
Su Shiung LamUniversiti Malaysia Terengganu | umt · Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu
Su Shiung Lam
Ph.D. (Chemical Engineering) (Cambridge)
About
448
Publications
111,163
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,752
Citations
Citations since 2017
Introduction
We work on Waste Management, Thermal Process (Pyrolysis, Gasification, Microwave Heating), Waste & Biomass Utilization, Green Technology. I also serve as Deputy Editor-in-Chief of Journal of Sustainability Science & Management, Associate Editor for Environmental Geochemistry & Health, Energy & Environment, Environmental Advances, Frontiers in Energy Research, and Guest Editor for Journal of Hazardous Materials, Bioresource Technology, Environmental Pollution, Environmental Research, etc.
Additional affiliations
Education
January 2009 - December 2011
January 2008 - January 2009
May 2005 - June 2007
Publications
Publications (448)
With the recent mortalities of Sumatran rhinoceros in Malaysia there is only 80 specimens left making it among the most threatened mammals worldwide.
Microwave vacuum pyrolysis was examined and compared to conventional pyrolysis for its technical and economic feasibility in co-processing of waste plastic and used cooking oil simultaneously to generate fuel product. The pyrolysis demonstrated beneficial process features with respect to high heating rate (29 °C/min) to provide fast heating, high p...
Traditional plywood is widely used in furniture but not utilized in structural components due to its poor mechanical properties and water resistance. This research is aimed at fabricating special plywood with ultra-high strength using environmentally friendly vacuum assisted resin transfer molding (VARTM) technology. Using the clean VARTM technolog...
Various compounds that are emerging contaminants pose a significant risk to aquatic ecosystems and human health due to their potential to harm human health and the environment.Thus, there is an urgent requirement to use effective remediation methods and techniques to minimize the harmful impact of these contaminants on the environment. Biochar (BC)...
Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels, and the incineration of municipal soli...
Fast growing Kariba weed causes major problems and pollution on freshwater and shellfish aquaculture systems by interfering with nutrient uptake of crops, restricting sunlight penetration, and decreasing water quality due to massive biomass of Kariba weed remnants. Solvothermal liquefaction is considered an emerging thermochemical technique to conv...
The Environmental Protection Agencies (EPAs) of Denmark, Sweden, Norway, Germany and the Netherlands submitted a proposal to the European Chemical Agency (ECHA) in February 2023 calling for a ban in the use of toxic industrial chemicals per- and polyfluoroalkyl substances (PFAS). These chemicals are highly toxic causing elevated cholesterol, immune...
Economic development brings environmental challenges of which air pollution poses serious risks to humans and ecosystems. Air pollutants include volatile organic compounds (VOCs), inorganic air pollutants (IAPs) and particulate matter (PMs). Plant leaves may reduce such air pollution through adsorption and stomatal absorption. At the same time, air...
The properties of few-layered transition metal dichalcogenides (TMDs) are extremely interesting in the category of two-dimensional (2D) materials due to their feasibility of band gap engineering, high carrier mobility, and the ability to tune carrier concentration, which makes its utilization in wide range application. In the current study, we repo...
CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures...
Nanocomposites play critical roles in catalytic oxidation, wastewater treatment, and other chemical engineering fields. Therefore, the strategies to develop multifunctional nanocomposite systems through chemical synthesis, physical doping, and assembly have been explored. The existing challenges including fussy preparation processes and conditions...
The research of pyrolytic thermodegradation of plastic wastes has received much attention. However, detailed combustion behavior and pyrolysis kinetics of microplastics are still absent in the current research. Understanding the characteristics and kinetics of microplastic pyrolysis is vital for designing and optimizing operational conditions. Addi...
There is a growing concern about human health of residents living in areas where mining and smelting occur. In order to understand the exposure to the potentially toxic elements (PTEs), we here identify and examine the cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in scalp hair of residents living in...
Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under differe...
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and...
Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area...
The high polymer and low wood content of current transparent wood has limitation in the mechanical strength and hence obstruct green sustainable transition of the building industry. In this study, a novel method for manufacturing transparent wood was reported by minimizing the usage of polyethylene glycol using partial impregnation followed by a de...
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including t...
Adsorption capacity, selectivity and adsorption rate are all important indicators to judge the performance of an adsorbent. At present, most of the studies on gold recovery with adsorbents have weakened the consideration of adsorption efficiency. Therefore, there is a need to develop an adsorbent with fast adsorption rate for gold ions to ensure hi...
Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is ass...
Wood-based panels, which contain wood raw materials along with urea-formaldehyde (UF) or phenol-formaldehyde (PF) resins, can increase the indoor air concentration of formaldehyde. Formaldehyde can stimulate the upper respiratory mucosa and cross-linking reaction with cell proteins and DNA, and this can result in degeneration and necrosis of respir...
Hydrogen sulfide (H2S) is a toxic gas released from natural occurrences (such as volcanoes, hot springs, municipal waste decomposition) and human economic activities (such as natural gas treating and biogas production). Even at very low concentrations, H2S can cause adverse health impacts and fatality. As such, the containment and proper management...
Different mesoporous aluminate MAl2O4 spinels (with M: Mg, Ni, and Co) were fabricated via a sol–gel procedure. The fabricated spinels each were then used as support for a Ni active metal to synthesize a catalyst, and the performance of the spinel as part of the catalyst used in glycerol steam reforming (GSR) and dry reforming (GDR), respectively,...
Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highes...
Microalgae have been promoted as important feedstocks for producing biofuels and bioproducts. However, their production on a large scale would require a large amount of water and nutrients. Considering the importance of food security and the high economic value of microalgal biomass, food and feed applications should be prioritized if microalgae ar...
Poplar is an important wood bioresource and is one of the most dominant plantations in the world with high content of cellulose (52.99%). However, the pyrolytic products produced from poplar pyrolysis are not well studied and applied. In this study, pyrolysis of poplar mixed with different types and the ratio of nanometal oxide catalyst (NiO: 0.50...
The environmental concerns caused by textile waste require technological development to support recycling and re-utilization. Incineration and landfill of textile waste are still widely used, and they lead to soil and water pollution as well as emissions of greenhouse gases. Recently, various research studies on textile waste treatment try to find...
Worldwide, 45 million tons of waste cotton textiles are produced annually, of which 75% is burned and buried, leading to serious environmental pollution. In this study, a method for directly preparing colored regenerated cellulose fibers (CRCFs) from dyed cotton textile waste (DCTW) was demonstrated. The tensile strength of CRCFs reached 226 MPa, w...
Indoor air pollution results in mortalities worldwide, burdening especially the low- and middle-income countries. The volatile and semi-volatile organic compounds (VOCs and SVOCs) emitted from indoor structures and furniture materials are important sources of indoor air pollution. Exposure to VOCs such as formaldehyde and benzene has been associate...
The utilization of biomass energy is desirable to achieve carbon neutrality in the world. Hydrothermal carbonization of coconut shell was performed using center composite design with an aid of response surface methodology to determine the individual effects and combined effects of parameters on responses. The experimental design incorporates two va...
Household food waste (FW) was converted into biohydrogen-rich gas via steam gasification over Ni and bimetallic Ni (Cu-Ni and Co-Ni) catalysts supported on mesoporous SBA-15. The effect of catalyst method on steam gasification efficiency of each catalyst was investigated using incipient wetness impregnation, deposition precipitation, and ethylenedi...
The valorization and conversion of biomass into various value-added products and bioenergy play an important role in the realization of sustainable circular bioeconomy and net zero carbon emission goals. To that end, microwave technology has been perceived as a promising solution to process and manage oil palm waste due to its unique and efficient...
Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in det...
Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This...
Microplastics are among the major contaminations in terrestrial and marine environments worldwide. These persistent organic contaminants composed of tiny particles are of concern due to their potential hazards to ecosystem and human health. Microplastics accumulates in the ocean and in terrestrial ecosystems, exerting effects on living organisms in...
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the u...
Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobil...
To promote a circular economy and mitigate pollution, the bioplastics industry has begun to phase out polymers derived from petrochemicals (1–3). This action is a positive step, but it doesn’t affect the many bioplastics on the market, which also contain potentially harmful additives. Given that bioplastics will likely replace polymers, it is cruci...
Empty fruit bunch (EFB) is an industrial waste that is abundantly available in Malaysia. Traditionally, EFBs were burned and dumped on the plantation site, resulting in global warming pollution from methane and carbon dioxide. In this study, the EFB was transformed into a high-surface area of activated biochar through a microwave physicochemical ap...
