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Abstract Identifying locations of sensor nodes in wire-

less sensor networks (WSNs) is significant for both net-

work operations and most application level tasks.

Although, geographical positioning system (GPS) based

localization schemes are used for determining node loca-

tions but the cost of GPS devices and non-availability of

GPS signals in indoor environments prevent their use in

large scale WSNs. A substantial amount of research work

exist that intend at obtaining precise and relative spatial

locations of sensor nodes without requiring large amount of

specialized hardware. Mobile anchor assisted localization

is one typical approach that significantly reduces the

implementation cost by using limited number of mobile

anchors. In this survey, we present key issues and inherent

challenges faced by the mobile anchor assisted localization

techniques in WSNs. We take a closer look at the algo-

rithmic approaches of various important fine-grained

mobile anchor assisted localization techniques applicable

in WSNs. In addition, we highlight the error refinement

mechanisms adopted by the state-of-the-art works associ-

ated with their approaches. Well known mobile anchor

trajectories presented in existing works are also reviewed.

Finally, open research issues are discussed for future

research scope in this field.

Keywords Mobile anchor � Mobile anchor trajectory �
Range measurement � Sensor node localization � Wireless

sensor network

1 Introduction

Wireless sensor network (WSN) consists of a large number

of energy-constrained, low-cost and low-power sensor

nodes. Each sensor node is a device, equipped with mul-

tiple on-board sensing elements, wireless transceiver

modules and power supply elements. They are character-

ized by limited computational and communication capa-

bilities. In WSNs, identifying locations of sensor nodes is

important for both network operations and most application

level tasks. This is because sensory data without spatial and

temporal coordination is of very limited use [1, 2]. Deter-

mining the physical location of sensor nodes after they are

deployed is known as localization [3]. Location aware

sensor nodes may help in enhancing the performance of

routing protocols [4–6], target tracking techniques [7, 8],

disaster response system [9, 10] etc. The node (henceforth,

we use the terms ‘sensor node’, ‘sensor’ and ‘node’ inter-

changeably) localization problem has received tremendous

attention from the research community because accuracy in

sensor node locations is an absolute necessity for correct

operation of the system. The importance of the precise

location information in different applications are elabo-

rated below:

• In events including disaster relief, forest fire, failure of

structure etc., early location prediction of such events

helps in planning adequate response system that may

either prevent those events from occurring or mitigate

the consequential damages. The response system is
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dependent on accurate location information. Therefore,

accurate localization scheme based response system

may prevent such calamities.

• Navigation and vehicle tracking is another area where

accurate location estimation scheme using WSNs may

be extremely useful. Vehicle tracking with autonomous

interception mechanism can be deployed in an outdoor

area. It senses entry as well as movement of an offending

evader in the area. A cooperative mobile agent is

dispatched for intercepting the evader as soon as it gets

detected before any damage is done. The successful

realization of such a tracking and interception system is

dependent on accurate location information.

• The topology of WSNs is highly dynamic in nature.

This is because some sensor nodes die if they drain out

their energy faster compared to other sensor nodes

leading to coverage and connectivity disruptions in the

network. In such scenarios, in order to reestablish

coverage and connectivity, new sensor nodes may be

injected into the network. Here, geography routings are

found to be more efficient than topology based routing

schemes. The basic issue that should be addressed in a

geography routing scheme is its ability to gather

location information and to have a location tracking

mechanism for establishing connectivity before routing

data. So, localization or finding locations of sensor

nodes is a fundamental step in routing or transmission

of data in WSNs.

Global Positioning System (GPS) is the most commonly

used and precise method for sensor node localization.

Unfortunately, the GPS solution does not always performs

well because of cost, limited power supply etc. in WSNs.

Additionally, the deployment-ability of sensor nodes which

are equipped with GPS may be reduced due to the

increased size. Finally, these GPS equipped sensor nodes

have limited applicability because GPS works only in an

open field [6]. A more reasonable solution to the problem is

to allow small proportions of sensor nodes with known

location information (either equipped with GPS or installed

at a fixed position) available at all times. The sensor nodes

with known coordinates are called seeds or anchors. These

anchors help the location-unaware sensor nodes (these

nodes are called unknown) to become localized by

exchanging messages.

A compendium of knowledge representing rich collec-

tion on localization issues and their solutions in WSNs for

diverge applications can be found in the recent past liter-

atures [11–14]. The existing localization schemes proposed

for sensor nodes in WSNs are classified into two main

groups, (1) range-based or fine-grained and (2) range-free

or coarse-grained [12, 15]. Range-based techniques gen-

erally use distance or angle estimates for localization

whereas range-free techniques use connectivity informa-

tion for localization. Although, it is a comprehensive cat-

egorization of localization algorithms, but in the presence

of mobile anchors and/or mobile sensor nodes it is not

distinct enough. In a wide range of applications, a fully

static node in WSNs is not practical [16]. One important

factor is to introduce node mobility in the localization

algorithms. To capture this possibility, localization meth-

ods are reclassified with respect to the mobility state of

anchors and sensor nodes into four groups [16, 17], as

shown in Fig. 1. The groups of localization methods are as

follows: (1) static anchors and static nodes like the methods

proposed by Grribben and Boukerche [18], Simonetto and

Leus [19], and Zhao et al. [20], (2) static anchors and

mobile nodes such as the schemes in [21, 22], and [23], (3)

mobile anchors and static nodes (simply ‘‘mobility-

Localization schemes in WSNs 

Static anchors 

static sensors 

Static anchors 

mobile sensors 

Mobile anchors 

static sensors 

Mobile anchors 

mobile sensors 

Range-based Range-free 

ToA 

TDoA 

RSSI 

MCL 

Convex 

method

Geometric 

constraint

Fig. 1 Classification of

localization schemes in WSNs

Wireless Netw

123



assisted’’ henceforth) such as the methods proposed by

Chen et al. [24], Cui and Wang, [25], and Guo et al. [26],

and (4) mobile anchors and mobile nodes like the meth-

ods proposed in [27], [28], and [29]. The common feature

of the four categories is that they all need anchors to

locate the unknown node. In this survey, we restrict

ourselves on the category of mobile anchors with static

sensor nodes, since this kind of localization promises a

wide variety of application scenarios. An example can be

a military application or a monitoring task like forest fire

detection, where sensor nodes are dropped usually from a

helicopter on land, and transmitters are attached to sol-

diers or animals acting as mobile anchors. Generally,

mobile anchor based localization works focus on two

major issues, either proposing an efficient localization

algorithm or devising an optimum mobile anchor move-

ment strategy.

In this survey, we provide key issues and inherent

challenges faced by mobility-assisted localization tech-

niques in WSNs. In addition, we attempt to review the

existing state-of-the-art fine-grained mobility-assisted

localization methods with emphasis on algorithmic

approaches. Review of WSN localization techniques can be

found in [12–15, 30]. In [30], the researchers provide a

comprehensive survey on the mobile beacon trajectories.

Precisely, they evaluate the performance of five static tra-

jectories of mobile beacon namely, Random Way Point

(RWP) [31], SCAN [17], HILBERT [17], CIRCLES [32]

and Localization algorithm with a Mobile Anchor node

based on Trilateration (LMAT) [33]. It is revealed that

among the five trajectories, LMAT offers the best perfor-

mance regarding the localization success, ineffective

position rate and localization accuracy. In [14, 15], authors

review and analyze existing localization techniques.

Amundson and Koutsoukos [13] present a survey on

localization methods for mobile wireless sensor networks.

In particular, they provide taxonomies for mobile wireless

sensors and localization, including common architectures,

measurement techniques, and localization algorithms. Mao

et al. [12] present a survey on the challenges faced by the

localization algorithms in various applications. More

specifically, the survey describes the challenges faced by a

localization method due to non-line-of-sight ranging error,

criteria for selecting node to become active or remain

passive, scheduling the sensor node to optimize the tradeoff

between localization performance and energy consump-

tion. Our review in contrast focuses on the measurement

techniques and localization algorithms applicable for

mobility-assisted localization techniques in WSNs. In

addition, we highlight the error refinement mechanisms

adopted by the state-of-the-art works associated with their

approaches. Furthermore, well known mobile anchor tra-

jectories presented in existing works are reviewed.

