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This article examines an improved alternative to the randomeffects (RE)model formeta-analysis of heterogeneous
studies. It is shown that the known issues of underestimation of the statistical error and spuriously overconfident
estimates with the RE model can be resolved by the use of an estimator under the fixed effect model assumption
with a quasi-likelihood based variance structure— the IVhetmodel. Extensive simulations confirm that this estima-
tor retains a correct coverage probability and a lower observed variance than the REmodel estimator, regardless of
heterogeneity.When the proposed IVhetmethod is applied to the controversial meta-analysis of intravenousmag-
nesium for the prevention of mortality after myocardial infarction, the pooled OR is 1.01 (95% CI 0.71–1.46) which
not only favors the larger studies but also indicates more uncertainty around the point estimate. In comparison,
under the REmodel the pooled OR is 0.71 (95% CI 0.57–0.89) which, given the simulation results, reflects underes-
timation of the statistical error. Given the compelling evidence generated, we recommend that the IVhetmodel re-
place both the FE and REmodels. To facilitate this, it has been implemented into free meta-analysis software called
MetaXL which can be downloaded from www.epigear.com.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In the era of evidence based medicine, meta-analyses of well-
designed and executed randomized controlled trials have the potential
to provide high levels of evidence to support therapeutic interventions
in all areas of clinical practice. Despite the potential of the outcome of
such trials to guide decision making, they may sometimes fail to pro-
duce credible conclusive results or may disagree if there were multiple
independent trials that investigate the same clinical question. In this sit-
uation, a meta-analysis of the trial results has the potential to combine
conceptually similar and independent studies with the purpose of de-
rivingmore reliable statistical conclusions (based on amuch larger sam-
ple data) than any of the individual studies [1,2]. Today, clinical decision
making relies heavily on this methodology as is evident by the work of
the Cochrane collaboration and the high volume of publications for
meta-analyses outside the collaboration [3].

Meta-analyses, customarily, are performed using either the fixed ef-
fect (FE) or the random effects (RE)models [4,5]. The FEmodel ofmeta-
analysis is underpinned by the assumption that one identical true treat-
ment effect is common to every study included in the meta-analysis,
gy Division, Research School of
oad, Acton ACT 2601, Australia.
from which they depart under the influence of the random error only
[4]. As such, only within-study variation is considered to be present.
In practice, this model ensures that the larger studies (with the lowest
probability of random error) have the greatest influence on the pooled
estimate. The drawback however is that this model also demonstrates
increasing overdispersion as heterogeneity increases. Overdispersion
here refers to an estimator that has a greater observed variance (true
variance often assessed through simulation) than that theoretically ex-
pected which is based on the statistical model (used in the confidence
interval computation).

In an attempt to tackle the issue of overdispersion, the RE approach
was suggested which attempts to create a more fully specified model
[6]. Thismodelmakes the additional assumption that the true treatment
effects in the individual studies are different from each other and these
differences follow a normal distribution with a common variance. The
assumption of normally distributed random effects is not justified [7]
because the underlying effects included in the meta-analysis do not
constitute a random sample from the population. This model neverthe-
less ignores the need for randomization in statistical inference [8] and
the variance of these underlying effects is usually approximated by a
moment-based estimator [9]. The application of this common variance
to the model has the unintended effect of redistributing the study
weights in only one direction: from larger to smaller studies [10]. Thus
the studies with the lowest probability of random error are penalized
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and do not influence the combined estimates as strongly. The inclusion
of this estimated common between-studies variance also seems to be
themechanism that attempts to address overdispersionwith increasing
heterogeneity, yielding wider confidence intervals and lesser statistical
significance than would be attained through the conventional fixed ef-
fect model. Yet, given the faulty assumptions, it does not work as ex-
pected and as heterogeneity increases, the coverage of the confidence
interval drops well below the nominal level [7,11]. Though corrections
have been suggested [12,13] they have not been easy to implement
and this estimator substantially underestimates the statistical error
and remains potentially overconfident in its conclusions [13,14].

A careful look at the inputs to these models demonstrates that both
use inverse variance weighting to decrease observed variance of the es-
timator. However, the approach taken with the RE estimator disadvan-
tages it because as heterogeneity increases, the inverse variance
weights aremoved towards equality thus increasing estimator variance.
This also leads to a failure to specify the theoretical variance correctly so
that it now falls short of the observed variance and nominal coverage is
not achieved.

