Sue-Ann Watson

Sue-Ann Watson
  • BSc (Hons), MSc, PhD
  • Senior Research Fellow & Senior Curator at James Cook University

About

100
Publications
26,568
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,113
Citations
Current institution
James Cook University
Current position
  • Senior Research Fellow & Senior Curator
Additional affiliations
January 2018 - present
James Cook University
Position
  • Senior Researcher
July 2015 - December 2017
James Cook University
Position
  • Research Associate

Publications

Publications (100)
Article
Full-text available
The proportion of body mass devoted to skeleton in marine invertebrates decreases along latitudinal gradients from large proportions in the tropics to small proportions in polar regions. A historical hypothesis—that latitudinal differences in shell production costs explain these trends—remains untested. Using field-collected specimens spanning a 79...
Article
Full-text available
Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus....
Article
Full-text available
Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell....
Article
Full-text available
Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including...
Article
There is great concern over the future effects of ocean acidification on marine organisms, especially for skeletal calcification, yet little is known of natural variation in skeleton size and composition across the globe, and this is a prerequisite for identifying factors currently controlling skeleton mass and thickness. Here, taxonomically contro...
Article
Full-text available
Background The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. Results We evaluated the transcriptomic response of the central nervous system (CNS) an...
Preprint
Full-text available
The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-to...
Preprint
Full-text available
The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-to...
Article
We investigated the combined effects of Ocean Warming (OW), Acidification (OA) and predator cues (Non-Consumptive Effects; NCEs) of two predators with contrasting feeding-digestion strategies on the mussel Perumytilus purpuratus. We considered starfish-NCEs (partially external digestion) and snail-NCEs (internal digestion). Mussels were exposed for...
Article
Full-text available
Giant clams produce massive calcified shells with important biological (e.g., defensive) and ecological (e.g., habitat-forming) properties. Whereas elevated seawater temperature is known to alter giant clam shell structure, no study has examined the effects of a simultaneous increase in seawater temperature and partial pressure of carbon dioxide (p...
Article
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory c...
Article
Full-text available
Giant clams are threatened by overexploitation for human consumption, their valuable shells and the aquarium trade. Consequently, these iconic coral reef megafauna are extinct in some former areas of their range and are included in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and Convention on Internation...
Article
Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poor...
Article
Long-term interannual variations in the benthic community structure are well-known from abyssal plains in the North Atlantic and North Pacific, where rapid responses to changes in the environment by first-order opportunists modify overall species composition. To increase our knowledge of the long-term variations of deep-sea benthic communities in t...
Article
Full-text available
Long‐term experimental investigations of transgenerational plasticity (TGP) and transgenerational acclimatization to global change are sparse in marine invertebrates. Here, we test the effect of ocean warming and acidification over a 25‐month period of Echinometra sp. A sea urchins whose parents were acclimatized at ambient or one of two near‐futur...
Article
In order to make adequate projections on the consequences of climate change stressors on marine organisms, it is important to know how impacts of these stressors are affected by the presence of other species. Here we assessed the direct effects of ocean warming (OW) and acidification (OA) along with non-consumptive effects (NCEs) of a predatory cra...
Article
In mid rocky intertidal habitats the mussel Perumytilus purpurarus monopolizes the substratum to the detriment of many other species. However, the consumption of mussels by the shell-crushing crab Acanthocyclus hassleri creates within the mussel beds space and habitat for several other species. This crab uses its disproportionately large claw to cr...
Article
Full-text available
Abstract Ocean warming and acidification act concurrently on marine ectotherms with the potential for detrimental, synergistic effects; yet, effects of these stressors remain understudied in large predatory fishes, including sharks. We tested for behavioural and physiological responses of blacktip reef shark (Carcharhinus melanopterus) neonates to...
Article
Full-text available
Most laboratory experiments examining the effect of ocean acidification on marine organisms use stable pH/pCO2 treatments based on average projections for the open ocean. However, pH/pCO2 levels vary spatially and temporally in marine environments, and this variation can affect organism responses to pH/pCO2. On coral reefs, diel pH/pCO2 variability...
Article
Full-text available
Anthropogenic carbon dioxide (CO2) emissions are being absorbed by the oceans, a process known as ocean acidification, and risks adversely affecting a variety of behaviours in a range of marine species, including inhibited learning in some fishes. However, the effects of elevated CO2 on learning in advanced invertebrates such as cephalopods are unk...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Elevated carbon dioxide (CO2) levels can alter ecologically important behaviors in a range of marine invertebrate taxa; however, a clear mechanistic understanding of these behavioral changes is lacking. The majority of mechanistic research on the behavioral effects of elevated CO2 has been done in fish, focusing on disrupted functioning of the GABA...