The rest of the paper is organized as follows. We briefly

discuss about the different categories of localization tech-

niques in Sect. 2. In Sect. 3, we explain the generic

approach, key issues and main challenges faced by the

mobility-assisted localization techniques. In Sect. 4, we

study existing algorithmic aspects of different mobility-

assisted localization techniques. Section 5, provides sum-

mary of existing trajectory used in mobility-assisted

localization techniques. Section 6 talks about open issues

in mobility-assisted sensor node localization. Finally,

Sect. 7 concludes this survey.

2 Localization techniques in WSNs

As mentioned in the earlier section, based on the mobility

state of anchors and sensors, the existing localization

schemes are broadly categorized into four groups: (1) static

anchors and static sensors, (2) static anchors and mobile

sensors, (3) mobile anchors and static sensors, and (4)

mobile anchors and mobile sensors. In this section, we

briefly survey representative schemes in each category.

2.1 Static anchors and static sensors based

techniques

In WSNs localization, static anchors and static sensors

based methods are more mature than the other three cate-

gories. In this category, localization algorithms estimate

the locations of static unknown sensors by using knowl-

edge of the absolute positions of a few static anchors and

inter-sensor measurements such as distance and bearing

measurements, connectivity information. Distance and

bearing measurement techniques can be roughly classified

into three categories (1) Angle-of-Arrival (AoA) mea-

surements, (2) distance related measurements, and (3)

Received Signal Strength (RSS) profiling techniques [12].

In the existing works, AoA measurements rely on a direct

Line-of-Sight (LoS) path from the transmitter to the

receiver. Due to this fact, the accuracy of AoA measure-

ments is limited by the directivity of the antenna, by

shadowing and by multipath reflections. On the contrary,

distance related measurements include propagation time

based measurements, i.e., one-way propagation time mea-

surements, roundtrip propagation time measurements,

Time-Difference-of-Arrival (TDoA) measurements etc. In

one-way propagation time measurements technique, the

time difference between sending a signal at the transmitter

and receiving of the same signal at the receiver is mea-

sured. In this technique, for precise measurement of time

difference or propagation time, the local time at both the

transmitter and the receiver need to be synchronized

accurately. To alleviate the synchronization problem, in
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roundtrip propagation time measurements, the same clock

is used to compute the roundtrip propagation time. Here,

the time difference between the time when a signal is sent

by a sensor and the time when the signal returned by a

second sensor is received at the original sensor is deter-

mined. However, in this measurement technique, the main

error source is the delay required for handling the signal in

the second sensor. One of the most commonly used dis-

tance measurement method in this category is TDoA

measurement, since it free from both synchronization and

delay problems. Here, TDoA measurements of the trans-

mitter’s signal at a number of receivers with known loca-

tion information are done for distance measurement. In this

technique, the accuracy in distance measurement depends

on the separation between receivers. Precisely, as the

separation between receivers increases, the TDoA mea-

surement provides more accurate distance measurement.

Another category of distance measurement technique is

RSS profiling. Initially, in this technique, a map of the

signal strength behaviour in the coverage area is formed

either by offline through a priori measurements or online

via sniffing devices [34] deployed at predetermined loca-

tions. This technique is more popular for location estima-

tion in WLANs than WSNs.

Unlike distance and bearing measurement techniques,

connectivity information based localization algorithms do

not rely on any of the measurement techniques mentioned

earlier. Instead they use the connectivity information, i.e.,

‘‘who is within the communications range of whom’’ [35]

to estimate the locations of the unknown sensors. One of

the popular connectivity information based localization

algorithm is DV (distance vector)-hop [18]. The principle

of this algorithm is that, initially, all the unknown sensors

exchange the distance vector packets to collect hop dis-

tance information and the coordinates of all anchors. Then,

each anchor floods its average distance of each hop with

data packets. When an unknown sensor receives the aver-

age distance of each hop, it estimates the distance to each

anchor according to the recorded hop information. The

inaccuracy of the DV-hop algorithm is high due to the

accumulated error that results from averaging of the hop

distance between two neighbouring sensors. Unlike DV-

hop, recently, a limited flooding based Lightweight Itera-

tive Positioning (LIP) [36] algorithm is proposed for WSN

localization. The proposed LIP algorithm works in two

phases. In first phase, the unknown sensors collect infor-

mation about the coordinates of anchors; based on that

information, they come to an initial, rough estimate of their

positions. In second phase, the sensors iteratively refine

their position estimates, after having learned the position

estimates of their immediate neighbors and measured ran-

ges between the sensors.

In summary, several distance and bearing measurement

techniques, connectivity information based schemes are

available for WSN localization where static anchors and

static sensors are used. The localization accuracy of each of

these technique depends on number of factors such as the

anchor density, application environment etc. In existing

works, it has been observed that distance and bearing

measurements based localization algorithm requires more

complex equipment and consume significant amount of

computation and communication energy to obtain a rela-

tively accurate location. On the contrary, it has been

observed that the localization accuracy of connectivity

information based algorithms is average and do not need

additional equipment. Nevertheless, the requirement of

anchor density is smaller but the sensor density is greater.

2.2 Static anchors and mobile sensors based

techniques

In this approach, small number of static anchors is used to

localize a set of mobile sensors. Here, typically, anchors

are placed at an unobtrusive location like a ceiling or wall,

and periodically transmits beacons with its coordinates. An

unknown mobile sensor that listens to messages from

beacon uses these messages to infer its own present loca-

tion. Most popular works in this category are RADAR [21],

Dynamic Triangular (DTN) [22]. Roughly, all these

schemes based on historical information consist of two

phases: an offline phase and online localization phase. In

offline phase, a database of RSS at different locations with

respect to anchor locations is built whereas in online

localization phase, a mobile sensor compares the received

signal strength values it received from different anchor

locations with the stored values in the database, and the

best fit gives an estimate of its location. Different from [21,

22], in both [23] and [37], the authors proposed a local-

ization scheme based on Received Signal Strength Indi-

cator (RSSI) and Link Quality Indicator (LQI). To reduce

the location error, in [23] authors developed artificial

neural network based training method, whereas in [37],

artificial neural networks is used to establish a relationship

between the patterns of RSSI and location coordinates.

Similar to [23], authors in [38], also developed an artificial

neural network based approach to reduce the effect of the

various noise sources and harsh factory conditions on the

localization algorithm. Unlike [21–23], Chen et al. [39]

proposed an algorithm based on hop distance measurement

and particle filtering. Similar to [18], they used same

technique to measure hop distance. However, during the

hop distance information collection stage a correction

process is introduced by the authors to reduce the number

of message transmissions.
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In summary, a number of localization techniques are

available where researchers use static anchors to localize a

set of mobile sensors. However, most of these schemes are

popular for indoor location systems, where many unknown

sensors are mobile such as monitoring the living of human

or animal. Typically, localization algorithms based on

historical information are able to achieve better accuracy

than localization algorithms based on hop distance mea-

surements. However, that accuracy is achieved at the

expense of higher energy consumption.

2.3 Mobile anchors and static sensors based

techniques

To reduce the number of expensive GPS enabled anchors,

mobile anchor based localization technique is evolving as a

promising approach. It is well understood that a moving

anchor with guided mobility can cover a small area within

a reasonable time. On the contrary, a few moving anchors

are sufficient to cover a large area. Considering this fact, in

this approach, a small number of moving anchors are

deployed in order to localize a set of static sensors [13, 16].

The anchor traverses the deployment area and periodically

transmits beacons with its coordinates to help unknown

sensors to estimate their positions. The use of such

approaches leads to double impact of mobility of anchors

on the localization process. On one hand, the localization

difficulty is increased due to uncertainty of anchor move-

ments while on the other hand these mobile anchors are

responsible for providing additional measurements to the

mobility-assisted localization schemes. Since in this sur-

vey, our focus is to provide a comprehensive discussion on

mobility-assisted localization approaches and therefore, in

subsequent sections existing works are discussed in details.

2.4 Mobile anchors and mobile sensors based

techniques

In this category, mobile anchor is used to localize a set of

mobile sensors. Since both anchors and sensors are mobile,

the techniques used in this category gave fairly accurate

location estimation at the cost of additional energy con-

sumption due to increase of computational load in

unknown sensors. Typical application areas where such

type of localization technique is preferred are urban cities

[40], mine sweeping [27] etc. Monte Carlo Localization

(MCL) is one of the most popular methods in this category.

In [41, 42], researchers proposed localization technique

based on Monte Carlo approach. Typically, MCL is based

on the Monte Carlo method which has been used for robot

localization [27]. In MCL, possible locations of a mobile

sensor are represented using a set of weighted samples and

which are updated recursively in time using the Monte

Carlo approach. Although, Monte Carlo method based

localization technique gives acceptable accuracy, but it

requires a significant number of mobile anchors. Other than

MCL, in [28] and [29], researchers proposed RSSI-based

and Fuzzy logic-based localization techniques, respectively

where both anchors and sensors are mobile.