While alternative frequentist RE models that attempt to improve on
the conventional theoreticalmodel in variousways have been described
in the literature [11], they all continue to be based on the assumption of
normally distributed random effects which, as mentioned above, leads
to several problems. There is therefore the need for a better method
and this paper argues that the random effects model should be replaced
by a distributional assumption free model. Such a model has been pro-
posed by us as a variant of the quality effects model that sets quality
to equal (called the IVhet model) [15]. This paper reviews the model's
theoretical construct and presents an evaluation of its performance
using standard performance measures [16].

2. Difference between empirically weighted means and the
arithmetic mean

Consider a collection of k independent studies, the jth of which has

estimated effect size δ̂ j which varies from its true effect size, δj through
random error. Also consider that the true effects, δjs, also vary from an
underlying common effect, θ, through bias. There is the possibility of
some diversity of true effects (which remain similar) across studies
(in which case θ would simply be the mean of the true (unbiased) ef-
fects). A greater diversity that leads to dissimilarity of effects would
not bemeta-analyzed [17]. This underlying common effect, θ, can be es-
timated through the effect sizes in the k studies using an empirically

weighted mean estimator, say θ̂w . This estimator differs quantitatively
from the non-empirically (or naturally) weighted arithmetic mean
estimator,

θ̂AM ¼ 1
k

Xk
j¼1

δ̂ j;

by the following expression [18]:

θ̂w ¼ θ̂AM þ
Xk
j¼1

wj−1=k
� �

δ̂ j−θ̂AM
� �

¼ θ̂AM þ kρwδ̂σwσδ̂; ð1Þ

whereσδ̂ is the standard deviation of δ̂ js, σw is the standard deviation of
the system of weights and ρwδ̂ is the correlation between the weights
and the estimates. Expression (1) serves to demonstrate how and why
all empirically weighted estimators are biased [18,19] as defined by de-
viation from the arithmetic mean estimator (which is unbiased [19]). If
σδ̂ was zero (i.e., all effects across all studies are the same), then all
methods will default to the arithmetic mean, a similar situation to
equal weights where both ρwδ̂ and σw have their minimum value of
zero. Therefore, as pointed out by Shuster [19], ρwδ̂ would determine
the extent of bias in an estimator. ρwδ̂ will only be greater than zero if
both the weights and the study effects are correlated and of course,
there will be such a correlation if the weights are derived from the data.

For the inverse varianceweighted FEmodel, theweighted estimator,

θ̂ FE ¼
Xk
j¼1

wjδ̂ j;

has weights that sum to 1 given by:

wj ¼ 1
υ j

,Xk
j¼1

1
υ j
; ð2Þ

where the sampling error variance of the jth study is υj. Given the previ-
ous discussion, this inverse variance estimator is likely to be biased (un-
less there are equal variances across studies). However, despite the
expected bias, the FE estimator does improve over the arithmetic
mean estimator because the weights don't just increase the bias, but
(by doing so) they alsomake the variance of the estimatormuch smaller
[20] and trade off this bias through reduction in themean squared error
(MSE). The point of having such increased precision despite, on average,
the estimator being biased is that while the estimator is biased “on av-
erage”, it will still be “more correct” most of the time if the MSE of the
biased estimator is smaller than that (MSE) of the unbiased estimator.
Since, as researchers, we usually have only one set of sample data for
meta-analysis, the bias in the estimator is overshadowed by the de-
creased MSE.

This workswell under themodel assumption that studies suffer only
from sampling errors. When heterogeneity due to systematic errors is
also present, this model suffers from overdispersion. To resolve this,
the RE weighted estimator was put forward by DerSimonian and Laird
in 1986 [9] where the pooled effect is computed in the same way:

θ̂RE ¼
Xk
j¼1

w�
j δ̂ j;

but where the weights that sum to 1 are now given by:

w�
j ¼

1
σ2

j

,Xk
j¼1

1
σ2

j

ð3Þ

and σj
2 = υj + τ2 in which υj is the sampling error variance of the jth

study and τ2 is a moment-based estimate of the between-studies vari-
ance proposed by DerSimonian and Laird [9], which is applied to all
studies within the meta-analysis. It thus becomes clear from expres-
sions (1) and (3) that as τ2 N 0 increases, σw, the standard deviation of
the weights, may change unpredictably, but with larger increases ulti-
mately decreases with this system of weights. Consequently, the
weights under the random effects model, given large heterogeneity
(large τ2), decrease estimator bias by making the weights more similar
and thus the expected value of this estimator comes closer to that of the
unbiased arithmetic mean estimator. The problem is that the latter are
not optimal weights for variance reduction and so the observed or
true variance of the RE estimator continues to increase and exceeds
that of the FE estimator as heterogeneity increases. The result is that
the decrease in bias is completely overshadowed by a much greater in-
crease in observed variance and such an approach therefore does not
make sense [10,21]. The FE estimator therefore is a better performing
estimator and can be expected, with increasing heterogeneity, to have
a lower variance (ie observed or true variance) andMSE than the RE es-
timator. It has nevertheless been shunned with heterogeneous studies
because of the problem of overdispersion mentioned previously.



Table 1
Summary of the three methodsa of estimation.

IVhet RE AMhet

Weights that sum to 1
wj ¼ 1

υ j

,
∑
k

j¼1

1
υ j
; w�

j ¼ 1
σ2

j

,
∑
k

j¼1

1
σ2

j

1
k

Pooled effects
θ̂IVhet ¼ ∑

k

j¼1
wj δ̂ j θ̂RE ¼ ∑

k

j¼1
w�

j δ̂ j θ̂AM ¼ 1
k∑

k

j¼1
δ̂ j

Variance of pooled effect
var θ̂IVhet
� �

¼ ∑
k

j¼1

1
υ j

,
∑
k

j¼1

1
υ j

 !2

υ j þ τ2
� �2

4
3
5 var θ̂RE

� �
¼ 1

,
∑
k

j¼1
1=σ2

j

� �
var θ̂AMhet

� �
¼ ∑

k

j¼1
1=kð Þ2 υ j þ τ2

� �h i
:

Comments Quasi-likelihood model More “fully” specified model Quasi-likelihood model

a For abbreviations or expansion of the notation please see the text.
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3. Variance of the estimator under different models

It is clear from the previous discussion that overdispersion is a prob-
lem with both (RE and FE) estimators, more so with the FE estimator.

The variance of anyweighted estimator [var θ̂w
� �

] in general is given by:

var θ̂w
� �

¼
Xk
j¼1

ω2
jvar δ̂ j

� �
; ð4Þ

where ωjs are the weights that sum to 1. When there is heterogeneity,
the observed variance (or true variance) of the FEmodel and arithmetic
mean (AM) estimator are larger than that computed through the
theoretical model, consequently the coverage probability is reduced.
However, with the random effects model, the specification of the addi-
tional randomeffects variance expands the computed variance and thus
mitigates the reduction in coverage somewhat, but this is still not opti-
mal because the theoretical and observed estimator variances still di-
verge. Thus, as the heterogeneity increases, the coverage probability of
the confidence interval for the RE estimator fallswell below thenominal
level [7,11]. This is because the optimal weight for each trial is not 1/k
even though the RE model under increasing heterogeneity weights
them more or less equally.

Oneway to getmodel based estimator variance closer to the observed
variance is to model overdispersion through a quasi-likelihood approach
[22,23]. This implies that themeta-analysis is performed under a fixed ef-
fect assumption (τ2= 0) and the variance of the estimator inflated to ac-
count for the heterogeneity, thus preventing a reduction in coverage. This
has the advantage of being based purely on the variance-to-mean rela-
tionship rather than on distributional assumptions with variance appro-
priately inflated using a scale parameter, Ψj [6]. The latter can be
defined by interpreting the multiplicative factor as an intra-class correla-
tion (ICC) as described by Kulinskaya and Olkin [6] where the ICCj = τ2/
(τ2 + υj) and the scale parameter is defined as