Article
Full-text available
Environmentally-induced changes in fitness are mediated by direct effects on physiology and behaviour, which are tightly linked. We investigated how predicted ocean warming (OW) and acidification (OA) affect key ecological behaviours (locomotion speed and foraging success) and metabolic rate of a keystone marine mollusc, the sea hare Stylocheilus s...
Article
Elevated seawater CO2 can cause a range of behavioural impairments in marine fishes. However, most studies to date have been conducted on small benthic species and very little is known about how higher oceanic CO2 levels could affect the behaviour of large pelagic species. Here, we tested the effects of elevated CO2, and where possible the interact...
Article
Full-text available
Squid and many other cephalopods live continuously on the threshold of their environmental oxygen limitations. If the abilities of squid to effectively take up oxygen are negatively affected by projected future carbon dioxide (CO2) levels in ways similar to those demonstrated in some fish and invertebrates, it could affect the success of squid in f...
Article
Full-text available
Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2) levels on survival, growth, morphological development and swimming performance on the early...
Article
Full-text available
Oceans of the future are predicted to be more acidic and noisier, particularly along the productive coastal fringe. This study examined the independent and combined effects of short-term exposure to elevated CO2and boat noise on the predator-prey interactions of a pair of common coral reef fishes (Pomacentrus wardiand its predator,Pseudochromis fus...
Article
Full-text available
There is increasing evidence that projected near-future carbon dioxide (CO2) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy s...
Article
Full-text available
Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate...
Data
CO2 measurements recorded by the portable CO2 equilibrator over time from the start of a test period until equilibrium is reached (boxed area). Stabilisation time was 1 hour. This time period is a conservative estimate since equilibration time is shorter if the pCO2 difference between two samples is less. (PDF)
Article
Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses....
Article
Synopsis: Most studies investigating the effects of anthropogenic environmental stressors do so in conditions that are often optimal for their test subjects, ignoring natural stressors such as competition or predation. As such, the quantitative results from such studies may often underestimate the lethality of certain toxic compounds. A well-known...
Article
Full-text available
Ocean acidification and warming, driven by anthropogenic CO2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effec...
Article
Full-text available
Understanding the influence of environmental factors on the development and dispersal of crown-of-thorns seastars is critical to predicting when and where outbreaks of these coral-eating seastars will occur. Outbreaks of crown-of-thorns seastars are hypothesized to be driven by terrestrial runoff events that increase nutrients and the phytoplankton...
Article
Bacteria associated with marine invertebrates are thought to have a range of important roles that benefit the host including production of compounds that may exclude pathogenic microorganisms and recycling of essential nutrients. This study characterised the microbiome of a gonochoric octocoral, Lobophytum pauciflorum, and investigated whether eith...
Article
Full-text available
Atmospheric CO2 is expected to more than double by the end of the century. The resulting changes in ocean chemistry will affect the behaviour, sensory systems and physiology of a range of fish species. Although a number of past studies have examined effects of CO2 in gregarious fishes, most have assessed individuals in social isolation, which can a...
Article
Full-text available
Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2) in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation...
Data
R Code used in LME analysis of kinematic variables
Data
Experimental apparatus for testing escape responses in juvenile reef fish
Data
Raw Data for Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water
Article
Full-text available
Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH and shell dissolution has already been observed in areas where aragonite saturation state is ~ 1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly im...
Article
Full-text available
Pioneering studies into the effects of elevated CO2 on the behaviour of reef fishes often tested high-CO2 reared fish using control water in the test arena. While subsequent studies using rearing treatment water (control or high CO2) in the test arena have confirmed the effects of high CO2 on a range of reef fish behaviours, a further investigation...
Article
Full-text available
Australia’s coral reefs are currently under threat from a range of short- and long-term stressors. The ability of corals to recover from acute disturbance events, such as bleaching, cyclones and crown-of-thorns seastars outbreaks, is greatly influenced by the multitude of stressors reefs are currently experiencing (1). Since healthy coral habitat i...
Data
An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared...
Data
Changes in environmental conditions, such as those caused by elevated carbon dioxide (CO2), potentially alter the outcome of competitive interactions between species. This study aimed to understand how elevated CO2 could influence competitive interactions between hard and soft corals, by investigating growth and photosynthetic activity of Porites c...
Article
Full-text available
Locating appropriate settlement habitat is a crucial step in the life cycle of most benthic marine animals. In marine fish, this step involves the use of multiple senses, including audition, olfaction and vision. To date, most investigations of larval fish audition focus on the hearing thresholds to various frequencies of sounds without testing an...