3 Design issues and challenges

In this section, we first describe the essential background of

mobility-assisted localization techniques for WSNs. We

mention key issues of location discovery, which are very

essential aspects in any localization technique including

mobility-assisted ones. Finally, the inherent challenges

incurred by the mobility-assisted localization techniques

are also discussed.

3.1 Background

In WSNs, a sensor can determine whether it is in the radio

range of an anchor according to a beacon received from the

one-hop anchor. Considering this capability, in mobility-

assisted localization scheme, mobile anchors broadcast

beacons at regular intervals that contain their coordinates

as shown in Fig. 2. If a sensor node receives beacon

broadcast multiple times from different positions, it is more

or less similar to receiving beacons from multiple anchors.

A sensor node obtains its location relative to the mobile

anchor based on RSS of the beacons through Bayesian

inference [14]. The accuracy of location estimation in

mobility-assisted localization scheme depends on the dis-

tribution of anchor locations used by the mobile anchor.

Main drawback associated with mobility-assisted local-

ization scheme is significant localization delay. It is

because sensor nodes are localized only when they are in

direct contact with the mobile anchors and receive suffi-

cient signals from them.

Sensor node 

Mobile anchor 
trajectory 

Sensor node deployment area 

Mobile anchor 

Fig. 2 Localization using a mobile anchor
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In presence of several categories of mobility-assisted

localization schemes, similar to [25], we broadly classify

the existing mobility-assisted localization schemes into two

classes- distance-based or range-based and connectivity-

based or range-free. In range-based schemes, sensor nodes

estimate their distances from mobile anchors using some

specialized hardware. These measurements are used in

methods like multilateration, which is based on the idea

that a sensor node’s location is uniquely specified when at

least the distances or angles of three or more reference

points are available for a sensor node. A special case of

multilateration is trilateration [43]. Although the use of

range measurements results in a fine-grained localization

scheme, range-based algorithms require sensor nodes

containing hardware for making range measurements.

Range-free schemes do not use radio signal strengths, angle

of arrival of signals or distance measurements and do not

need any special hardware. Range-free algorithms require

that each sensor node knows: (1) nodes that are within

radio range, (2) their location estimates and (3) the (ideal)

radio range of sensor nodes. No other information is used

for localization. Thus, range-free schemes are more cost-

effective because they do not require sensor nodes to be

equipped with any special hardware. Also, it requires less

information than range-based schemes. Moreover, range-

free schemes can only provide a coarse-grained estimate of

each sensor node’s location, which means that they are

only suitable for applications requiring an approximate

location.

3.2 Key issues

The particular requirements for localization schemes for

WSNs generally depend on the nature of applications,

constraints imposed by hardware and network infrastruc-

ture. Based on these, some of the specific issues concerning

the design of mobility-assisted localization scheme are as

follows:

• Accuracy and precision of localization: Accuracy refers

to how much correct is the location estimation relative

to the actual location and precision describes the

consistency of the estimates [44]. Each system contains

granularity of measurements that refer to the smallest

measurable distance. The granularity of measurements

range from few inches or bigger depending on the used

equipment and technique. Similar to the previous, the

required granularity of localization that is required in

WSNs is also application dependent.

• Absolute versus relative locations: GPS devices in

localization systems help in determining the absolute

location in terms of latitude, longitude and altitude with

respect to the earth’s coordinates [44]. On the other

hand, locations may be obtained with respect to a given

frame of reference, such as the location of a mobile

anchor. Based on the application requirement, locations

can be either absolute or relative. It is noted that a

relative location can always be transformed to an

absolute location if the absolute location of the

reference point is known.

• Communication requirements: Communication between

a sensor node and a mobile anchor or other sensor nodes

can provide significant benefits such as time synchro-

nization and improvements in accuracy and precision.

However, a fundamental issue in WSNs is the mini-

mization of communication requirements in the sensor

nodes to conserve energy. This introduces unique

considerations for designing the localization scheme as

well.

• Cost: As cost is an important factor, so the design

requirements of large scale sensor networks are: (1) to

minimize the cost of sensor nodes, and (2) take the

benefit of combined sensing and computational abilities

of many nodes in the network [44]. Therefore, the

localization system should not consists of expensive

hardware. The cost involved in building external

infrastructure for providing localization is also one

factor but it is not that much considerable as it does not

increase with network size.

3.3 Inherent challenges

Localization plays a significant role in many applications,

few of which are briefed in Sect. 1. However, mobility-

assisted localization itself is a complex problem to be

solved because of the demanding requirements for low

cost, high energy efficiency, and scalability for any net-

work size, as well as practical issues associated with sensor

node deployment. Herein, we sum up some major chal-

lenges specially faced by mobility-assisted localization

approaches to obtain accurate location information.

• Anchor trajectory In mobility-assisted localization,

unknown sensors can be localized only when they are

in direct contact with the mobile anchor and receive

sufficient signals from it. Anchor trajectory thus has

to be properly planned so as to be shortest in length

as well as it should be quick and full so as to pro-

vide accurate localization. Huge localization delay

along with low localization ratio and high localiza-

tion error occur if the trajectory is of poor form [45].

As sensor nodes are dropped randomly, their place-

ment pattern cannot be known beforehand. If the

initial pattern is known in a dynamic environment,

the final sensor node distribution may vary due to

movement of wind or other factors. Therefore, the
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key challenge for mobility-assisted localization is the

beacon trajectory that should be planned instantly

instead of beforehand.

• Sensor node density Mobility-assisted localization

approaches very rarely deal with varying node densi-

ties. If the network is a dense one having enough

number of mobile anchors, accurate localization result

is achievable with minimum movement of mobile

anchor [46]. In contrast, for sparse networks, mobile

anchor may require traversing more distance within the

network area to localize sensor nodes. Therefore, for a

sparse network having limited number of anchors, the

main challenge for the localization problem is to obtain

maximum location accuracy using optimal path

movement.

• Noisy measurements Mobility-assisted localization

approaches are required to face noisy measurements

as proximity, range and angle measurements deal with

noises as wireless signals are uncertain in nature. So for

the success of mobility-assisted localization methods,

modeling the noises and lessening the impacts on

localization performance are very much necessary.

• Infrastructure-less environment Sensors are generally

deployed in some inaccessible terrain or areas where

infrastructures are very less. In order to estimate the

sensor node’s relative location to the moving anchor

using the received signal strength, it is necessary to

calibrate the system, for obtaining the propagation

characteristic of the beacon in the air. Hence, the design

of mobility-assisted localization schemes should be

automatic without human calibration and extensive

environment profiling.

• Obstacles and terrain irregularities Obstacles and

terrain irregularities jointly can also cause devastation

on mobility-assisted localization process. Large rocks

can occlude line of sight, prevent measuring range, or

interfere with radios, introduce errors in range mea-

surement and produce incorrect location information. In

indoor environment, natural features like walls can

hinder measurements as well. All these challenges are

likely to come up in real life implementations, so

mobility-assisted localization schemes should be able

to cope up with these.

• Resource constraints Cooperation among sensor nodes

in mobility-assisted localization process is done by

exchanging information between neighbouring sensor

nodes. For example, as in centralized localization

algorithms [14], cooperation is achieved using a central

node (usually the base station/sink). Additional com-

munication cost results due to collecting and forward-

ing the measurements to the base stations and sending

the localization information to the nodes.

4 Mobility-assisted localization approaches

It has been seen that mobility of sensor nodes has double

impact on the localization process. On the flip side, the

uncertainty of sensor node movements leads to increased

difficulty in localization. While on the contrary, mobile

anchors provide additional measurements to the mobility-

assisted localization schemes. In mobility-assisted local-

ization, many approaches for obtaining per-node location

knowledge have been explored. Based on the type of

knowledge used in localization, we divided localization

approaches into two categories: range-based and range-

free. In rest of this section, we survey the algorithmic

approaches used for each of these two categories.

4.1 Range-based localization approaches

Range measurement and geometric computations enable

geometric techniques to estimate the locations of the sensor

nodes. The basic idea that is used is that Euclidean distance

between two sensor nodes can be measured with their radio

signals by Time-of-Arrival (ToA), TDoA, RSSI etc. [46].

