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Abstract 
 

In modern days the need of speech signal processing using energy operators 
has drawn a lot of attention for researchers. The use of Teager Energy 
Operator and other differential energy operators in signal processing enables 
us a lot of new techniques to estimate and process the speech signal in noisy 
environment. In this paper we shall discuss the speech signal processing using 
the nonlinear energy operators. The simulation results are incorporated in 
support of theoretical analysis.  
 
Index Terms: TEO, Dyn operator, AM-FM signal, Instantaneous Frequency, 
Formants, ESA 

 
 
Introduction 
The Information we want to express is contained in our spoken words and the spoken 
words are conveyed by the speech signal. Before we can proceed to any further details 
of the speech signal we have to understand the characteristics and describe a suitable 
model for the speech signal productions. The term speech signal processing has a 
wide sense of meaning. Now the speech signal processing refers to the manipulation, 
acquisition, storage and transfer of the human utterances or voice signals by a 
computer. The signal processing is mainly done by keeping three major goals in mind. 
Firstly the original human voice signals are captured and process it to convert into the 
computer readable or recognizable format. This step is known as the speech 
recognition. Although the speech processing is the reverse process of the speech 
recognition but its applicability is totally dependent on the computer’s usability and 
versatility.  The speech compression is the technique where the original signal is 
compressed to hear, to store or to transmit the maximum amount of data transmission 
possible for a given set of time and space constraints. In this paper we start from the 
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human vocal system and discuss the amplitude and frequency modulation of speech 
signal and also the nonlinear energy operators and their applications in speech signal 
processing. In this paper we shall compare the TEO and Dyn operators in the context 
of AM-FM signals. Simulation results are incorporated in the result part of the each 
section in support of the theory. 
 
 
Speech Production Process 
The Human Vocal System 
The vocal tract system is main important thing in the considerations of the speech 
signal production. It is the shape of the vocal tract which determines the physical 
distinguishing factor of the speech. Generally the vocal tract system is considered as 
the speech production organ. As depicted in the Fig 1, vocal tract includes laryngeal 
pharynx, oral pharynx, oral cavity, nasal pharynx and nasal cavity. Typically in 
normal adult male it is approximately 17 cm long [1].  

 

 
 

Figure 1: The human vocal system. 
 
 

 As the acoustic wave passes through the vocal tract its frequency content or 
spectrum is altered by the resonances in the vocal tract known as formants. Hence we 
can easily estimate the structure of the vocal tract from the spectral shape of the vocal 
signal. Voice verification systems use the human feature derived from the vocal tract. 
The vocal mechanism is completely driven by the excitation source containing the 
information of the speaker.  In broader sense this excitation can be classified in to six 
categories. They are phonation, whispering, vibration, compression, frication and 
combination of all of these.  
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 Where, s[n] is the present output, p is the predictor co-efficient, ak is the predictor 
co-efficients, s [n-k] is the past output, G is the gain scaling factor and u [n] is the 
present input. The simple LP model based on the past output samples only can be 
expressed as 

 ∑
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 The prediction error can be defined as the difference between the actual values 
and predicted value as  
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 And from the expression (6) it is clear that the prediction error is similar to the 
scaled input signal. The mean squared error (MSE) can be given by 
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 More detailed analysis is beyond of this paper and this portion is omitted. In the 
linear prediction model of speech signals there are two process of analysis are present. 
Both of the process has some advantages and disadvantages when compared to each 
other. 
 
Auto correlation method 
In this method it is assumed that the signal is identically zero outside the analysis 
interval. Then it tries to minimize the prediction error whenever it is non zero. Due to 
the use of the windowed speech signal the error is most likely to be large at the start 
and end of the speech interval. The use of window like Hamming window utilizes the 
tapering of the speech segment to be analyzed to minimize the error. The most 
advantage of this method is that stability of the resulting model is ensured.  
 
