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Abstract—We consider a discrete-time semi-Markov system,
with a finite state space. The empirical and the exact maximum
likelihood estimator for the semi-Markov kernel are given in
the case of multiple parallel observations of the same process.
Afterwards, we describe a reliability model described by a
discrete-time semi-Markov process and we derive basic reliability
measures, such as reliability, availability, failure rates and mean
hitting times. Finally, we present a comparison between empirical
and exact maximum likelihood estimators for these measures
through a numerical application.

Index Terms—Discrete-time semi-Markov system, nonpara-
metric estimation, exact maximum likelihood estimation, relia-
bility, mean hitting times.

I. DISCRETE-TIME SEMI-MARKOV SYSTEM

In recent literature, discrete-time semi-Markov models have
achieved significant importance in probabilistic and statisti-
cal modeling especially the ones with a finite space state.
System reliability and relative dependability measures consist,
amongst others, an important application field. The term chain
will be used for a discrete-time semi-Markov process. A
general study on the semi-Markov chains is given by Barbu
and Limnios [1] toward applications. Some statistical inference
problems, such as the proposition of a computation procedure
for solving the corresponding Markov renewal equation and
the study of an empirical estimator of the semi-Markov kernel
and other measurements in the case of one observed trajectory,
are presented.

We consider a semi-Markov chain with finite state space and
the sequence of the backward recurrence times, which form
a coupled Markov chain. The basic properties of this Markov
chain have been studied in Chryssaphinou et al. [2]. Trevezas
and Limnios (2011) [3] present the exact maximum likelihood
(EML) estimation of the semi-Markov kernel for a single
trajectory of a semi-Markov system up to an arbitrary fixed
time, when the length of the observation tends to infinity, and,
next, when multiple independent observed trajectories gener-
ated by the same semi-Markov kernel, censored at a fixed time,
when the number of trajectories tends to infinity, and study its
asymptotic properties. In the present work, we focus on the

latter case for a nonparametric semi-Markov model, which,
from a practical point of view, corresponds to the evolution
of multiple identical components of a repairable system or
systems. Based on the maximum likelihood estimation of the
coupled Markov chain, we examine the estimation of several
reliability measures of a discrete-time semi-Markov system.

We give now all the necessary preliminaries concerned a
semi-Markov chain. From now on we will use the following
notation for the non-zero natural numbers N∗ = N \ {0} and
take by convention that 0/0 := 0.

Consider the finite set E = {1, . . . , s}, s ∈ N∗, and an
E-valued stochastic chain Z := (Zk)k∈N. Let J := (Jn)n∈N
be the successive visited states of Z with state space E and
S := (Sn)n∈N are the jump times of Z with values in N with
0 = S0 ≤ S1 ≤ · · · ≤ Sn ≤ Sn+1 ≤ · · · . Also, let us denote
Xn := Sn−Sn−1, n ∈ N∗, as the sojourn times in these states
with values in N.

Definition 1. The stochastic process (J ,S) := (Jn, Sn)n∈N,
with state space E, is said to be a Markov renewal chain
(MRC), if, for all j ∈ E, k ∈ N and n ∈ N, it satisfies a.s.
the following equality

P(Jn+1 = j,Xn+1 = k|J0, . . . , Jn;S1, . . . , Sn)

= P(Jn+1 = j,Xn+1 = k|Jn).

In this case, Z is called a semi-Markov chain (SMC).

Actually, Z gives the state of the process at time k. We
assume that the MRC (J ,S) is time homogeneous, that is,
the above probability is independent of n and Sn. The process
J is a Markov chain (MC) with state space E and transition
kernel p := (pij ; i, j ∈ E), where

pij := P(Jn+1 = j|Jn = i),

called the embedded Markov chain (EMC) of Z. We denote by
N(k), k ∈ N, the process which counts the number of jumps
of Z in the interval (0, k], defined by N(k) := max{n ≥ 0 :
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Sn ≤ k}. The SMC Z is associated with the MRC (J ,S) by

Zk := JN(k), k ∈ N.