After obtaining at least three different Euclidean distances

of mobile anchors, the unknown sensor node applies either

trilateration or multilateration algorithm to find out its own

location. In this section, we have reviewed few popular and

innovative range-based techniques for measuring distances

between mobile anchors and unknown sensor node. We

have discussed how measured distances have been used by

the unknown sensor node to estimate its own location. In

addition, we have provided an overview on how the

existing techniques deal with the location estimation error

that occurs mainly due to noises. Pros and cons of each

technique are also discussed in this section.

4.1.1 Localization based on ToA measurement

Sensor node localization using ToA technique [24, 47–49]

measures the time a signal takes to arrive at several number

of sensor nodes. ToA measurement requires knowing the

time when the signal was transmitted. Therefore, in most

cases time synchronization between sender and receiver is

needed. However, there are existing works where ToA

measurement is done without time synchronization [24].

Next, we have discussed about the algorithmic approach of

sensor node localization based on ToA measurement.

Let X, be an arbitrarily positioned unknown sensor.

Mobile anchor moves from one direction to another

direction while transmitting beacon, as shown in Fig. 3.

ToA measurement is performed in two steps. In the first

step, mobile anchor broadcasts a beacon or a ranging

request which is received by all the unknown sensor nodes
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in the radio range. In the next step, each unknown sensor

node sends an acknowledgement (ACK) to the mobile

anchor for responding to the request. In order to prevent

collision, the unknown sensor performs a random or

schedule back-off before sending the ACK.

Now, ToA measurement obtains the distance in the

following way: Distance between mobile anchor and

unknown sensor node X is dXA ¼ c T1
X � T1

A

� �
, where c is the

speed of light, T1
A is the time when mobile anchor broad-

casts beacon and T1
X is the time when X receives beacon.

Similarly, distance between unknown sensor node X and

mobile anchor is dAX ¼ c T2
A � T2

X

� �
where T2

X and T2
A are the

times when X sends ACK and mobile anchor receives ACK

respectively. As T2
A � T1

A

� �
and T2

X � T1
X

� �
are the elapsed

times at mobile anchor and unknown sensor node X re-

spectively, they are calculated using local clock of mobile

anchor and unknown sensor node.

Therefore, calculated distance between mobile anchor

and unknown sensor node X is

dXA þ dAX
2

¼ c

2
T2
A � T2

X

� �
� T1

X � T1
A

� �� �
: ð1Þ

The major challenge facing ToA based ranging tech-

niques is the difficulty in accurately measuring when the

signal was transmitted, since the propagation speed could

be extremely high compared to the distance to be

measured.

In [24, 47–49], ToA based ranging technique as dis-

cussed above has been used to measure distance between

mobile anchor and unknown sensor node [using (1)]. Due

to noises and propagation in environment, ToA based

ranging techniques suffer from Non-Line-of-Sight (NLoS)

error. The presence of NLoS error in range measurement

degrades the location estimation performance and linearly

increases the mean location error. Several NLoS error

mitigation techniques have been proposed such as the

maximum likelihood estimator, root-mean-square tech-

nique, least square technique to solve the location estima-

tion problem in the NLoS scenario [50]. In [24], Chen et al.

[24] considered root-mean-square technique to mitigate the

effect of NLoS error in the range measurement. Unlike,

Wen and Chan [48] considered AoA/ToA hybid self-po-

sitioning scheme to alleviate NLoS error. Further, an

adaptive fuzzy control based location adjustment algorithm

has been proposed in [48] in order to improve the location

estimation accuracy.

4.1.2 Localization based on TDoA measurement

TDoA based range measurement techniques improve upon

the ToA based range measurement technique by eliminat-

ing the need to know the exact time when the signal was

transmitted. In TDoA based approach, range is measured in

the following way:

The mobile anchor periodically transmits RF and

ultrasonic signals. Initially, the mobile anchor transmits the

RF signal. After a very short time interval a narrow

ultrasonic signal is transmitted. An unknown sensor node

listens to mobile anchor transmissions (i.e., RF and ultra-

sonic signals) and computes the distance to nearby mobile

anchor using the time-difference-of-arrival of RF and

ultrasonic signals.

As shown in Fig. 4, a mobile anchor transmits RF and

ultrasonic signals one after another. An unknown sensor

X receives those signals and computes the time-difference-

of-arrived signals i.e. d. Finally distance between the

mobile anchor and unknown node is obtained by multi-

plying d and the speed of the ultrasonic signal (about 1.13

ft/ms at room temperature).

Even though computing the distance between each pair

of node’s locations e.g., mobile anchor and unknown sen-

sor node is a trivial problem, the inverse problem, which

tries to find locations of the nodes given the Euclidean

distances between each pair of nodes is far from trivial

problem. This problem can be formulated as a graph

realization problem, aiming at mapping the nodes in the

graph to points in the plane so that the Euclidean distances

between nodes equal the respective edge weights. Priyan-

tha et al. [51] proposed a localization scheme using mobile

nodes based on TDoA measurement. As finding the loca-

tion from Euclidean distances between each pair of nodes

is non-trivial, therefore, in [52] authors provided a novel

solution by designing a movement strategy that produces a

global rigid graph (shown in Fig. 5) of known distances

among the static sensor nodes. Using those known dis-

tances, finally unknown sensor nodes calculate their own

locations.
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Fig. 3 An example of basic ToA ranging scheme
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Fig. 4 An example of time-difference-of-arrival
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Since mobile anchor transmits both RF and ultrasonic

signals, therefore, there is every possibility of occurence of

collision and interference among each other which may

introduce error in the range measurement. To minimize the

errors, a decentralized randomized transmission algorithm

is proposed in [51] where signal transmission times are

chosen randomly with a uniform distribution within an

interval. Thus, the broadcast of different signals are sta-

tistically independent, which avoid repeated synchroniza-

tion and prevent collisions. Further, for reducing the

location estimation error, three distance measurement error

filtering algorithms viz. Majority, MinMean and MinMode

are proposed in [51]. Among these three algorithms,

Majority is simplest to implement whereas reduced loca-

tion estimation error is produed by both MinMean and

MinMode. Priyantha et al. [52] considered Majority algo-

rithm for reducing the location estimation error.

4.1.3 Localization based on RSSI measurement

Another category of range measurement techniques esti-

mate the distances between mobile anchor and sensor node

from the RSS measurements. Since the sensor nodes are

equipped with radios to perform communication, the dis-

tance estimation by measuring the RSS requires no addi-

tional hardware, and is unlikely to significantly impact

local power consumption, sensor size and hence cost. A

simplified model for RSSI based range measurement is

given by the following:

RSSI / d�a ð2Þ

where d is the distance between mobile anchor and

unknown sensor node and a is a constant relevant to the

atmosphere. Given a RSSI value measured [using (2)] by

the radio of unknown sensor node, the unknown sensor

node is able to calculate its distance from the mobile

anchor.

In [26, 53–56], authors proposed an energy efficient

localization scheme based on mobile anchor where dis-

tance between mobile anchor and unknown sensor node is

calculated by RSSI measurement. After obtaining such

distances from three reference locations, an unknown

sensor node calculates its own location using trilateration.

To improve the location accuracy, in [56], Kim and Lee

proposed a trajectory planning for the mobile anchor with

an objective of minimizing the movement energy con-

sumption per unit distance and transmission energy con-

sumption per beacon. This is done as RSSI based range

measurement is extremely susceptible to multipath fading,

variations in temperature and humidity. Therefore, local-

ization scheme based on RSSI range measurement is prone

to errors. To mitigate the erroneous range measurement,

profiling [57] is used in which a map of RSS values is

constructed during an initial training phase. Sensor nodes

then estimate their positions by matching observed RSS

values with the training data. Further, a novel mobile-as-

sisted localization scheme called Perpendicular Intersec-

tion (PI) is proposed in [26]. Instead of directly mapping

RSSI values into physical distances, PI utilizes the geo-

metric relationship of a perpendicular intersection for

computing the sensor nodes positions. Through real life

implementation using TelosB motes it has been shown that

PI achieves high location accuracy and low overhead. A

robust extended Kalman Filter based state estimator is

proposed in [53], for node localization. It is computation-

ally more efficient and robust compared to the extended

Kalman Filter [58]. A statistical technique is considered in

[53] to reduce location estimation error.