ψ j ¼
σ2

j

υ j
¼ 1

1−ICC j
: ð5Þ

In expression (4), ω2
j var δ̂ j

� �
is then inflated to ω2

j var δ̂ j

� �
ψ j based

on expression (5) and this inflation of the random error variance
using a quasi-likelihood approach is what we term the inverse variance
heterogeneity (IVhet) model of meta-analysis. We point out that if we
use these rescaled variances to compute the weights, they would be
identical to that in expression (2) for FE weights and thus the weighted
FE estimator and weighted IVhet estimator are identical but the model
derived variances are different. Thus, incorporating the scale parameter,
the variance of the estimator under the IVhet model is given by:

var θ̂IVhet
� �

¼
Xk
j¼1

1
υ j

,Xk
j¼1

1
υ j

0
@

1
A

2

υ j þ τ2
� �2

64
3
75: ð6Þ
The arithmetic mean estimator can also have a similar correction,

θ̂AMhet

� �
, but will be expected to have poor coverage with increasing

heterogeneity because again the optimal weights are not 1/k and
would thus mirror the problem seen with the RE estimator. This
would take the form:

var θ̂AMhet

� �
¼
Xk
j¼1

1=kð Þ2 υ j þ τ2
� �h i

: ð7Þ

4. Examining estimator performance using simulation

We now proceed to examine the performance of the three estima-
tors under varying degrees of heterogeneity. These estimators are
what we now call the inverse variance (fixed effect) heterogeneity
(IVhet) estimator, the arithmetic mean heterogeneity (AMhet) estima-
tor and the RE estimator (see Table 1 for the mathematical form of the
three estimators and their variances). The log odds ratio is used as the
effect size (but themodels canworkwith any of the normally distribut-
ed effect sizes) and the simulation is modeled around the magnesium
meta-analysis [24] data which was previously reviewed by Al Khalaf
et al. [10]. This meta-analysis comprises 19 studies, the majority being
small studies of under 200 subjects but also has a mega-trial of 58,050
subjects [25] and a smaller mega-trial of 6213 subjects [26]. The latter
two studies demonstrated a null effect and the smaller studies a positive
effect of magnesium on preventing mortality following myocardial in-
farction. A key controversy has been that fixed effect meta-analyses
(no-effect of magnesium) disagreed with random effects meta-
analyses (a strong effect of magnesium) and debates have ensued
over the conclusiveness or not of the meta-analytic approach [10].
This sample size discrepancy across the 19 studies was mimicked
using a Delaporte distribution with parameters that result in a median
study size of 175 and a distribution that resembled the original meta-
analysis that included the occasional mega-trial. A simulation study
was set-up fixing the true effect size as the OR between 0.4 and 4.0
and allowing the study sample size (Nj) as well as the proportion of
events and non-events in the jth study to vary in a similar pattern as
in the original studies. The true OR was subjected to randomly generat-
ed variancedue to bias and chance, themagnitude of the added variance
varying over runs to generate different levels of heterogeneity. Descrip-
tion of the distribution parameters used and the simulation protocol are
presented in detail elsewhere [15]. Every run generated k studies and
the data from 10,000 iterations of these k studies for each model at
each heterogeneity level were generated using MetaXL and Monte
Carlo simulation software, Ersatz (www.epigear.com). The performance
measureswere computed from the simulated data as detailed by Burton
et al. [16]. The various measures were also plotted as a function of in-
creasing heterogeneity, the latter being indicated by the median τ2 in
a particular simulation run. Each iteration randomly used one of the 3
combinations of sample size (three methods of selection of Nj). The
three methods for selection of Nj were from a Delaporte distribution
(with parameters 0.1, 8000, 160), a uniform distribution between 50

http://www.epigear.com
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Fig. 1. Simulation of (a) ln OR= ln(0.4) and (b) ln OR= ln(4.0). Left panels restricted to 5 studies while right panels have 19 studies. The panels depictMSE (A & E), variance (B & F), bias
squared (C&G) and coverage probability (D&H). TheMSE (A & E) is lowest for the IVhetmodel estimator. The coverage probability (D&H) demonstrates that as heterogeneity increases,
the RE model estimator has a somewhat similar coverage to the AMhet model estimator (same weight structure) and drops markedly. The IVhet model estimator clearly has the correct
coverage probability (D & H).
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Fig. 1 (continued).
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and 58,000 in increments of 50 and finally from a uniform distribution
between 25 and 200 in increments of 25. This simulation was then
run across the different effect size magnitudes (OR 0.4 to 4.0 in incre-
ments of 0.4) and for either k = 5 or k = 19 studies per meta-
analysis. A total of 10 separate simulations involving one million sepa-
rate meta-analyses were therefore performed for each value of k, but
only selected results from two effect sizes are reported because they
all concurred in terms of IVhet estimator performance.
The first observation from this simulationwas to confirm that the RE
and AMhet estimators had more or less a similar MSE but the IVhet es-
timator had a clearly lowerMSE (Fig. 1). Additionally, since both empir-
ically weighted models (IVhet and RE) discount studies with larger
sampling variability when heterogeneity is low, they did have a similar
MSE especially when studies were homogeneous (starting point in
Fig. 1). Since the MSE is lower for the IVhet estimator under increasing
heterogeneity, the RE model estimator is less efficient (in this respect)
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than the IVhet estimator. This is because adjustment for the variance
due to sampling error deteriorates with increasing heterogeneity and
there is therefore no expectation that the RE estimator can produce
any additional gains in efficiency. As the number of studies increases,
the variance of both estimators declines and thus the gap between the
two models' MSE declines since IVhet bias does not change with num-
ber of studies. The MSE of the IVhet estimator will exceed that of the
RE estimator only when the difference in variance is exceeded by the
IVhet estimator bias and this would only be important when the num-
ber of studies is large as then estimator variance is already at low levels.
Even in such extreme situations, the IVhet coverage is maintained com-
pared to the RE coverage.

