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Abstract

Valence electron concentration (VEC), Pugh’s ratio (B/G), lattice distortion (δ), and intrinsic ductility (D) are few of
the empirical parameters widely used to design ductile refractory alloys. However, the D is the only parameter which
considers the relative competition between cracking (surface energy, γs) and the barrier to dislocation motion (unstable
stacking fault energy, γus f e). Here we studied the enthalpy of formation (∆E f ), Root-mean-squared Lattice Distortion
(RLD), and D of 9 refractory metals and 36 equiatomic refractory alloys using density functional theory simulations. A
sinusoidal formulation of barrier to the glide of slip planes based on γus f e has been developed. A strong inverse correlation
between D and the maximum barrier to slip plane glide has been found. We found that the dislocation core width is
not influenced by the γus f e of refractory metals. The RLD is 9% of the dislocation core width, which may not be large
enough to affect the dislocation line. However, the local ∆E f variation along the dislocation line influences the local
γus f e, leading to a wavy dislocation line. We found that positive ∆E f and atomic size difference leads to RLD, which does
not necessarily require large compositional complexity as of high-entropy alloys. The D and the barrier to slip plane
glide correctly captures the experimentally observed ductility in refractory alloys. We found that the success of VEC,
lattice distortion, and D in designing ductile refractory alloys was dependent on the underlying ∆E f of the alloy. Here
we provide a universal method to design a ductile refractory alloys which can be thermodynamically stable.

Keywords: Ab initio calculations, Enthalpy of formation, Interfaces (twin boundaries, stacking faults), Stacking-fault
energy, High-entropy alloys, Metal and alloys, Shear planes

1. Introduction

Development of alloys for high-temperature applications
require one to study a large number of alloys on vari-
ety of properties to come up with right composition. Re-
cently, refractory high-entropy alloys (RHEA) have been
widely looked into as the candidate material for many
high-temperature applications [1]. The high-entropy con-
cept ensures that there is no solute and solvent in the
solid solution [2]. Designing a ductile RHEA for such ap-
plications requires one to study a large number of alloying
elements and their effect on the base alloy [3]. The result-
ing composition explosion as we move towards the center
of the phase diagram requires a well-defined strategy to
down-select alloys from such a large composition space [4].

The large difference between the atomic sizes of the con-
stituent atoms has been reported to result in large lattice
distortion (LD) in high-entropy alloys (HEA) [5, 6, 7, 8, 9].
The LD in HEA has been reported to alter the dislocation
pathways [10], leading to solid solution strengthening in
HEA [11, 12]. Here we report that the large LD may not
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be exclusive to HEA alone, and it can occur in binary al-
loys as well. Decreasing the valence electron concentration
(VEC) has been shown to ductilize RHEA [13]. The VEC
criteria is not applicable in WRe alloys where high valency
Re is added to ductilize low valency W. The LD and VEC
are two inherent parameters used to design intrinsically
ductile RHEA. These parameters are used to explain and
design very narrow alloy chemistries. However, there is a
lack of universal design parameter which is not specific to
any system.

Most RHEA have body centered cubic (BCC) crystal
structure as majority of their constituent elements are
BCC. Understanding the deformation mechanism in BCC
alloys have remained a challenge due to the temperature
dependent activation of multiple slip systems. Pugh’s ra-
tio [14], Rice-Thompson parameter [15, 16, 17], intrinsic
ductility (D) [18] are the parameters proposed in the lit-
erature to assess the ductility of refractory alloys. The
Pugh’s ratio is directly borrowed from FCC pure metals
[14]. The Rice-Thompson parameter and the D discusses
the competition between the energy cost of creating new
crack surface and the barrier to dislocation motion. Here
we used the enthalpy of formation (∆E f ) and the change
in unstable stacking fault energy over its composition av-
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eraged value (∆γus f e) to down-select ternary, quaternary,
and quinary alloys with a goal of developing a ductile
RHEA.