4.1.4 Localization based on network density clustering

A novel mobile anchor-assisted localization algorithm

based on Network Density Clustering (NDC) for WSNs is

proposed in [59]. Initially, authors proposed a network

density based clustering scheme. The clustering

scheme chooses a sensor as the cluster head with the

highest local core density. After choosing the cluster head,

based on the density-reachable principle, member nodes of

the cluster are chosen. After forming cluster, the

scheme uses Multi-Dimensional Scaling map (MDS-MAP)

[60] to obtain the initial coordinates of all the cluster heads.

The MDS approach includes three steps. The first step is to

form the distance matrix with distances between all pairs of

sensor nodes in the network by measuring either RSS or

ToA. In the second step, singular vector decomposition is

performed to determine an initial relative map of the sensor

nodes on the plane. The last step performs the necessary

flip, rotation and scaling according to the distances between

mobile anchors. After knowing the coordinates, the cluster

head becomes the anchor. Now, both cluster head and

mobile anchor help the unknown member node in

becoming a localized node. Authors considered trajectory

planning of the mobile anchor as a traveling salesman

problem, in which the mobile anchor traverses all the

cluster heads. Since the traveling salesman problem, is an

NP-complete problem, in order to reduce computational

complexity, authors adopted a heuristic method e.g. genetic

(a) (b)
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Fig. 5 Examples of graphs a locally rigid but not globally rigid,

b globally rigid
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algorithm for obtaining sub-optimal solution for path

planning of mobile anchor. As in the proposed localization

technique, the localization progress propagates from the

high-density region to the low-density region in the net-

work, which facilitates reducing the accumulation of

positioning errors and improves localization accuracy.

Even though the proposed technique improves both the

utilization rate of the mobile anchor and localization

accuracy with reduced anchor movement length, but the

time complexity of the proposed scheme is considerably

high and it is about O n3ð Þ, where n is the number of sensor

nodes in the network.

The existing works discussed above considered different

noisy range measurement tolerating techniques to improve

the accuracy of position estimation. Apart from the dis-

cussed techniques, rich collections of noisy range mea-

surement tolerating techniques exist such as Bayesian

Filter [61], Monte Carlo method [45], Metropolis–Hastings

algorithm [62], Markov Chain Monte Carlo [63] etc.

4.2 Range-free based localization approaches

Range measurements, often, may not be obtainable due to

various constraints e.g. cost. Under these circumstances,

proximity information provided by the radios attached to

the sensor nodes could lead to adequate solutions for the

localization problem. In this section, we discuss about the

underline idea of few popular range-free methods used in

mobility-assisted localization techniques.

4.2.1 Localization based on Monte Carlo method

One of the well known range-free techniques specially

used in mobility-assisted localization technique is

Sequential Monte Carlo (SMC) method. In SMC based

localization technique [64–66], possible locations of a

sensor node are represented with a set of sample locations,

which are updated when mobile anchors move. They pro-

vide the coordinate of a new location using the SMC

approach. Location estimation using SMC method is per-

formed in the following way:

Let t be the discrete time, lt denotes the position distri-

bution of the sensor node at time t, lit denotes the ith sample

of the location of a sensor node at time t, and ot denotes the

observations from mobile anchors received between time

(t - 1) and t. A transition equation p ltjlt�1ð Þ describes the
prediction of sensor node’s current position based on pre-

vious position, and an observation equation p ltjotð Þ
describes the likelihood of the sensor node being at loca-

tion lt given the observations.

Eventually, from the above discussion, the Monte Carlo

method based localization techniques require quite a

number of steps in order to compute location of sensor

node. The main steps of the SMC method based localiza-

tion techniques are as follows-

Initialization The sensor node has no knowledge about

its position at time 0, so the initial samples are selected

randomly from all possible locations:

li0j1� i�N
� �

 Initialize
Random positions:

Prediction At time t, the sensor node uses the transition

distribution p ltjlt�1ð Þ to predict its possible locations based

on previous samples and its variation at time (t - 1):

litj1� i�N
� �

 
p lt jlt�1ð Þ

lit�1j1� i�N
� �

:

Filtering At time t, the sensor node uses new informa-

tion received to eliminate predicted locations that are

inconsistent with observations:

l0it j1� i�N
� �

 p lt jotð Þ
litj1� i�N

� �
;

where l0it denotes the ith sample of the location of a sensor

node after filtering step.

Re-sampling The purpose of re-sampling step is to

gradually remove samples with lower weights and keep

those with higher weights:

l00it j1� i�N
� �

 Re�sampling
l0it j1� i�N

� �
;

where l00it denotes the ith sample of the location of a sensor

node after re-sampling step.

The main drawbacks of SMC are that it needs a high

density of mobile anchor and the sampling technique it

uses to generate probable locations is very slow and

computation-intensive. In [64], Rudafshani and Datta pre-

sented a mobile-assisted localization for sensor networks

based on SMC method. In order to converge the localiza-

tion error, in the proposed scheme, each unknown sensor

uses the weights of its neighbours (rather than weights of

samples of neighbours) to weigh its samples. Evaluation

results of this scheme confirm improved localization

accuracy and low dependency on the number of mobile

anchors.

4.2.2 Localization based on convex method

Presence of obstacles such as mountains or buildings in the

node deployment area, impose huge challenge in localizing

the sensor nodes for mobility-assisted localization tech-

niques. One such scheme is proposed in [67], where

authors considered the presence of obstacles during local-

izing the sensor nodes. The working principle of the pro-

posed technique is elaborated below.

Let us consider that the current position of the mobile

anchor is a and its lower and upper bounds of transmission

radii are r and R, respectively, as shown in Fig. 6. If the
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unknown position sensor node (triangle in Fig. 6), at

position x, receives the beacon signal, it is concluded that

the distance between the mobile anchor and sensor node

satisfies either x� ak k�R or; x� ak k[ r:

Hence, for single constraint case, the estimated position

is found by minimizing the expression given in (3)

x� ak k � rð Þ2þ x� ak k � Rð Þ2: ð3Þ

Similarly, for the inequalities under multiple constraints,

optimal position of sensor node is obtained by solving the

following problem:

max
x

X

t

x� atk k � rtð Þ2þ x� atk k � Rð Þ2
h i

;

for t ¼ 1; 2; . . .;K
ð4Þ

where at is the position of the mobile anchor at time t, rt
and Rt denote the lower and upper bounds of the trans-

mission radii of mobile anchor at position at in time t. It is

evident from (4) that the problem is non-convex.

As the above problem is non-convex and cannot be

directly approximated by using convex relaxation tech-

niques, therefore, it is transformed into the equivalent

following convex problem

Find max
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

t

y� 2aTt xþ atk k2�r2t
	 
2

þ y� 2aTt xþ atk k2�R2
t

	 
2
� �s

ð5Þ

such that xk k2� y

By solving the above [see (5)] convex problem using

interior-point algorithms [67], sensor node obtains its own

location. The benefit of the proposed localization technique

is that it can provide accurate location for both feasible and

infeasible cases [67]. However, as the location calculation

involves solving several problems, the computation cost of

each sensor node increases significantly.

4.2.3 Localization based on geometric constraints

The geometric measurement based localization technique

involves three steps in localizing the unknown sensor

nodes. The steps are as follows: (1) select three anchor

points from among the received beacons; (2) obtain the

intersection area with two anchor points using geometric

constraints; and (3) calculate the location with the third

anchor point.

Three beacon points selection It is assumed that a

mobile anchor moves around the deployed area of the

sensor nodes at a constant speed and broadcasts a beacon

that includes its own absolute location information after

every d distance intervals, called beacon distance. Now, if

a sensor node receives a beacon it concludes that mobile

anchor is located within the communication circle of its

own. This is referred as the beacon point for location of

mobile anchor.

A sensor node on receiving the first beacon from a

mobile anchor, selects that location as a beacon point, e.g.

B1, B2 etc., as shown in Fig. 7. If no beacons are received

by a node during a predefined time after receiving its last

beacon, this beacon is selected as a beacon point; i.e., B4 in

Fig. 7. Every time the mobile anchor moves across the

communication circle of the sensor node, the above process

is repeated; i.e. B1, B4, and B5 are ultimately finalized as

the three beacon points.

The intersection area Since each sensor node

receives a beacon at every beacon point d and com-

munication/radio range of a mobile anchor is r, so, the

beacon points are located between the distances

(r - d) and r from the sensor node. Therefore, based on

geometric constraints, the sensor node must be located

in the ring area that is defined by two circles with radii

r and (r - d) from a beacon point. On obtaining the

first beacon point, sensor node position within the ring

area is made by the beacon point. After obtaining the

second beacon point, the sensor node is placed within

the second ring area.