Let Ni(k) be the number of visits of Z to state i ∈ E up
to time k, and Nij(k) the number of direct jumps of Z from
state i to state j up to time k. To be specific,

Ni(k) :=

N(k)∑
m=1

1{Jm−1=i}

Nij(k) :=

N(k)∑
m=1

1{Jm−1=i,Jm=j},

where 1A is the indicator function of the set A.

Definition 2. The transition kernel q(k) := (qij(k); i, j ∈
E), k ∈ N, is called the discrete-time semi-Markov kernel
(DTSMK) of the SMC Z and it is defined by

qij(k) := P(Jn+1 = j,Xn+1 = k|Jn = i). (1)

For all i, j ∈ E, let f(k) := (fij(k); i, j ∈ E) be the
conditional distribution function of the sojourn time in any
state i, given that the next visited state is j, j 6= i, defined as
follows

fij(k) := P(Xn+1 = k|Jn = i, Jn+1 = j)

=

{
qij(k)
pij

, if pij 6= 0,

1{k=∞}, if pij = 0.

Definition 3. For all i, j ∈ E, let us denote by H(k) :=
diag(Hi(k); i ∈ E)>, k ∈ N, the sojourn time cumulative
distribution function in any state i

Hi(k) := P(Xn+1 ≤ k|Jn = i) =
∑
j∈E

k∑
l=0

qij(l).

and by H̄(k) := (H̄i(k); i ∈ E)>, k ∈ N, the survival
function in any state i.

Let us denote by µii the mean recurrence time of state i
for the SMC Z, by π = (πi; i ∈ E) and ν = (νi; i ∈ E),
the stationary distribution of the SMC Z and the EMC J ,
respectively. Let m := (mi; i ∈ E)> be the vector with mi

to be the mean sojourn time of Z in state i ∈ E, i.e. mi :=∑
n∈N[1−Hi(n)], and m̄ the mean sojourn time of Z defined

as m̄ :=
∑
k∈E νkmk.

Definition 4. The matrix function ψ(k) := (ψij(k); i, j ∈ E),
k ∈ N, is called Markov renewal function and it is defined by

ψij(k) := P(

k⋃
n=0

{Jn = j, Sn = k}|J0 = i)

:=

k∑
n=0

q
(n)
ij (k),

where q(n)(k) := (q
(n)
ij (k); i, j ∈ E), n, k ∈ N, is the n-fold

discrete-time convolution (see [1]), given as

q
(n)
ij (k) := P(Jn = j, Sn = k|J0 = i).

Let I := (I(k); k ∈ N), where I(k) := (1{i=j}(k); i, j ∈
E) and

1{i=j}(k) :=

{
1, if i = j, k ≥ 0,

0, otherwise.

We denote by ∗, the convolution between two (matrix-valued)
functions.

Definition 5. The transition function P (k) := (Pij(k); i, j ∈
E), k ∈ N, of the SMC Z is defined by Pij(k) := P(Zk =
j|Z0 = i) and, in matrix form, is written as

P (k) = ψ ∗ (I −H)(k).

The definition of the sequence of the backward recurrence
times is now given.

Definition 6. For all k ∈ N, we define U := (Uk)k∈N as the
sequence of the backward recurrence times for the SMC Z
given by

Uk :=

{
k, if k < S1,

k − SN(k), if k ≥ S1.

We note that, for all k ∈ N, Uk ≤ k. The stochastic process
(Z,U) := (Zk, Uk)k∈N is a MC with values in E×N. In our
case, where S0 = 0, we get that U0 = 0.

Definition 7. The transition matrix PB := (pi,u;j ; i, j ∈
E, u ∈ N) of the MC (Z,U) is defined as

pi,u;j

:=

{
P(Zk+1 = j, Uk+1 = 0|Zk = i, Uk = u), j 6= i,

P(Zk+1 = i, Uk+1 = u+ 1|Zk = i, Uk = u), j = i.