A comparison across the three models of the confidence interval
width (not shown) and coverage probability (Fig. 1) confirms that
with the overdispersion correction (expression (6)) the IVhet estimator
keeps coverage at the nominal level because the confidence interval
width now keeps pacewith the increase in observed variance as hetero-
geneity increases. The coverage probability of the other two estimators
drops well below the nominal level as heterogeneity increases (Fig. 1).
Although the results of two simulations are shown in Fig. 1, the results
of the remaining 8 simulations were similar when the simulations
were run with different magnitudes of effect sizes being simulated
(range of OR of 0.8 to 3.6).

Bias was greatest with the IVhet estimator. However, the contribu-
tion of bias to the MSE is completely overshadowed by the decrease in
variance. Fig. 1B & C indicates magnitudes of variance and bias squared
and Fig. 1A then combines this into MSE. It can be seen that there is
practically not much change from B to A suggesting that plot C (bias
squared) has no practical impact even at these extremes of the ORs.

5. Real data examples from the literature

We also looked at the controversial meta-analysis of intravenous
magnesium for prevention of earlymortality aftermyocardial infarction
mentioned earlier which consisted of 19 English language randomized
trials (published prior to June 2006) [10]. Early mortality was defined
as occurring in hospital during the acute admission phase or within
35 days of onset of myocardial infarction. When the meta-analytic esti-
mates were computed using the three methods, they were most ex-
treme with the AMhet estimator (OR 0.44; 95% CI 0.29–0.66), less
extreme with the RE estimator (OR 0.71; 95% CI 0.57–0.89) and most
conservative with the IVhet estimator (OR 1.01; 95% CI 0.71–1.46).
The IVhet estimator has the most bias (towards the null) but the confi-
dence interval, given the performance of thismodel under simulation, is
most likely to reflect the correct coverage probability. Since the confi-
dence interval of the AMhet estimate falls outside this interval, this sug-
gests that the point estimate is too extreme, and occurs simply by
chance because of the increased MSE. The RE estimate depicts support
for the smaller studies and just falls within the confidence interval
based on the IVhet estimate so itmay be plausible but the confidence in-
terval around it is probably too narrow (given the simulation perfor-
mance) and does not extend to cover the OR representing no effect
(OR= 1). What the IVhet estimate depicts (Fig. 2) is support for the re-
sults of the large studies (pooled estimate) while at the same time sup-
port for the smaller but discordant studies by increasing uncertainty
around the pooled estimate as evidenced by the expanded (but presum-
ably correct) confidence interval. The RE estimator on the other hand
underestimates the statistical error as was expected given its poorer
simulation based performance.