So, it is concluded that the location of the sensor node is

within the intersection area of the two ring areas, as shown

in Fig. 7; if one piece of intersection area consists of ver-

tices P1, P2, P3 and P4 be AP and the other has AQ, the

sensor node is located within AP [ AQ.

Fig. 6 The single constraint case
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Fig. 7 Location estimation using geometric constraint method [68]
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Location calculation The midpoints Pm and Qm of the

intersections points P1 and P3, and Q1 and Q3respectively

are calculated after finding the intersection area AP [ AQ.

The probable locations of the unknown node are the mid-

points Pm and Qm. Two circles with a radius of

(r - d) have no intersection points (P3 and Q3) if the

distance between the two beacon points is more than

2(r - d). For this scenario, P3 and Q3 are designated as the

midpoints of the two beacon points.

The performance of the geometric constraint based

location estimation method exhibits enhanced location

accuracy [68]. Further, Lee et al. [68] analyzed the local-

ization error and found that it can be reduced by decreasing

the communication range or the anchor distance. Here, by

anchor distance authors mean the interval distance at which

a mobile anchor broadcast a beacon.

4.2.4 Localization based on perpendicular bisector

of a chord

The mechanism proposed in [69, 70] localize a sensor node

using mobile anchor based on a geometry conjecture,

named Perpendicular Bisector of a Chord (PBC), which

states that a perpendicular bisector of a chord passes

through the center of the circle.

A sensor node’s location can be calculated by observing

themovement of themobile anchor with the help of the given

conjecture on PBC. A visitedmobile anchor’s list is kept that

helps in determining the beacons sent by the mobile anchor

while it is coming and leaving within the radio range of the

sensor node. The sensor node positions itself as the center of

the circle by selecting beacons that are responsible for cre-

ating chords of the radio range of the node, as shown in

Fig. 8. Fine-grained location information is obtained using

mobile anchor’s location broadcast in range-free localiza-

tion for the geometry conjecture based approach.

The success of the developed localization mechanism

based on a geometry conjecture depends on the accurate

construction of the chord. Ssu et al. [69] observed that

when the length of the chord is too short, the probability of

unsuccessful localization increases rapidly. However, by

decreasing the beacon interval or moving speed of mobile

anchor can significantly reduce the maximal location error.

Further, authors observed that if radio range is enlarged,

the maximum location error gradually diminishes.

4.3 Summary

In this section, we summarize the evaluation of existing

mobility-assisted localization schemes. The ability to fix

the location of a sensor node in terms of fine-grain location

would determine the usefulness of a particular mobility-

assisted localization scheme. The three basic metrics used

for evaluation of existing schemes are: localization accu-

racy, computation and communication costs, and number

of mobile anchors.

4.3.1 Localization accuracy

The localization accuracy of a solution is usually quantified

using the average Euclidean distance between the esti-

mated locations and the true locations normalized to the

communication range or other system parameters. Local-

ization accuracy relies mainly on the physical sources of

localization errors. The physical sources are represented by

a wide range of noises and quantization losses of range

measurements. In mobility-assisted localization, mobility

of the anchor has severe impact on the signal compared to

the static anchor. For example, the frequency of the signal

may undergo a Doppler shift or introduce errors in the

range measurement. Doppler shifts occur when the mobile

anchor is moving relative to the unknown sensor node. The

resulting shift in frequency is related to the positions and

relative speed of the mobile anchor and unknown sensor

node.

In mobility-assisted localization, one can achieve fine-

grained localization but in exchange of increased local-

ization delay. This is because sensor nodes can only be

localized when they are in direct touch with the mobile

anchor and receive adequate signals from it. Therefore,

proper planning of anchor trajectory is needed for obtain-

ing shortest length and good coverage of every sensor for

fast and accurate localization.

4.3.2 Computation and communication costs

As energy is one of the scarcest resources in WSNs, it is

necessary to consider the computation and communication

Radio range of sensor node 

Center of circle

Unselected beacons

Selected beacon 

Fig. 8 Localization using intersection of perpendicular bisectors of

two chords
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costs of the localization process in the evaluation of

mobility-assisted localization schemes. In mobility-assisted

localization schemes, localization accuracy is improved by

mobility of the anchor at the expense of significant amount

of energy consumption. Moreover, all unknown sensor

nodes are needed to provide range measurements to algo-

rithms like MDS-MAP (see Sect. 4.1.4). This incurs the

expense of forwarding the measurements to the processing

point and solving the high dimension matrix. On the con-

trary, for distributed algorithm, multihiop localization deals

with the tradeoff between the communication cost involved

in propagating the mobile anchor locations and accuracy

degree. The number of iterations needed in a localization

process depends on the energy consumption involved in

improving localization results and how much accuracy is

obtained through refining.

4.3.3 Number of mobile anchors

It is important to note that mobility-assisted localization

techniques constantly need an assured level of connectivity.

The discussions on the different mobility-assisted local-

ization algorithms suggest that more number of mobile

anchors in the network area lead to better localization per-

formance. However, more number of mobile anchors in the

network area does not necessarily guarantee high accuracy

in location estimations. It is due to the fact that increase in

mobile anchor leads to increase in collision of beacons. So

there is also need of careful planning for anchor trajectory

otherwise collisions of beacons may occur.

4.3.4 Summary of performance

In earlier sections, existing mobility-assisted localization

schemes under various scenarios were discussed. In this

section, we summarize the performance of those schemes

with respect to location accuracy, communication/compu-

tation costs, and number of nodes (sensors and anchors).

Generally, the localization accuracy of a solution is

measured from the average Euclidean distance between the

estimated locations and the actual locations that are nor-

malized to the radio range or other system parameters [14].

The impact of sensor node density is not of much impor-

tance for mobility-assisted localization, as in static local-

ization scenarios. Also, the importance of the

communication or computation costs is not same for off-

line simulations and the real implementations. The simu-

lation results of various existing mobility-assisted local-

ization schemes are given in Table 1. Here, the location

accuracy is examined through the tradeoffs between

accuracy and measurement performance, radio range,

number of mobile anchors, trajectory of anchors etc.

Table 1 shows typical values for the parameters when

various tradeoffs for one solution are reported in the lit-

erature. For the sake of conciseness, radio range, velocity

of the mobile anchor and beacon broadcast frequency are

denoted by R, V and F respectively in the table, while h,

l and N represent height, width of the network area and

number of samples respectively.

5 Trajectory planning of mobile anchor

The anchor trajectories are categorized into two classes

based on the actual distribution of sensor nodes as: static

trajectory and dynamic trajectory. In case of static trajec-

tory or static path planning the mobile anchor follows the

predefined and deterministic trajectory. On the other hand,

the dynamic or real time trajectory takes into consideration

the real distribution of the sensor nodes in the sensing field

[71]. Figure 9 represents an overview on the existing tra-

jectories. Finding the optimal trajectory of the mobile

anchor for sensor node localization is a very challenging

problem. Fundamentally, trajectory planning for a partic-

ular application has two goals: (a) to offer network cov-

erage and (b) to provide good quality beacons. Compared

to the first goal, the second goal of path planning, which is

unique in the sensor network localization problem, is much

more challenging. This work investigates both the classes

of anchor trajectories in this section.

Table 1 Summary of simulation results for existing schemes

Schemes Number of nodes Computation/communication cost Accuracy

ToA [24] 100 sensors, 1 mobile anchor O 2hl

R2

� �
5 m

TDoA [52] 24 sensors, 1 mobile anchor 100 samples 1.5 %R

PI [26] 100 sensors, 1 mobile anchor O F R=Vð Þ 2.04 m (Lab), 1.27 m (Parking Lots)

NDC [59] 415 sensors, 1 mobile anchor 108 beacons 20.6 %R

MCL [66] 49 sensors, 1 mobile anchor O N2ð Þ 50 %R

Convex [67] 100 sensors, 1 mobile anchor O 2hl

3R2

� �
11.68 %R

GeoCon [68] 300 sensors, 1 mobile anchor N/A 5 m

PBC [69] 319 sensors, 1 mobile anchor 1597 beacons 5 %R
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5.1 Static path planning

To improvise the accuracy and coverage factors of local-

ization schemes that depend on mobile anchor with opti-

mum trajectory, the mobility advantage can be taken into

consideration for such schemes. One work [3] addressed

the basic properties of optimum path anchor such as fully

covering the area of interest considering a shortest path, the

movement of the mobile anchor should be such that it

passes in close proximity to maximum possible unknown

nodes as well as provide minimum three non-collinear

anchor positions etc. Another work [17] proposed three

common trajectories of SCAN, DOUBLE SCAN, and

HILBERT space filling curve for mobile beacon move-

ment. The accuracy of these three trajectories depends on

the resolution of the trajectory. In [32], CIRCLES and

S-CURVES were proposed for minimizing the number of

straight lines and to avoid the problem of collinearity of

path planning methods. A spiral trajectory, similar to the

CIRCLES, proposed in [72] efficiently eliminated the

collinear problem and the localization accuracy. A path

planning mechanism for localization based on trilateration

was provided in [33] where the movement of the mobile

anchor is in accordance with an equilateral triangle for

broadcasting its present location. Here, a brief review is

presented on each category of the existing static mobile

anchor trajectories for localization.