The value of Uk+1 is fully determined by the value of Zk+1.
So, for all (i, u) ∈ E × N and all k ∈ N such that P(Zk =
i, Uk = u) > 0, the transition probabilities of the MC (Z,U)
are written as

pi,u;j =

{
qij(u+1)

H̄i(u)
, j 6= i,

H̄i(u+1)
H̄i(u)

, j = i.

We assume that the MRC (J ,S) is irreducible and ape-
riodic, with finite mean sojourn time. The MC (Z,U) is
therefore irreducible.

II. EMPIRICAL AND EXACT MAXIMUM LIKELIHOOD
ESTIMATION

In this section, we present the nonparametric estimation of
semi-Markov chains by two different aspects; the empirical
and EML estimation. We observe a SMC in the interval [0,M ],
where M ∈ N∗ a fixed censoring time.

Definition 8. Let us define the observation of the SMC Z
censored at time M ∈ N∗

HM := {Zu; 0 ≤ u ≤M}
:= {J0, X1, J1, . . . , XN(M), JN(M), UM},

where UM := M − SN(M).
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Now, we suppose the realization of L, L ≥ 2 independent
observed trajectories observations censored at a time M ∈ N∗,
fixed for all, when the number of the observations tends to
infinity. We collect the total information in the interval [0,M ]
and we exclude the results without separating the different
trajectories.

Let N l(M), N l
i (M) and N l

ij(M) be the l-th realizations of
the counting processes N(M), Ni(M) and Nij(M), respec-
tively, as defined in the previous section.

For all i, j ∈ E, k ∈ {0, 1, . . . ,M}, M ∈ N∗, and
l = {1, . . . , L}, we define the following discrete-time counting
process N l

ij(k,M) that gives the number of visits from state
i to state j, up to time M , with sojourn time in state i equal
to k, for the l-th trajectory, defined as

N l
ij(k,M) :=

N l(M)∑
n=1

1{Jl
n−1=i,Jl

n=j,Xl
n+1=k}.

Definition 9. Let L be the number of independent observed
trajectories up to fixed time M ∈ N∗. For any i, j ∈ E and any
k ∈ {0, 1, . . . ,M}, we define the following counting processes

Ni(M,L) :=

L∑
l=1

N l
i (M),

Nij(M,L) :=

L∑
l=1

N l
ij(M),

Nij(k,M,L) :=

L∑
l=1

N l
ij(k,M).

For both empirical and EML estimation, the estimated initial
law α̂(M,L) := (α̂i(M,L); i ∈ E) and the estimated
transition matrix p̂(M,L) := (p̂ij(M,L); i, j ∈ E) of L
trajectories, for any M ∈ N∗, are given by

α̂i(M,L) :=
Nα
i (L)

L
:=

1

L

L∑
l=1

1{Zl
0=i},

p̂ij(M,L) =
Nij(M,L)

Ni(M,L)
.

Definition 10. Let L independent observations of a SMC Z
up to a fixed censoring time M ∈ N∗. For any i, j ∈ E
and k ∈ {0, 1, . . . ,M}, the empirical estimator q̃(k,M) :=
(q̃ij(k,M); i, j ∈ E), for the DTSMK (2) is given as follows

q̂ij(k,M,L) =
Nij(k,M,L)

Ni(M,L)
. (2)

The EML estimator is based on the time from the last jump
of an observation up the time k.

Definition 11. For all i, j ∈ N, k ∈ {0, 1, . . . ,M}, M ∈
N∗, and l = {1, . . . , L}, we define the following discrete-time
counting processes

1) NB,l
i,u (M) :=

∑M
n=1 1{Zl

n−1=i,U l
n−1=u} : the number

of visits in the state (i, u) ∈ E × {0, 1, . . . ,M − 1},
up to time M ∈ N∗, neglecting the last visited state
(JM , UM ).

2) NB,l
i,u (j,M) :=

∑M
n=1 1{Zl

n−1=i,Zl
n=j,U l

n−1=u} : the
number of visits of Z from state i to state j, with
backward recurrence time u, up to time M ∈ N∗.