Covariance method 
In contrast to the auto correlation method the covariance method of the LP, here the 
interval over which the mean-squared error (MSE) is minimized and speech is not 
taken to be zero outside this interval. Stability of this model cannot be guaranteed but 
usually for large analysis interval the predictor co-efficients are stable. Here the error 
auto correlation and spectrum are calculated in order to measure the whiteness of the 
speech signal. 
 
AM-FM Speech Signal Modeling 
We know that, ))(cos()()(

0
θττωω ++= ∫

t

mc dmttatx  is a real valued signal which has 

both an AM and FM structure and thus we call this type of signal as AM-FM signal. It 
is interesting to note that two different information signals can be simultaneously 
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transmitted in the amplitude a (t) and the frequency ωi (t), where we can write the 
instantaneous frequency [4, 5] of the signal as, 

 )()()( tmt
dt

d
t mci ωωφω +==  (1) 

 
 This type of AM-FM signals are widely and extensively used in the 
communication systems. By the term “speech resonances”, we refer to the oscillatory 
systems formed by the local cavities of the vocal tract which emphasizes and de-
emphasizes certain frequencies during the speech production as described earlier. In 
the LP modeling all the speech resonances are characterized by the poles of the 
transfer function of the linear filters that models the vocal tract [1, 6]. Now each pair 
of the complex conjugate poles refers to the second order resonator with exponentially 
damped cosine impulse response and so we have, 

 )cos()( θωσ += − tAetR c
t  (2) 

 
 The formant frequency is ωc where the factor σ controls the formant bandwidth 
(BW). This approach is based on the assumption that there is local stationarity present 
in the speech signal.  
 Teager had shown earlier that speech resonances can change rapidly both in 
frequency and amplitude within a single pitch period due to rapidly time-varying and 
separated speech air flow in the vocal tract. Now we know that the air passes through 
the vocal tract cavities and the effective cross-sectional areas of the air flow can vary 
rapidly causing modulations of the air pressure or velocity filed [6]. Thus we can 
model the modulation of the each speech resonance as 

 )](cos[)()( ttatR φ=  

 ])(cos[)(
0∫ ++= − t

mc
at dmttAe θττωω  (3) 

 
 And the total speech signal can be modeled as  
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 Where, the kth subscript refers to the kth resonances and K is number of speech 
formants [2]. 
 
 
Nonlinear Energy Operators 
The nonlinear energy operators can be capable of estimating the speech signal energy 
as these operators are basically energy tracking operators. The nonlinear differential 
energy operators like Teager-Kaiser Energy Operator (TEO) can detect formant AM-
FM modulations by estimating the product of their time varying amplitude and 
frequency. The Teager Energy Operator is considered to be a very high resolution 
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energy operator [7]. As described earlier the speech resonances can be modeled as 
AM-FM signals so demodulate the speech signals we have to study the AM-FM 
signals (Fig 1) in terms of nonlinear energy operators or in other words if we can 
demodulate the AM-FM signals we can easily extend our results for the so called 
speech signals. Maragos, Kaiser and Quatieri had developed the various energy 
separation algorithms (ESA) in order to separate the amplitude and frequency from 
the original signal. Brief discussions on those algorithms are discussed here. Instead 
of going through the detailed mathematical analysis of the algorithms we show the 
simulation results of those algorithms.  
 
Definition of TEO 
The nonlinear Teager operator can be defined as 

 ( )( ) ( ) ( ) ( )⎥⎦
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 And the discrete version of the operator can be defined as  

 [ ][ ] [ ] [ ] [ ]112 +−−= nxnxnxnxψ  (6) 
 
 The TEO can also be defined from the system equation of an undriven linear 
undamped oscillator [11, 12] as well as from the Lie Bracket operator [13] as 
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Definition of Dyn Operator 
The definition of Teager Energy Operator was first given by J. F. Kaiser in the year 
1991 [12]. It was a nonlinear approach to the speech signals. Similarly J. Rouat 
defined another nonlinear energy operator called Dyn Operator in the same year. The 
Dyn operator is also an energy tracking operator and it can be defined as 

 )()()]([
.

txtxtxDyn =  (8) 
 
 This operator is not so conventional as compared to the TEO and has some less 
importance in the field of speech signal processing. Both the energy operator defined 
here has some special advantages and disadvantages which will be discussed later. 
Other higher order differential energy operators like energy velocity and energy 
acceleration operators [13] are used also in the field of the speech signal processing 
which are omitted here. 
 