Microwave steam pyrolysis (MSP) is an innovative thermochemical approach to converting biomass into high-quality biochar using steam to improve the dielectric heating of microwave radiation. Biochar shows high fixed carbon and carbon contents at a maximum temperature of 550 °C in 10 min. The MSP achieved a heating rate of 112 °C/min from 200 °C to...
Pollution of phenolic effluent from spice and plastics factories has become increasingly serious. Thus, developing a green and highly efficient adsorbent to remove phenolic compounds from wastewater is of urgent need. In this study, cellulose graft copolymer was synthesized through grafting 4-vinylpyridine monomer and polyethylene glycol methacryla...
In order to enhance caproic acid concentration from wheat straw fermentation and elucidate the microbial community inside the system. This study investigated ethanol addition with different mode for wheat straw co-cultured with rumen fluid. The results showed that segmentation addition of ethanol resulted in a higher caproic acid of 1473 mg/L. The...
A study was conducted on the decomposition reaction of liquid hydrocarbons induced by liquid plasma and photocatalyst. This study is to obtain useful resources by recycling waste liquid-hydrocarbons. Titanium dioxide and TiO2-doped with a metal (and nitrogen atoms) were used as photocatalysts individually in the study. First, H2 and carbon were sim...
This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen...
Microwave simulation is significant in identifying a reactor design allowing the biomass to be heated and processed evenly. This study integrated the radio frequency and transient heat transfer modules to simulate the microwave distribution and investigated the performance of microwave heating in the cavity. The simulation results were compared wit...
Nickel-impregnated TiO2 photocatalyst (NiTP) responding to visible light was prepared by the liquid phase plasma (LPP) method, and its photoactivity was evaluated in degrading an antibiotic (oxytetracycline, OTC). For preparing the photocatalyst, nickel was uniformly impregnated onto TiO2 (P-25) powder, and the nickel content increased as the numbe...
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts...
We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 M...
The conversion of agricultural and forestry waste biomass materials into bio-oil by mild hydro-thermal technology has a positive effect on extending the agricultural industry chain and alleviating the world energy crisis. The interaction investigation of biomass components during bio-oil formation can be significant for the efficient conversion of...
Surface water supply provides the vast majority of the world's drinkable water, however, surface water may contain a broad variety of pollutants originated from various sources, such as households, industry, and agriculture. As a result, it is critical to achieve acceptable water quality while also reducing the organic and inorganic impurities. Pot...
The boom of the biodiesel industry has ramped up global glycerol production. Unfortunately, a large portion of the glycerol generated by this growing industry is recklessly discharged into the environment, overshadowing the environmental benefits of biodiesel fuel. Glycerol can be a valuable chemical platform in various processes to produce a wide...
Liquid transportation biofuel production is a promising strategy to reduce greenhouse gas emissions. Hydrothermal gasification (HTG) has shown great potential as an effective method for valorizing wet biomass. The high-quality syngas produced using the HTG process can be chemically/biochemically converted to liquid biofuels. Therefore, this paper a...
Integrated energy systems are getting high attention due to their synergistic effects on both the energy efficiency and process economy. This study demonstrates the similar effect of coupling four processes such as solid oxide electrolyzer cell (SOEC)-based hydrogen production from renewable energy, synthetic natural gas (SNG) production, steam Ran...
Biofuels have gained much attention as a potentially sustainable alternative to fossil fuels to tackle climate change and energy scarcity. Hence, the increasing global interest in contributing to the biofuel supply chain (BSC), from biomass feedstock to biofuel production, has led to a huge amount of scientific production in recent years. In this v...
As a traditional nourishing Chinese herbal medicine, Cornus officinalis Sieb. et Zucc. has a long history of application. At present, only the flesh of the fruit of Cornus officinalis is used as a medicine, which wastes a large quantity of ingredients in the nutlet. To improve the comprehensive utilization efficiency of the fruit’s nutlet, which co...
Metal nanoparticles have found applications in many fields such as molecular diagnostics, electronic devices and environmental remediation. Nonetheless, nanomaterial production often involves hazardous chemicals and reactions, and some toxic nanoparticles end up contaminating the environment. Therefore, synthesis of nanomaterials from safe raw mate...
Microwave heating technique has gained widespread popularity in pyrolyzing biomass feedstocks due to its several unique features over the conventional furnace heating method. Accordingly, the present work aimed at finding the optimal operating conditions of a microwave reactor applied to pyrolyze horse manure from the exergetic, exergoeconomic, and...