2. Methods

Based on our earlier observations on the effect of ∆E f

on the γus f e of binary equiatomic refractory alloys [19], we
selected 6 ternary, 3 quaternary, and 2 quinary equiatomic
refractory alloys. The alloy selection methodology is
shown in Figure 1. Lattice parameter (a, Å), enthalpy of
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∆Ef ∈ [−120, 120]
No HCP-HCP

∆γusfe < 0

↑ Tm

Ti ⇐⇒ Re

Figure 1: Alloy design process. The funnel signifies reduced com-
position space as we move forward in the alloy development stages,
preventing the composition explosion as we move to higher order
systems. The numbers at every stage indicates the number of alloys
studied.

formation (∆E f , meV/Atom), unstable stacking fault en-
ergy (γus f e, mJ/m2), surface energy (γs, mJ/m2), intrinsic
ductility parameter (D=γs/γus f e), composition averaged
melting point (Tm, K) [20], Root-mean-squared Lattice
Distortion (RLD, Å) [21, 22] are calculated for 25 binary,
6 ternary, 3 quaternary, and 2 quinary equiatomic refrac-
tory alloys made from Ti, Zr, Hf, V, Nb, Ta, Mo, W, and
Re. The values for ternary, quaternary, and quinary alloys
are given in Table 1. The values for pure metals and bi-
nary equiatomic refractory alloys are taken from [19]. The
γs is calculated for {110} plane and γus f e is calculated for
{110}<111> slip system of BCC crystal structure. The
∆E f is calculated for BCC crystal structure of the alloys.
The procedure to calculate γs, γus f e, D, and ∆E f is given
in [19]. The heatmaps and graphs are drawn using Gnu-
plot [23]. The charge on each atom is calculated using
the Bader charge analysis as given in [24, 25, 26, 27] with
the post-processing of the charge files done using the code
given at [28].

2.1. Special Quasirandom Structures
Special quasirandom structures (SQS) are used to cap-

ture chemical disorder in the alloys. SQS are generated us-
ing MCSQS code from Alloy Theoretic Automatic Toolkit
(ATAT) [29, 30] with pair, triplet, and quadruplet cor-
relations with cut-off distance equal to the BCC unit cell

lattice parameter (second nearest neighbor-2NN distance).
Ternary, quaternary, and quinary alloys were studied with
SQS having 120, 120, and 150 atoms, respectively. The
SQS supercell for ternary and quaternary alloys were gen-
erated with in-plane dimensions equal to 4 and 3 times of
the first nearest neighbor (1NN) distance of the BCC unit
cell. Similarly, the SQS supercell for quinary alloys were
generated with in-plane dimensions equal to 5 and 3 times
of the 1NN distance of the BCC unit cell. The z-axis of
SQS supercell was aligned with [110] direction with 10 slip
planes of (110) type. A vacuum of 10Å is added to pre-
vent interactions due to periodic boundary condition. The
slabs were manipulated using Atomsk [31] and visualized
using VESTA [32].

2.2. First-principles calculations
The density functional theory (DFT) simulations were

performed using Vienna Ab-initio Simulation Package
(VASP) with plane-wave basis and projector augmented
wave (PAW) pseudopotentials [33, 34, 35]. For all cal-
culations, a plane wave kinetic energy cutoff of at least
1.3 times the maximum given in the pseudopotential file
was used. The electronic exchange-correlation effects were
calculated by Perdew-Burke-Erzernhoff generalized gra-
dient approximation (PBE-GGA) [36, 37]. Methfessel-
Paxton smearing method with 0.2 eV smearing width was
used [38]. Structural relaxation was terminated when the
forces on atoms become less than 1 meV/Å. Tetrahedron
method with Blöch correction was used for energy calcula-
tion [34]. The Brillouin zone sampling was performed us-
ing Monkhorst–Pack [39] scheme with automatically gen-
erated mesh with k-point spacing of less than 2π × 0.03
Å−1.

3. Results & discussions

The ternary, quaternary, and quinary equiatomic refrac-
tory alloys are selected with an expectation that they will
lead to large negative ∆γus f e when their respective binary
equiatomic sub-systems have positive ∆E f [19]; leading to
a positive ∆E f in the final alloy as well. The alloys stud-
ied in present work are listed in Table 1 and in supple-
mentary information file. The VNbTaWRe (∆E f =-125.8
meV/Atom ) is selected to study the intrinsic ductility of
VNbTaWTi when Ti is replaced by Re. Since Ti is sus-
ceptible to O absorption [40, 41], therefore replacing Ti
with Re is expected to show better oxidation resistance of
the quinary alloy. The oxidation susceptibility analysis of
refractory alloys is the subject of our future study.

