faster than ESPRESSO-EXACT. On the other hand, the first output of the benchmark $b c b$ depending on 26 variables and having the ratio $|\mathrm{SOFF}| /|\mathrm{SON}|=$ $289 / 10=29$, was solved by our method 1.5 times slower than ESPRESSO-EXACT.

## 6 Conclusions

In this study we propose a single-output two-level Boolean function minimization algorithm. The proposed algorithm is as fast as any single loop heuristic minimization algorithm and generates exact result. It is invariant to the minterm choosing order from the final result point of view. However, this order can have a little effect on the runtime.

To overcome this problem, we postpone the handling of minterms and save a status word for them. We use the use status words later when we revisit the postponed minterms. From this point of view, the most complex tasks for this algorithm are the ones that have prime implicants forming cyclic graphs. However, this kind of tasks is rare in practice. Our essential prime implicant identification rule can also be used for multiple-output Boolean functions without any improvement.

## 7 Acknowledgement

This project is supported by Selcuk University project number 06701088.

## 8 References

[1] T. Sasao, "Worst and Best Irredundant Sum-of-Product Expressions", IEEE Trans. Comp., Vol. 50, No 9, 2001, pp. 935-947.
[2] A. Mishchenco and T. Sasao, "Large-Scale SOP minimization Using Decomposition and Functional Properties", DAC 2003, pp. 149-154.
[3] P.P. Tirumalai and J.T. Butler, "Minimization Algorithms for Multiple-Valued Programmable Logic Arrays", IEEE Transactions on Computers, Vol. 40, No2, 1991, pp.167-177.
[4] R.K. Brayton et al., "Logic minimization algorithms for VLSI synthesis", Boston, Kluwer Academic Publications, 1984.
[5] G. Promper and J. Armstrong, "Representation of Multivalued functions using the direct cover method", IEEE Trans. Comp., pp 674-679, 1981.
[6] P.W. Besslich, "Heuristic Minimization of MUL functions: A direct cover approach", IEEE Trans. Comp., pp 134-144, 1986.
[7] G.W. Dueck and D.M. Miller, "A direct cover MUL minimization using the truncated sum", Proc. of the $17^{\text {th }}$ Int. Sem. Multiple-Valued Logic, 1987, pp 221-227.
[8] O. Coudert, "Two Level Logic Minimization: An Overview", Integration. The VLSI Journal, 17-2, pp 97-140, 1994.
[9] Ch. Umans, "The Minimum Equivalent DNF Problem and Shortest Implicants", Journal of Computer and System Sciences, 63, 2001, pp. 597-611.
[10] P. Fiser and J. Hlavicka, "BOOM- A Heuristic Boolean Minimizer", Journal of Computing and Informatics, Vol. 22, pp. 1001-1033, 2003.
[11] S. J. Hong and S. Muroga, "Absolute Minimization of Complete Specified Switching Functions", IEEE Trans. Comp., Vol. 40 , No 1, pp 53-65, 1991.
[12] R.E. Miller, "Switching Theory", Vol. 1, New York, 1965.
[14]ftp://ftp.menc.org/pub/benchmark/Benchmark_dirs/
LGSynth93/testcases/pla/
[14] ftp://ic.eecs.berkeley.edu
[15] http://eda.seodu.co.kr/~ chang//download/espresso/
[16] S. Kahramanlı and N. Allahverdi, "An Algebraic Approach to the Transformations on Hypercube System", Mathematical \& Computational Applications, 4(1), 1996, pp. 50-59.

Table 3: Runtimes for the standard MCNC benchmarks

| Benchmarks | Number of variables | Size of $\mathrm{SON}_{\text {ON }}$ | Size of $\mathrm{S}_{\text {OFF }}$ | Runtime (msec.) |  | $\begin{aligned} & \mathrm{T}_{\mathrm{E}} / \\ & \mathrm{T}_{\mathrm{P}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Our method | Espresso |  |
| check / wim | 04 | 4/9 | 9/1 | 15,6 | 31,3 | 2 |
| check1 /check2/check3 | 04 | 4/4/8 | 8/6/5 | 15,6 | 15,6 | 1 |
| p82 / squar | 05 | 11/9 | 13/23 | 15,6 | 15,6 | 1 |
| $\mathrm{m} / \mathrm{new} 2 / \mathrm{sqr}$ | 06 | 27/3/18 | 5/4/46 | 15,6 | 31,3 | 2 |
| m 5 / poperom | 06 | 27/56 | 5/8 | 15,6 | 15,6 | 1 |
| Inc/ z5xp1 | 07 | 12/25 | 22/103 | 15,6 | 15,6 | 1 |
| linrom | 07 | 65 | 63 | 15,6 | 46,9 | 3 |
| $\max 128 / \max 3 / \mathrm{sqn}$ | 07 | 29/12/48 | 99/116/48 | 15,6 | 31,3 | 2 |
| Dist /ex5 | 08 | 53/33 | 203/223 | 15,6 | 31,3 | 2 |
| e | 08 | 65 | 128 | 15,6 | 46,9 | 3 |
| exp | 08 | 18 | 52 | 15,6 | 15,6 | 1 |
| exps / f5 $1 \mathrm{~m} / \mathrm{m} 3 / \mathrm{m} 4$ | 08 | 65/128/98/223 | 131/128/30/26 | 15,6 | 46,9 | 3 |
| $\exp 1$ | 08 | 19 | 47 | 15,6 | 31,3 | 2 |
| mlp4 | 08 | 32 | 224 | 31,3 | 31,3 | 1 |
| root | 08 | 15 | 241 | 15,6 | 31,3 | 2 |
| rd84 | 08 | 120 | 136 | 31,3 | 46,9 | 3 |
| apex4/max4/min | 09 | 4/38/82 | 434/8/51 | 15,6 | 31,3 | 2 |
| $\max 512$ | 09 | 258 | 254 | 15,6 | 46,9 | 3 |
| prom1 | 09 | 488 | 14 | 31,3 | 12781,3 | 408,3 |
| prom2 | 09 | 142 | 145 | 15,6 | 15,6 | 1 |
| Max 1024 | 10 | 516 | 508 | 15,6 | 31,3 | 2 |
| T10 | 10 | 113 | 201 | 78,1 | 93,8 | 1,2 |
| T11 | 10 | 266 | 371 | 93,8 | 109,4 | 1,17 |
| T12 | 10 | 266 | 758 | 140,6 | 78,1 | 0,55 |
| br11/ br1/ br2/ t3 | 12 | 29/29/33/27 | 5/5/2/121 | 15,6 | 31,3 | 2 |
| pdc | 16 | 24 | 1891 | 15,6 | 46,9 | 3 |
| spla | 16 | 67 | 2036 | 62,5 | 46,9 | 0,75 |
| den | 18 | 24 | 3 | 15,6 | 31,3 | 2 |
| bca /bcc | 26 | $9 / 3$ | 292/242 | 31,3/46,9 | 31,3/46,9 | 1 |
| bcb | 26 | 10 | 289 | 46,9 | 31,3 | 0,67 |


[^0]:    ${ }^{1} 13$ is the decimal equivalent of the binary code 1101.