Dyn Operator vs. Teager Energy Operator 
The Dyn operator has the advantage of less sensitive to noise and quantization errors 
as compared to the TEO. But the most important disadvantage of it is that we have to 
post process the output of the Dyn operator in order to extract the frequency and 



Speech Signal Processing: Non-Linear Energy Operator 211 

 

amplitude information. The TEO is free from this problem and it’s our perception that 
being free from post processing of the signals the TEO offers less circuit complexity 
as compared to the Dyn operator.  
 
 
Energy Separation Algorithms 
The energy separation algorithms are the various processes to separate the energy, 
amplitude and frequency components using energy operators from a signal. The ESA 
can be broadly classified into two major categories as: 

1. Continuous Energy Separation Algorithm 
2. Discrete Time Energy Separation Algorithms 

 
The discrete time energy separation algorithms are again of three major types  

1. DESA 1 
2. DESA 2 
3. DESA 1a 

 
 We shall discuss all of these algorithms in brief starting from the CESA and then 
followed by the DESAs. 
 
 
Continuous Energy Separation Algorithm 
For constant amplitude/ frequency signals 
The continuous energy separation algorithm (CESA) for a fixed amplitude or 
frequency cosine signals are discussed here. We assume that the signal can be 
expressed as, )cos()( θω += tAtx c where its amplitude A and frequency ωc are 
constant. Then we have its derivative as 
 )sin()(

.
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 We have the TEO output of the original signal and its time derivative signal as 
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 Then from the relation (9) the amplitude and frequency can be estimated as 
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For AM-FM signals 
We consider the real valued AM-FM signal as defined in Section II for CESA 
analysis of AM-FM signals. We have the TEO output for the real valued AM-FM 
signals 

 )()(cos
2

)2sin()())](cos()([ 2
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2

2
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atta ψφφφφφψ ++=   (11) 
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AM-FM signals can be rewritten as 
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 Since we concentrate on the narrowband AM-FM signals so we have error term 
having maximum value much less than that of the desired value D (t) or in other 
words we have, 

 2
.
)()]cos([ φφψ aa =  

 
 When the following condition is satisfied, 
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 To separate the amplitude/ frequency information from the signal we need to 
apply the TEO or ψ to the derivative of AM-FM signal i.e.  

 21
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 From (11) we get that, 
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 Now we see that the desired term for energy separation is 
4.

2φa which can be 
combined with D(t) to have simple equations for the frequency and amplitude signals. 
But the analysis does not consider the effect of the other cross energy terms which 
occurs during the analysis. This detailed analysis can be found in [6, 15]. 
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Discrete Time Energy Separation Algorithm-1 (DESA-1) 
This algorithm was proposed by Maragos, Kaiser and Quatieri in 1992 in order to 
estimate the amplitude envelope and the instantaneous frequency of discrete time 
AM-FM signals using discrete time energy operators. In this case we shall discuss 
only the constant amplitude/frequency signals for the discussion.  
 We have the discrete version of TEO defined as 

 [ ][ ] [ ] [ ] [ ]
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 A constant amplitude/frequency signal having the structure of  
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 Now rewriting the derivative with help of the two-sample backward difference 
and we have [6] 
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 This result will lead us to the following results as 
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 The detailed analysis for the AM-FM signals can be found in [6, 15].  
 