3.1. Intrinsic ductility
3.1.1. Parameter selection for intrinsic ductility

The intrinsic ductility parameter D has been widely used
to compare the expected experimental ductility of refrac-
tory alloys [42, 43, 44]. The D compares the competition
between the energy cost of creating a new crack surface via
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Table 1: Alloys under study. The raw data is given in supplemen-
tary file. (a - Lattice parameter, Å); γs - Surface energy, mJ/m2;
γus f e - Unstable stacking fault energy, mJ/m2; ∆γus f e - % change in
γus f e over its composition average value; D - Intrinsic ductility pa-
rameter, (γs/γus f e); Tm - Composition averaged melting point (K);
RLD - Root-mean-squared Lattice Distortion, Å; ∆E f -Enthalpy of
formation, meV/Atom)

Alloy a γs γus f e ∆γus f e D Tm RLD ∆E f

VNbTi 3.332 2088 491 -19 4.25 2291 0.098 66.0
VNbW 3.164 2506 1008 -8 2.49 2876 0.059 10.2
VNbMo 3.156 2391 1046 -1 2.29 2610 0.062 -25.9
VNbTa 3.231 2177 631 -5 3.45 2741 0.080 60.9
NbWRe 3.194 2823 1476 10 1.91 3299 0.035 -69.3
MoWRe 3.143 3097 1156 -27 2.68 3348 0.024 55.9
VNbTaW 3.202 2449 967 0 2.53 2980 0.061 8.9
VNbTaTi 3.220 2081 560 -12 3.72 2541 0.086 65.6
VNbTiW 3.177 2281 783 -13 2.91 2642 0.076 29.6
VNbTaWTi 3.206 2237 704 -19 3.18 2772 0.067 32.7
VNbTaWRe 3.175 2735 1367 26 2.00 3074 0.050 -125.8

γs and the barrier to dislocation motion via γus f e. There-
fore, an alloy having large D is expected to show better
ductility than an alloy having lower D value (Figure 2a).

The ductility of an alloy can also be dictated by their
barrier to dislocation motion/glide of slip planes. The bar-
rier to glide of slip planes planes can be found using the
sinusoidal formulation of γus f e curve as shown in Equa-
tion (1).

γ = γus f e sin2
(
πx
b

)
(1)

The maximum of [∂γ/∂x
] occurs at x = (b/4). From Equa-

tion (1), [
∂γ

∂x

]
x= b

4

=
2πγus f e

a
√

3
(2)

A strong inverse correlation has been found between the
experimentally observed ductility and [∂γ/∂x] (Figure 2b).
Therefore the [∂γ/∂x] can be an accurate representation of
reality. The D and [∂γ/∂x] correctly capture the experi-
mentally observed ductility in refractory alloys (Figure 2).
Here we used D to design a ductile RHEA based on binary,
ternary, and quaternary alloy data.

3.1.2. Improving D
The improvement in D(=γs/γus f e) requires low γus f e and

high γs. The change in γus f e over its composition averaged
value (∆γus f e, %) is an important parameter in affecting
the change in D. A large negative ∆γus f e can help in re-
ducing the barrier to dislocation motion or it can assist
in glide of slip planes. We observe that a positive ∆E f

leads to a negative ∆γus f e for the studied equiatomic re-
fractory alloys (Figure 3). Based on our earlier findings of
binary equiatomic refractory alloys [19], the positive ∆E f

leads to a large negative ∆γus f e, i.e. the ∆E f strongly in-
fluences the ∆γus f e (Figure 3). The largest ∆E f occurs at
equiatomic stoichiometry, therefore the largest ∆γus f e oc-
curs in equiatomic alloys as schematically explained in Fig-
ure 4a. It indicates that the positive ∆E f helps in increas-
ing the D (via negative ∆γus f e) leading to improvement in
ductility of presently studied refractory alloys. The entire
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Figure 2: Comparison between experimentally observed ductility of
equiatomic refractory alloy and (a)D and (b)Max. [∂γ/∂x]. The D
and max.[∂γ/∂x] can be used to differentiate between intrinsically
ductile and intrinsically brittle alloys. Experimental ductility values
are taken from [45, 46, 47].

process can be represented as,

120 meV/Atom ≥ ∆E f ≥ 0 =⇒ ∆γus f e << 0 =⇒ ↑ D =⇒ Better ductility

Therefore ∆E f can be a useful parameter for selecting the
alloying elements for improving the ductility of refractory
alloys via increased D. The improvement in D requires
negative ∆γus f e which is strongly influenced by ∆E f as ob-
served in Figure 3. Therefore the alloying elements should
be selected to have a positive ∆E f .