In this study, a bacterial carbonic anhydrase (CA) was purified from Corynebacterium flavescens for the CO2 conversion into CaCO3. The synthesized CaCO3 can be utilized in the papermaking industry as filler material, construction material and in steel industry. Herein, the CA was purified by using a Sephadex G-100 column chromatography having 29.00...
Electro-fermentation (EF) has been proposed as a method to improve the yield of medium-chain fatty acid (MCFA). In this study, MCFA production from Chinese liquor wastewater (yellow water) was investigated and corresponding composite electron donors (lactate and ethanol in yellow water) were investigated by different electrical stimulation modes. T...
Yellow mealworm (Tenebrio molitor) is a supplementary protein source for food and feed and represents a promising solution to manage grain contaminated with Aflatoxin B1 (AFB1). In this study, AFB1 present in different concentrations in wheat bran was treated and removed via bioconversion by yellow mealworm of different instars, with emphasis on th...
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are...
The rapid development of textile industry and improvement of people's living standards have led to rapid production of cotton textile and simultaneously increase the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24 % of the total textile wastes. To effectively manage the wastes,...
Sludge pyrolysis has sparked the interest of researchers because of its capability to dispose of hazardous residues while producing valuable bioproducts. Numerous expensive and laborious experiments are conducted to understand sludge pyrolysis. Machine learning technology can eliminate the need for experimental measurements by systematically learni...
Hydrogen sulfide (H2S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H2S from various emitting sources (such as oil gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effec...
Most biomass is composted into low-grade bio-fertiliser or processed into energy fuel for burning. At the same time, waste palm shell is potentially converted into highly porous biochar for dechlorination in water treatment. A single-mode microwave activation was developed to perform microwave activation that incorporated the application of steam,...
In this study, non-catalytic and catalytic pyrolysis of chicken manure (CM) were investigated to understand the pyrolysis kinetics and product distribution of CM by thermogravimetric analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). TGA and the apparent activation energy changes, calculated using the Ozawa method, indica...
Biochar (BC) application to agricultural soil can impact two nitrogen (N) gases pollutants, i.e., the ammonia (NH3) and nitrous oxide (N2O) losses to atmospheric environment. Under rice-wheat rotation, applied at which growth cycle may influence the aforementioned effects of BC. We conducted a soil column (35 cm in inner diameter and 70 cm in heigh...
The current global plastic crisis is triggered by several factors including increased costs of petrochemical feedstock and Covid-19 disruption of the transport sector (Yuan et al., 2021). This disruption of world-wide supply chains of polyethylene, polypropylene and other petroleum-based hydrocarbon chemicals has significantly increased shortage an...
The hazardous nature of certain azeotropic mixtures has urged the researchers to explore the separation techniques which can impart a contamination free environment. Despite of causing environmental concerns, these azeotropic mixtures are responsible for causing serious health issues to humans and animals. More specifically, in this article, we hav...
The net-zero energy concept has attracted increasing attention to facilitate the development of sustainable built environments. Despite promising progress, there is no comprehensive approach that simultaneously considers all technical, economic, environmental, and social parameters. The present study uses the extended exergy accounting concept in t...
This study was set to use metal-organic framework nanoparticles in diesel fuel formulation for the first time. Zeolitic imidazolate framework nanoparticles were synthesized using a green technique at room temperature, characterized using various characterization techniques, and used in a diesel-water emulsion fuel at two different concentrations (1...
Nanoplastics are emerging contaminants of concern for living organisms and ecosystems, yet nanoplastics are difficult to extract and analyse. Once released into the environment, the fate and behavior of nanoplastics are controlled by physical, chemical, and biological factors. Here, we review nanoplastics weathering, aggregation, biofouling, and bi...
Raw biochar with high pH possibly stimulated ammonia (NH3) volatilization in the agricultural soil. We hypothesized that the modified biochar (MBC) with low pH can synchronically decrease the NH3 and nitrous oxide (N2O) losses. We performed a two-year experiment to clarify how citric acid MBC influence the NH3 volatilization and N2O emission as wel...
The emergence of bioenergy provides a solution to the environment and energy crises caused by the indiscriminate use of fossil fuels. Pyrolysis technology has broad application prospects in bioenergy production and waste disposal, providing a solid guarantee for the sustainable development of human beings and the environment. As an endothermic proc...