Discrete Time Energy Separation Algorithm-2 (DESA-2) 
Instead of using two sample derivatives in DESA-1 if we use three sample derivative 
or three sample symmetric differences i.e. if we use ]1[]1[][ −−+= nxnxny , then we 
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have the DESA-2 algorithm. The new expression for the amplitude and frequencies 
are given as: 
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Discrete Time Energy Separation Algorithm -1a (DESA-1a) 
The DESA-1a is the special form of DESA-1 where 1 refers to two sample difference 
and ‘a’ denotes that we have used asymmetric derivative in this case. The detailed 
analysis of DESA-1a is discussed in [6, 14, 15] and hence we omit the analysis 
portion of this algorithm. 
 
 
Alternative Energy Separation Algorithms 
We have previously discussed the CESA and three DESAs in brief. In addition to 
those ESAs there are two more alternative ESAs are present and we shall give a very 
brief introduction to them. With the help of these alternative ESAs we are also able to 
find out the amplitude and frequency component of the AM-FM signals. 
 
Alternative CESA 
For a constant cosine signal,   
 )cos()( θω += tAtx c  
 
using the alternative CESA we can easily write for the amplitude and frequency as 
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 The amplitude estimator can be represented with the energy operator terms as 
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 This alternative CESA is not a low bandwidth function due to presence of the 
derivative terms of the original signal. But the previous CESA is a low bandwidth 
function and hence it is expected to give out stable and less noisy outputs when 
compared to this alternative CESA [6]. 
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Alternative DESA 
In the alternative DESA we combine various time shifted version of the signals and 
their output form the ψ (.) in order to obtain a system of equations whose solutions 
will lead us to the amplitude and frequency separation from the original signal.  
 For a discrete cosine signal we have )cos(][ θ+Ω= nanx c  and thus we can write 
that, 
 ( )θ+ΩΩ=−++ nAnxnx cc coscos2]1[]1[  

 cnx Ω= cos][2   
 
 Thus the frequency and amplitude can be separated as 
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 This algorithm has the obvious advantage of having no signal difference and 
instead of that it averages the signal and hence the alternative DESA may more robust 
than the previous DESAs. However the algorithm does not generalize to the time 
varying cases [6]. 
 
 
Computational Complexities in ESAS 
The computational complexity is one of the important parameters during the 
computational delays of the ESAs. The DESAs are very simple algorithms to compute 
and all the complexity are linear type. A table listing the complexities of the describe 
DESAs in terms of number of operations in per sample is listed in Table-1. Among 
the DESAs the DESA-2 algorithm is the fastest while the DESA-1 is the slowest but it 
worth to note that the difference is very small in practical cases.  

 
Table 1: Computational Complexities of ESAs 

 
Operations Energy Operator DESA-1DESA-1a DESA-2 

Addition 1 6 5 4 
Multiplication 2 8 8 8 

Square root 0 1 1 1 
Cos-1 0 1 1 1 

w 3 5 4 5 
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Simulation Results 
For the simulation purpose MATLAB and SIMULINK  are extensively used. We start 
our simulation from the speech signal and its determination of formants along with 
FFT is shown here. The Fig. 3 shows a typical speech signal along with its energy 
plotting and power spectrum density and determined formants.  
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(b) 
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Figure 5: Plot showing the result for the frequency estimation by the CESA. 

 
We now comeback to the simulation part of the DESA-1. The simulation for DESA-1 
is done for simple AM signal. In the Fig 6 we have shown the results.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6: Simulation results for DESA-1. (a) Original signal used for analysis by 
DESA-1; (b) Estimated energy by the nonlinear energy operator; (c) Estimated 
instantaneous frequency; (d) Estimated amplitude envelope. 
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Conclusions 
In this paper, modelling and analysis of speech signals is discussed in the context of 
the Teager energy operator. Simulation results shows a good approximation in the 
estimation of the amplitude, energy and instantaneous frequency of the speech signal 
can be done with the help of DESA 1 algorithm. Conventional TEO can be utilized in 
the extraction of the message signal from the modulated speech signal as discussed in 
[23].  
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