5.1.1 Random planning

5.1.1.1 RWP The RWP mobility model [31] is a widely

used model mostly due to its simplicity. A random desti-

nation is chosen by the mobile anchor and it travels

towards the newly chosen location. In one work [69], the

authors used the RWP mobility model for facilitating the

localization of static nodes. The anchor’s positional mes-

sage is transmitted by the mobile anchor at every destina-

tion. The primary disadvantage of the RWP mobility model

is the non-uniform coverage of the network field. It is quite

evident that while some points may be visited repeatedly

by the mobile anchor while some points may never be

visited by the same. It is highly difficult for determining the

path length traveled by the anchor as the movement of the

anchor may be stopped after a certain time interval or

predefined path length.

5.1.1.2 GM In [73], the authors use the Gauss-Markov

(GM) mobility model for proposing an adaptive localiza-

tion approach for WSNs. Three strategies namely perpen-

dicular bisector strategy, the virtual repulsive strategy and

the velocity adjustment strategy are combined for

increasing the localization efficiency. The velocity adjust-

ment strategy is responsible for ensuring that the mobile

anchor is able to adjust its velocity automatically. The

perpendicular bisector strategy adjusts the trajectory for the

mobile anchor that helps the unknown nodes to obtain

sufficient non-collinear anchor coordinates. The virtual

repulsive strategy takes care of the fact that the mobile

anchor leaves the communication range of location-aware

nodes or returns back to the surveillance area. The mobile

anchor adaptively adjusts its velocity and direction based

on the three strategies mentioned above. The mobile

anchor lowers its speed and its movement depends on the

perpendicular bisector strategy after it receives acknowl-

edgement packets. Other than this, the mobile anchor

increases its speed for shifting to other areas of the

surveillance region. This mobility model provided move-

ment patters similar to that in the real world for mobile

anchor. Both theoretical analysis and simulation results

show that the proposed model enhances the localization

accuracy with lesser energy requirement as well as covers

more surveillance region with respect to virtual anchors-

energy ratios localization scheme.

5.1.2 Static planning

5.1.2.1 SCAN A simple and easily implementable mobile

anchor trajectory planning scheme named SCAN proposed

in [17] uniformly covers the network field. The uniform

coverage of the network field helps in ensuring low

localization error and receiving of beacons by all the

unknown sensor nodes. SCAN divides the square deploy-

ment area into m 9 m sub-squares and connects their

centers using straight lines. In SCAN, the mobile anchor

traverses the network area along one dimension either

along the x axis or y axis. The resolution of the trajectory is

Mobile anchor trajectory

Static planning Dynamic planning

Random Planned

RWP GM SCAN HILBERT CIRCLE LMAT

APP DREAMSMALS AGM

Z-Curve

Fig. 9 Classification of mobile

anchor trajectories
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defined by the distance between two successive trajectory

segments parallel to the y axis while the mobile anchor

travels along the y axis. To guarantee that the sensor node

receives the beacons, the maximum resolution should be

2R’ if the communication range of the sensor node is R’.

SCAN is beneficial for use as it provides uniform network

coverage, and guarantees that beacons are received by all

sensor nodes from the mobile anchor using a correct res-

olution. However, the imperative weakness associated with

SCAN is collinearity of beacons. In particular, for large

resolution, many sensor nodes receive beacons only from

one line segment and one direction, which create uncer-

tainty and prevent them from obtaining a good estimate

along the x axis. To evade this problem, the trajectory must

be adequately dense for the sensor nodes so that sensor

node will be able to hear the mobile landmark when it

moves on two successive segments along the y axis.

5.1.2.2 HILBERT In order to reduce the collinearity

without significantly increasing the path length, Hilbert

curve based technique, namely HILBERT, is proposed in

[17]. In [17], the Hilbert curve is proposed to handle the

localization as well the coverage tasks, whereas in [74] the

main aim of studying the Hilbert curve is to solve the

collinearity problem of localization by making the mobile

anchor to take more turns. Authors in [74] realized that

when the mobile anchor moves on the Hilbert curve, the

sensors have the chance of receiving non-collinear beacons

and a good estimate for their locations. Similar to SCAN,

HILBERT divides the two dimensional square deployment

area into square cells and connects their centers using

straight lines. For example, a level-m Hilbert curve divides

the two dimensional space into 4m square cells and centers

of those cells are connected using 4m line segments, each of

length equal to the length of the side of a square cell.

Therefore, the resolution of HILBERT is the length of the

side of a square cell. As the Hilbert curve based trajectory

planning ensures more path turns compared to SCAN,

therefore, sensor nodes receive non-collinear beacons and

obtain a good estimate of their positions. Since Hilbert

curve always connects the centers of two successive square

cells, the mobile anchor never moves on the border of the

deployed area. Thus, in HILBERT, sensor nodes near the

border possibly receive beacons only from one direction

and their location estimates are not accurate.

5.1.2.3 CIRCLES Since the straight line based trajecto-

ries of mobile anchor perpetually introduce collinearity, a

circular trajectory called CIRCLES is proposed in [32].

CIRCLES consists of a sequence of concentric circles

centered within the deployment area. In CIRCLES, the

resolution (R) is half of the radius of the innermost circle,

and it sequentially increases the radius by R at each outer

circle. The main benefit of using CIRCLES is that

collinearity is not introduced and thereby every sensor

node located within the circles becomes localized. If the

deployment area is square, all the four corners cannot be

covered by using CIRCLES until and unless larger circles

are added. Now, if large circle is added in order to cover

four corners, then basically the path length of mobile

anchor is increased. There is also a problem of scalability if

CIRCLES is used. To be more specific, on increase of the

deployment area, anchor path is required by CIRCLES to

accommodate larger circles. This reduces the localization

accuracy as the amount of non-collinearity reduces with

increase in size of the circles.

5.1.2.4 LMAT The idea of equilateral triangle configu-

ration idea was initially proposed in [75] for the anchors

placement to help localize the mobile sensors. Based on

this idea, the LMAT algorithm is proposed in [33] where

optimal anchor positions for the mobile anchor are used for

obtaining better localization accuracy and coverage. In this

work it is considered that the mobile anchor moves along

an equilateral triangle trajectory and transmits the beacons

including the anchor position information at regular inter-

vals. A node is able to formulate its coordinates using the

trilateration method where the distance between an

unknown sensor and the mobile anchor is measured using

RSSI. The objective of this scheme is to design the optimal

traveling trajectory of mobile anchor assisted localization.

5.1.2.5 Z-curve Recently, in [16], authors proposed a

path planning technique called as Z-curve. The proposed

trajectory has the ability to successfully localize all the

nodes with high precision and in shortest time. Here, the

basic curve of the trajectory is built based on the Z shape.

The reason for choosing this shape is that such a trajectory

has short jumps to overcome the collinear problem. Also a

path is provided for transmitting three consecutive non-

collinear beacons with the objective of reducing the

localization time. Here, a two dimensional network area is

considered that is divided into four sub-squares and the

mobile anchor is responsible for connecting the centers of

the cells for setting up the Z-curve. The proposed path

planning mechanism is comprised of four phases. The first

phase is responsible for finding out the relation between the

communication range and localization of unknown sensors.

In the second phase the communication range of the mobile

anchor is adjusted that is traversed by the Z-curve while the

third phase provides the shortest path traversed by the

mobile anchor based on the Z-curve. The final phase

illustrates that the three anchor positions collected via the

shortest path provided by the Z-curve are non-collinear.

The authors compared the proposed mechanism with

existing five strategies and results demonstrate the
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efficiency of the Z-curve in terms of accuracy, time, suc-

cess and ineffective position rate.