Two other examples from the popular meta-analysis literature also
reveal a similar problem. An early meta-analysis by Collins et al. [27]
demonstrates a significant effect under the RE model but not under
the IVhet model (Fig. 3). This meta-analysis was re-analyzed using
more conservative approaches by Cornell et al. [11] and the inference
was similar to that we demonstrate with the IVhet model. Additionally,
a recent meta-analysis by Wang et al. [28] seems to demonstrate that
fruit and vegetable intake can protect against all-cause mortality. This
again seems to be a consequence of the problems with the random ef-
fects model underestimating the statistical error and under the IVhet
model there is no significant effect (Fig. 3). This inference is possible
since we now know that the IVhet estimator exhibits nominal coverage
and has a lower observed variance, thus there is a higher probability
that it reflects the true result when compared to the RE estimator result.
6. Discussion

The IVhet model estimate differs from the RE model estimate in
three perspectives: Pooled IVhet estimates favor larger trials (as op-
posed to penalizing larger trials in the RE model), have a more con-
servative confidence interval with correct coverage probability and
exhibit a lesser observed (true) variance irrespective of the degree
of heterogeneity. While the RE model represents the conventional
method of fitting the overdispersed study data, it is clear from the
simulated results that using this more specified probability model
with untenable assumptions does not provide better results. The im-
plication based on the IVhet results for the meta-analysis of themag-
nesium intervention studies in myocardial infarction (Fig. 2) as well
as the trials of diuretics in pregnancy (Collins et al.; Fig. 3) is that the
evidence for the intervention suggests no benefit, but this remains
inconclusive given the relatively wide confidence intervals of 0.71–
1.46 and 0.38–1.19 respectively. In terms of the fruit and vegetable
intervention for mortality, the IVhet result suggests that there is no
evidence at all in support of the latter with a HR of 0.99 (0.93–
1.04). This observation, given the comparative REmodel results, sug-
gests again that the RE pooled estimate can be less conservative than
fixed effect estimates and this has previously been flagged [14].

It should be kept inmind that there are twoaspects to conservative re-
sults frommeta-analysis approaches— conservative in terms of point es-
timate and conservative in terms of width of the confidence interval.
When it comes to the point estimate, Poole and Greenland [14] have
highlighted instances where the RE point estimate is indeed less conser-
vative than the FE point estimate (keeping in mind that IVhet and FE
point estimates are identical). In addition, the first example (magnesium
after myocardial infarction) has point estimates in opposite directions for
each model. Thus, depending on the meta-analysis, the IVhet approach
does not always produce a conservative point estimate. When it comes
to the confidence interval, in many cases the RE confidence interval is
too narrow (overdispersion is not adequately addressed) and for all
three examples above this has led to spurious significance. These exam-
ples therefore highlight that the IVhet results do not exhibit spurious sig-
nificance because the coverage of the model derived confidence interval
remains at the nominal level. All three exampleswere chosenwhere spu-
rious significance was present to highlight the latter issue.

The actual or observed variances are the same across the IVhet and
RE models only when heterogeneity is low or absent and they diverge
as heterogeneity increases. In this situation, the theoretical (model
based) variance underestimates the true variance in the RE model and
thus the confidence interval has poor coverage. A 95% prediction inter-
val has been suggested as a way to mitigate this for the RE estimate and
is defined as the expected effect of a treatmentwhen it is appliedwithin
an individual setting and provides its bounds in 95% of the individual
study settings. The prediction interval cannot replace the confidence in-
terval and we would not recommend calculating it around the IVhet
model estimate because it is based on the specific conceptualization of
the underlying model as the RE summary treatment effect and utilizes
the between-trial variance [29]. An assumption behind this interval is
that trials are consideredmore or less homogeneous entities and includ-
ed patient populations and comparator treatments should be consid-
ered exchangeable. We therefore agree with Kriston who states that if
this is not the case, then prediction intervals are probably just as useless
as random effect estimates [30].



Fig. 2. The meta-analysis results for intravenous magnesium to prevent mortality post-myocardial infarction using the IVhet model (left) and the random effects model (right). The
IVhet model (left panel) demonstrates that indeed the statistical error is likely to be greater than what the RE model portrays (right panel). Forest plots created using MetaXL version
2.0 (www.epigear.com).
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Senn [31] suggests that the fixed effect approach is an attempt to dis-
cover whether the “best use” of the treatment might lead to its being
useful. While Senn also suggests that this analysis tests the null
a Collins et al