The ∆E f of an alloy plays an important role in dictating
its thermodynamic stability. From Figure 1, the alloys can
be selected for further thermodynamic and microstructural
stability studies based on the enthalpy of formation of their
constituent phases. The VNbTaWRe alloy have much
lower ∆E f (-125.8 meV/Atom) than VNbTaWTi (∆E f =
32.7 meV/Atom). Therefore the Re-containing quinary
alloy shows large increase in the γus f e over its composition
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Figure 3: Percentage change in γus f e as compared to the composition
averaged value (∆γus f e) vs enthalpy of formation (∆E f ): (a)Binaries
(b)Higher order systems. The circle size indicate Root-mean-squared
Lattice Distortion (RLD). Positive ∆E f leads to negative ∆γus f e and
increased RLD.

averaged value (Figure 3b). The γus f e decreases as the ∆E f

of alloys become more positive (Figure 5). Therefore the
D is increased as the ∆E f of alloys becomes more positive
(Figure 6). The large negative ∆E f leads to increased γus f e

and decreased D of the studied quinary alloys (Figure 5).
A similar trend has been observed in binary, ternary, and
quaternary alloys; some of which are highlighted in Figures
3b, 5, and 6.

3.2. Lattice distortion

In real alloy systems, the atoms are not located at their
ideal lattice sites due to different chemical environment
present around each of the lattice sites. Here we calculated
this deviation from ideality as Root-mean-squared Lattice
Distortion (RLD, Å). The RLD is calculated using the
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Figure 4: Schematic representation of the change in γus f e which is
greater than that in composition average value. The highest change
occurs at the equiatomic composition. (a)Alloy with positive ∆E f
having large reduction in γus f e. (b)∆E f variation along the dislocation
resulting in wavy dislocation line.

relation,

RLD =

√
1

n × i

∑
n

∑
i

(Ri
n − R0)2

R0 =
a0
√

3
2
, Ri ≤ 1.10R0

where, Ri
n is the distance between nth atom and its ith 1NN,

R0 is the ideal 1NN distance, a0 is the bulk lattice param-
eter of alloy in BCC symmetry, n is the total number of
atoms in supercell, and i is the total number of 1NN (8
in BCC). This approach ensures that the negative and
positive distortions in the crystal are captured correctly
and are not cancelled-out by the opposite signs of either
distortions. RLD is calculated using the code given in
[21, 22]. The Table 1 and Figure 7 shows the RLD in the
form of heat map and its comparison with pure elements’
atomic size difference for binary equiatomic refractory al-
loys. The RLD values for the studied alloys ranges from
0.003Å (MoW) to 0.126Å (ZrMo) (Figure 7a). A general
trend is of higher RLD for alloys having large atomic size
difference between constituent atoms (Figure 7b). Simi-
larly, the positive ∆E f leads to increased RLD (larger cir-
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cles in Figure 3). This can be attributed to the positive
∆E f leading to atoms of one element not preferring atoms
of different element as their 1NN. A similar RLD is ob-
served in binary (Figure 3a) and in higher-order systems
(Figure 3b). Therefore, the RLD is not dependent on the
compositional complexity of the system for the presently
studied alloys, rather it is dependent on their ∆E f and
atomic size difference. Therefore, to achieve large RLD
for specific property requirements, the alloy need not have
composition complexity as that in HEA.