5.2 Dynamic path planning

Real time or dynamic path planning involves collection of

neighbourhood information by every sensor node that is

done through message exchange and is further provided to

the mobile anchor. The main objective of such type of path

planning is to work out an anchor mobility scheduling

algorithm with the help of which the mobile anchor is able

to dynamically decide its trajectory. The main disadvan-

tage of real time path planning is the high number of

message exchanges involved leading to increased energy

consumption.

5.2.1 MALS

In one work [76], the authors considered the shortest path

traversed as the trajectory of the mobile anchor. The tra-

jectory is designed by using the information of network

topology. The network is initially divided into localization

units termed as localizable subnets or orphan nodes. The

shortest path passing through all localization units is cho-

sen as the trajectory of the mobile. The authors proposed

the scheme named as MALS (mobile assisted localization

by stitching) with the objective of designing the trajectory

where nodes are deployed in non-uniform and irregular

manner. The trajectory here is obtained by stitching all the

localization units in the shortest path to be traversed and

blank areas are discarded. An anchor enters a localization

unit along its path to be traversed and moves in a half

circle. The anchor broadcasts positions in three different

locations. After receiving the anchor positions, the nodes

compute their positions in a distributed way. The mobile

anchor moves further along the path based on the geo-

graphical positions of the nodes in the present unit and the

edges connecting to the next unit. After the anchor finishes

traveling along its assigned trajectory, the nodes in the

network get localized and the localization units are com-

bined together. Simulation results demonstrate that the

proposed scheme avoids unwanted movements in the blank

areas with much less trajectory paths as compared to

existing works under various non-uniform and irregular

deployment scenarios.

5.2.2 APP

In [77], Kim et al. proposed an Adaptive Path Planning

(APP) scheme where the authors considered the path

movement length and the number of anchors for deter-

mining the trajectory. This work is different from existing

works that use mobile anchors in the sense that it provides

adaptive path movement construction in an energy efficient

manner with less computational complexity. The path

constitutes a regular triangle with the length being the

communication range. Here, the mobile anchor obtains its

next destination adaptively while analyzing the request

messages received from unknown sensor nodes. The

positions of the anchor are contained in the path movement

where the mobile anchor broadcasts beacons consisting of

its present location. This adaptive scheme is designed

keeping in mind randomly deployed sensor networks. Here,

candidate areas are chosen where mobile anchors can

transmit their beacons. The candidate areas are considered

for ensuring receiving of beacons irrespective of the actual

position of the sensor node. For both ground and aerial

anchor types, the candidate areas are obtained. The mobile

anchor is responsible for choosing the nearest location in

the candidate area as the next anchor location iteratively.

This scheme minimizes the energy consumed by reducing

the number of beacons and the movement distance. Here

bilateration and two-hop neighbour information are utilized

for deriving the exact position. The distance between the

sensor nodes as well as that between a sensor node and a

mobile anchor is obtained using the RSS technique. The

authors compared their work with existing works to show

their aim for minimizing the energy consumption is

satisfied.

5.2.3 AGM

In [78], the authors developed an Anchor Guiding Method

(AGM) for obtaining better location accuracies and less-

ening the length traversed by the mobile anchor. The nodes

deployed statically estimate their positions using previous

range-free localization algorithms having different location

inaccuracies. The estimated region’s size provides a

guideline for the mobile anchor for efficient building of the

path. Here, the authors observed that the improvement in

the nodes’ location inaccuracies is mainly dependent on the

location of the anchors that further define the path of

movement of the mobile anchor. In the users monitoring

region a large number of nodes are deployed for event

detection and the sensed information is sent back using

multi-hop routing. While the existing localization schemes

are performed, the mobile anchor gathers the information

of the estimative regions of the nodes. It is assumed that

every static node has an initial estimative region in the

form of a rectangle at a particular time. The mobile anchor

knows its own location information using GPS or other

location support system. The communication ranges of the

mobile anchor and the static nodes are same. Experimental

study demonstrates that the proposed scheme outperforms

other existing schemes in terms of the parameters mean

location error, localization efficiency and balance index.

Wireless Netw

123



5.2.4 DREAMS

To obtain the most suitable anchor trajectory, the authors in

[45] proposed a DeteRministic dynamic bEAcon Mobility

Scheduling (DREAMS) scheme. In this work, the trajec-

tory is determined dynamically on the lines of the Depth-

First Traversal (DFT) of the network graph. Here no prior

knowledge about the deployed area is needed. The anchor

trajectory is defined by the track of DFT of the network

graph and so it is deterministic. The mobile anchor per-

forms DFT dynamically, under the instruction of nearby

sensor nodes on the fly. The mobile anchor at first visits a

sensor node by moving randomly and then performs a DFT

on the network graph based on the instruction of the pre-

sent visited sensor node. It stops moving once it returns to

the first sensor node and the sensor node has no unvisited

neighbours. During DFT, the anchor performs intelligent

distance-based heuristic movement from node to node

following RSS, and sensor nodes run the built-in local-

ization procedure to self-localize using received beacon

signals. To shorten the anchor trajectory, DFT may be

performed using a local minimum spanning tree subgraph,

whose edges are weighed by RSS. Also unvisited, but

localized, sensor nodes may be excluded from DFT if the

exclusion does not affect discovery of unknown sensors.

Real life implementation of DREAMS shows that it pro-

duces accurate location estimation.

6 Open issues

There has been extensive research on mobility-assisted

sensor node localization, nevertheless, there are several

important open issues especially relevant to mobility-as-

sisted localization in a WSN which either remain unsettled

or unexplored comprehensively. Some of these issues are

listed below.

• Energy consumption The problem of minimizing

energy consumption of the mobility-assisted localiza-

tion process deserves more attention. Even though,

energy consumption issues are addressed in the existing

mobility-assisted localization techniques, the energy

efficiency goal still remains challenging.

• Design complexity The moving trace of mobile anchor

must be optimized since mobile anchors are only

capable of low-speed and short-distance mobility in

real environment due to high power consumption of

locomotion. Since the distribution of mobile anchors

can affect location performance in static WSNs,

therefore, efficient trajectory planning for mobile

anchors can further increase location accuracy for

target estimation.

• Non-convex topologies Localizing the sensor nodes

located in the boundary is a problem because less

information is available about them and that too of

lower quality. This problem is exacerbated when a node

deployment area has a non-convex shape. Sensor nodes

outside the main convex body of the deployment area

can often prove to be unlocalizable. Even when

locations are found, the results tend to feature dispro-

portionate error. Further, an efficient trajectory plan-

ning for mobile anchors can increase location accuracy

in such situation.

• Cost Several existing works show that, using mobile

anchors for localization of sensor node is beneficial, as

extra measurements on spatial relationships are pro-

vided along their corresponding trajectories. But, a

mobile anchor, having more resources compared to an

ordinary sensor node, is expensive. So, for localization,

only a small number of mobile anchors can be actually

used. Also, small numbers of mobile anchors must

effectively cooperate with sensor nodes to obtain

maximum utility.

• Three-dimension localization In the existing scenario,

sensor node localization is typically used for finding out

the location of nodes in a two dimensional network

area. However, in real life application, sensor nodes are

usually deployed in a three dimensional space, which

leads to differences on both ranging results and

localization schemes. Investigation on mobility-assisted

localization schemes focusing on three dimensional

space is of particular interests to real life applications of

WSNs. In [25, 79], an attempt is made to localize the

sensor nodes in a three dimensional network. However,

the existing localization schemes in three dimensional

space are not completely examined.

7 Conclusion

Discovering accurate locations of sensor nodes in WSNs is

decisive to both network functions and most application

level tasks. In this survey, we presented key issues and

inherent challenges faced by mobility-assisted localization

techniques in WSNs. We discussed the algorithmic

approaches of various important fine-grained mobility-as-

sisted localization techniques. In this survey, mobility-as-

sisted localization techniques are usually referred to as

either range-based or range-free. However, such a wide

categorization is grossly insufficient, because it restricts

categorization for hardware requirements of the localiza-

tion schemes. In order to validate the proposed line of

investigation, we reviewed existing solutions, discussed the

difficulties of using range measurements and proximity
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information in details for mobility-assisted localization

techniques. In addition, well-known mobile anchor trajec-

tories presented in existing works are also reviewed. A

summary on simulation results of important mobility-as-

sisted localization techniques is also presented on the basis

of location accuracy, computation/communication costs

and number of nodes including mobile anchor. Several

open issues for further research have also been included.
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