b Wang et al

Fig. 3. Examples from twometa-analyses where the REmodel probably underestimates the sta
on the effects of administering diuretics to women with pre-eclampsia and which was discusse
effects of fruits and vegetables on all causemortality, the effect size (ES) being the hazard ratio. I
is greater than what the RE model portrays (right panels). Forest plots created using MetaXL v
hypothesis that the treatment effect is identical in every trial [18], this
implicitly assumes exchangeability, i.e., the underlying effects are simi-
lar yet non-identical implying ignorance regarding differentiation
tistical error. The top panel (A) is from a 1985meta-analysis by Collins and colleagues [27]
d by Cornell et al. The second (B) is from a 2014 meta-analysis byWang et al. [28] on the
n bothmeta-analyses, the IVhetmodel (left panels) results suggest that the statistical error
ersion 2.0 (www.epigear.com).
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between the magnitudes of the effects. We however believe that when
study heterogeneity exists, clinical or methodological covariates are im-
portant in the differences between the magnitudes of effects and in this
situation, the IVhet analysis should only be viewed as an attempt to por-
tray “best use” of the treatment under the assumption thatmore precise
trials better reflect such “best use”. The IVhet pooled estimate could be
wrong, (and addressing this requires further input from the studies) but
this margin of error is now clearly specified in the confidence interval
around the IVhet estimate.

A weighted estimator also requires proper specification of its vari-
ance through the theoretical model. Given the demonstrated correct
coverage probability of its confidence interval, the IVhet estimator prop-
erly specifies this variance and should mitigate the disagreements be-
tween meta-analyses and mega-trials [32]. While equal weighting
(the arithmetic mean) may seem to avoid the situation where a very
few studies play a dominant role when small and large studies disagree,
this disagreement is reflected by increasing observed variance and
overdispersion that grossly overshadows any benefit from equal
weighting. It is true that the dominance of large studies on the IVhet
pooled estimate may increase bias if indeed the big studies do not indi-
cate “best use” of the intervention, but this is offset by the variance gains
demonstrable with inverse varianceweighting and the correct coverage
probability of the IVhet confidence interval. As meta-analysts we only
do meta-analysis once and therefore what we need to use for this
meta-analysis is the estimator with the lowest MSE as then we have a
greater probability of being closer to the target we are estimating.

Senn [21] has shown that estimator variance contribution to the
MSE tends to go asymptotically to zero as numbers of subjects accrue
in a trial and analogously this also applies to meta-analysis as num-
bers of studies increase. The number of studies in a meta-analysis
however has no impact on estimator bias. The only other way of de-
creasing estimator variance is to use appropriate weights when stud-
ies are limited. With the REmodel, because heterogeneity essentially
reverses weighted averaging and moves the estimator towards the
arithmetic mean, true estimator variance is more because there is a
less than optimum effect of the weights. Additionally, since the
arithmetic mean is unbiased, bias is less for this reason too but the
variance increase is much greater thus disadvantaging this estima-
tor. This raises the scenario (we have not mentioned in the paper
to avoid too much confusion) of when we have a large number
(100 or more) of studies in a meta-analysis. In this situation, we al-
ready have the minimum variance of the estimator and addition of
any empirical set of weights will simply disadvantage the estimator
by increasing bias and MSE. There are thus a threshold number of
studies beyond which even the optimal weights are unhelpful and
the arithmetic mean suffices. We plan to investigate this threshold
in future studies but we estimate that this threshold will be well be-
yond the numbers seen inmost meta-analyses. Additionally, another
implication that these results have is for meta-regression. If the RE
weights are faulty, that calls into question the rationale behind ran-
dom effects meta-regression and indeed these results suggest that
we should revert back to fixed effects meta-regression. However,
the caveat here is that fixed effect meta-regression is only meaning-
ful when there is heterogeneity of studies. We have not studied this
per se, but open it up for future investigation.

Finally, when detailed additional information (over and above the
study effect and its standard error) becomes available, several options
open up. Bias quantification has been proposed as a theoretical way to
improve the estimator performance [33] but this remains impractical
in meta-analysis because there is no definite relationship between a
quality deficiency and the quantitative magnitude or direction of bias
in the study effect [34]. A promising development however is the use
of the additional information tomodel the component of variance likely
to be contributed by systematic error in individual studies which has
been shown to lead to gains in estimator efficiency and is discussed in
the next paper in this series [35].
We conclude that the IVhet model of meta-analysis is an improve-
ment over the RE and/or FE models to handle the heterogeneity and
performs better than them. This immediately brings into question im-
plementation by the research community of the new and improved
method. To facilitate this, our software, MetaXL (available for free
download at www.epigear.com), has been updated to version 2.0 to
run the IVhet model as well as all other models for comparison.
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