A very large positive ∆E f can lead to large distortions in
the crystal and may alter the BCC symmetry of the lattice.
Therefore we have put a threshold of ±120 meV/Atom on
∆E f . This criteria ensure that the alloys remain in BCC
symmetry with minimum lattice distortion. Alloys having
∆E f <-120 meV/Atom are not considered in present study
as they may form ordered intermetallics which could be
brittle. Similarly, alloys having ∆E f >120 meV/Atom are
not considered in the present study as they may not remain

as a stable solid solution (phase separate).
The dislocation core width in BCC crystals is not af-

fected by their γus f e [48, 49]. The dislocation core width
can be defined as ±b/4 [48], where b̄=(a/2)<111> is the
Burgers vector in BCC crystals. The calculated disloca-
tion core width of the presently studied alloys ranges from
1.33Å (VMo) to 1.49Å (NbZr) (supplementary file). The
highest RLD is about 9% of the widest dislocation core.
The wavy nature of dislocation line has been shown to oc-
cur due to local chemistry changes [50] and short-range
ordering/local chemical ordering leading to fluctuations in
γs f e along the dislocation line [51]. Therefore, a wavy dis-
location line in HEA can be attributed to the local ∆E f

changes instead of lattice distortion (Figure 4b). How-
ever, this claim needs further study of the dislocation core
which is beyond the scope of the present work.

From Figures 3 and 8, the RLD is high when the alloys
are made from atoms having large atomic size difference
for ∆E f >0. However, for alloys with ∆E f <0, the mutual
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Figure 7: Binary equiatomic refractory alloys. (a)Root mean squared
lattice distortion (RLD). (b)Initial atomic size difference strongly
influences the RLD. (Atomic radii are calculated from their pure
state lattice parameters.)

attraction between atoms led to decreased RLD due to
charge transfer. For NbRe (∆E f =-116.2 meV/Atom) the
charge transfer per atom was 0.627 and the RLD was 0.036
Å. For ZrMo (∆E f =52.5 meV/Atom) the charge transfer
per atom was 0.646 and the RLD was 0.126 Å. We observe
a similar charge transfer but a large RLD for these two
extreme cases of ∆E f . Therefore, a positive ∆E f is a pre-
dominant factor in dictating the RLD in presently studied
refractory alloys, irrespective of their compositional com-
plexity.

4. Conclusion

Here we used DFT simulations to calculate the ∆E f , D,
RLD, and [∂γ/∂x] of 25 binary, six ternary, three quater-
nary, two quinary equiatomic refractory alloys and nine
refractory metals. We found that the ∆E f strongly influ-
ences the intrinsic ductility of alloys. The negative ∆E f

indicates attractive nature of the bonding between con-
stituent atoms and vice-versa. Here we have shown that
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of formation (∆E f ) in equiatomic binary refractory alloys. Large
positive ∆E f leads to increased RLD. Large atomic size difference
between pure metal constituents increases the RLD. (Circle size in-
dicate the atomic size difference. Atomic sizes are calculated from
their pure state lattice parameters.)

the positive ∆E f leads to reduced γus f e (compared to the
composition averaged value) due to the repulsive interac-
tion between the alloy constituents. The maximum reduc-
tion in γus f e could be achieved for alloys having positive
∆E f which should be well compensated by a sufficiently
large entropy.

The RLD increases with ∆E f . The RLD is at maximum
9% of the widest dislocation core which may not be suf-
ficient to affect the dislocation core. Therefore the wavy
nature of dislocation in HEA can be attributed to the large
local enthalpy variation rather than the lattice distortion.
However, it needs further evaluation of the dislocation core
along the dislocation line to better understand the local
enthalpy changes due to chemistry variation along the dis-
location line. To the best of our knowledge, this is the
first time where a local ∆E f has been used as an indicator
of the wavy dislocation line. The calculated max. [∂γ/∂x]
correlates well with the experimentally observed ductility
in some of the presently studied concentrated refractory
alloys. With the presently developed approach, the num-
ber of alloy to be studied (experimentally and/or theoret-
ically) can be drastically reduced as we move from binary
to ternary to quaternary to quinary alloys. Here we have
reduced the number of alloys to be studied from 84 to 6 in
ternary, 126 to 3 in quaternary, and 126 to 2 in quinary
alloys, based on the primary goal of increased D and op-
timum ∆E f as we move to higher-order systems. Taking
the effect of ∆E f and [∂γ/∂x] on the deformability of con-
centrated refractory alloys is likely to open new directions
in the design of ductile refractory alloys with appropriate
lattice distortion for high-temperature applications.
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