Article
Full-text available
An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared...
Article
Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastrop...
Article
Full-text available
Changes in environmental conditions, such as those caused by elevated carbon dioxide (CO2), potentially alter the outcome of competitive interactions between species. This study aimed to understand how elevated CO2 could influence competitive interactions between hard and soft corals, by investigating growth and photosynthetic activity of Porites c...
Article
Full-text available
Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the e...
Data
Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including...
Data
Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the e...
Article
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely-related species of damselfish exposed to a predatory dottyback. We found...
Article
Full-text available
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pyg...
Article
Full-text available
Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50–100 years1, 2, 3, 4, 5, and there is limited potential for within-generation acclimation to elevated CO2 (refs 6, 7). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains un...
Article
[Extract] In his comment on our paper, Moran (Moran, 2014) raises the important issue of ensuring that experiments investigating the responses of marine organisms to future ocean acidification scenarios are carried out with a high degree of certainty about the CO2 levels being tested. We agree wholeheartedly, which is why we take considerable care...
Article
Full-text available
Vision is one of the most efficient senses used by animals to catch prey and avoid predators. Therefore, any deficiency in the visual system could have important consequences for individual performance. We examined the effect of CO2 levels projected to occur by the end of this century on retinal responses in a damselfish, by determining the thresho...
Article
Full-text available
Recent studies have shown that elevated CO2 can affect the behaviour of larval and juvenile fishes. In particular, behavioural lateralization, an expression of brain functional asymmetries, is affected by elevated CO2 in both coral reef and temperate fishes. However, the potentially interacting effects of rising temperatures and CO2 on lateralizati...
Article
Full-text available
Metabolic rate is a key component of energy budgets that scales with body size and varies with large-scale environmental geographical patterns. Here we conduct an analysis of standard metabolic rates (SMR) of marine ectotherms across a 70° latitudinal gradient in both hemispheres that spanned collection temperatures of 0–30 °C. To account for latit...
Article
Full-text available
Ocean acidification, resulting from increasing anthropogenic CO2 emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on...
Data
Carbon dioxide (CO2) levels projected to occur in the oceans by the end of this century cause a range of behavioural effects in fish, but whether other highly active marine organisms, such as cephalopods, are similarly affected is unknown. We tested the effects of projected future CO2 levels (626 and 956 µatm) on the behaviour of male two-toned pyg...
Data
Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2. However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for t...
Data
Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across d...
Article
Full-text available
How marine communities are affected by CO2-induced climate change depends on the ability of species to tolerate or adapt to the new conditions, and how the altered characteristics of species influence the outcomes of key processes, such as competition and predation. Our study examines how near future CO2 levels may affect the interactions between t...
Article
Full-text available
Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across d...
Article
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon d...
Article
Full-text available
The uptake of anthropogenic CO2 by the ocean has been suggested to impact marine ecosystems by decreasing the respiratory capacity of fish and other water breathers. We investigated the aerobic metabolic scope of the spiny damselfish, Acanthochromis polyacanthus, from the Great Barrier Reef, Australia when exposed for 17 days to CO2 conditions pred...
Article
Full-text available
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity...
Data
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon d...
Data
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity...
Article
Full-text available
Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global w...
Article
Full-text available
Anthropogenic carbon dioxide (CO2) emissions are causing ocean acidification and ocean warming; however, the synergistic effects of these stressors on giant clams are completely unknown. Juveniles of the fluted giant clam, Tridacna squamosa Lamarck, 1819, were exposed to present-day control seawater (416 μatm pCO2) and seawater treated with CO2 to...
Article
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-...
Article
Full-text available
Predicted future CO 2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including on...
Data
Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including one...
Data
Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global w...
Data
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-...
Article
Full-text available
Anthropogenic emissions of carbon dioxide (CO2) from fossil fuel combustion and deforestation are rapidly increasing the atmospheric concentration of CO2 and reducing the pH of the oceans. This study shows that predicted near-future levels of ocean acidification have significant negative effects on early larval development of the Sydney rock oyster...

Network

Cited By