Definition 12. For all i, j ∈ E and u ∈ {0, 1, . . . ,M − 1},
M ∈ N∗, we define the counting processes

NB
i,u(M,L) :=

L∑
l=1

NB,l
i,u (M),

NB
i,u(j,M,L) :=

L∑
l=1

NB,l
i,u (j,M).

Proposition 1 ([3]). For any fixed time M ∈ N∗, the EML
estimator q̃(k,M,L) := (q̃ij(k,M,L); i, j ∈ E), i, j ∈ E,
i 6= j, k ∈ {1, . . . ,M}, for the DTSMK (2) in case of L
trajectories is given as follows

q̃ij(k,M,L)

=

{
p̃i,0(j,M,L), k = 1,

p̃i,k−1(j,M,L)
∏k−2
u=0 p̃i,u(i,M,L), 2 ≤ k ≤M,

(3)

where

p̃i,u(j,M,L) =
NB
i,u(j,M,L)

NB
i,u(M,L)

, u ∈ {0, 1, . . . ,M − 1}.

III. RELIABILITY MODEL

A scientific field that semi-Markov models have been ap-
plied is, among others, reliability theory. We present the main
measures of reliability, availability, failure rates and mean
hitting times and how the theory of semi-Markov chains
contribute to their study.

For a stochastic system with state space E, described by a
SMC, we distinguish the up and down states of the system,
denoted by U and D accordingly, i.e. E = U ∪D, with U ∩
D = ∅ and U,D 6= ∅. For a finite state space E = {1, . . . s},
we enumerate first the up states, U = {1, . . . , r}, and next
the down states, D = {r + 1, . . . , s}. For m,n ∈ N∗, with
m > n, let 1m,n denote the m-column vector whose the n
first elements are 1 and the last m−n ones are 0. For m ∈ N∗,
let 1m denote the m-column vector with all elements equal to
one.

Now, let us denote by α1 and α2, the vectors of the
initial law on U and D respectively (in the same manner,
we consider the partitions of the sojourn time cumulative
distribution function H(k) and the mean sojourn times m).
Considering the transition kernel p, the submatrices p11, p12,
p21 and p22 are the restrictions of p on E×E, E×U , U×E
and U×U respectively (similarly, we act for the DTSMK q(k),
the Markov renewal function ψ(k) and the transition function
P (k)).

Also, let us denote by TD the first passage time in subset
D, called the lifetime of the system, and by TU the first hitting
time of subset U given that α1 = 0, called the repair time.
That is,

TD := min{n ∈ N : Zn ∈ D},
TU := min{n ∈ N : Zn ∈ U},
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with min ∅ :=∞.

A. Reliability

Definition 13. The reliability R of a system at time k ∈ N,
starting to function at time k = 0, is defined as the probability
that the system has functioned without failure in the interval
[0, k], i.e.

R(k) := P(Zn ∈ U ; ∀n ∈ [0, k]).

In the framework of a semi-Markov model, for all k ∈ N,
the reliability is defined by the following equation

R(k) = α1P11(k)1r.

B. Availability

Definition 14. The pointwise availability A of a system at
time k ∈ N is the probability that the system is operational at
time k (independently of the fact that the system has failed or
not in [0, k)), i.e.

A(k) := P(Zk ∈ U).

That means that the system functions at the time k, ignoring
its history. For all k ∈ N, the pointwise availability is given
by

A(k) = αP (k)1s,r.

Definition 15. The steady-state availability A∞ of a system
is defined as the limit of the pointwise availability (when the
limit exists), as the time tends to infinity, i.e.

A∞ := lim
k→∞

A(k).

For a semi-Markov system, the steady-state availability is
given by

A∞ =
1

νm
m>diag(ν)1s,r.

C. Failure rate functions

1) BMP-failure rate function:

Definition 16. The BMP-failure rate function λ of a system at
time k ∈ N, starting working at time k = 0, is the conditional
probability that the failure of the system occurs at time k,
given that the system has worked until time k − 1, i.e.

λ(k) := P(TD = k|TD ≥ k).

The BMP-failure rate at time k ≥ 1 is given by

λ(k) =

{
1− α1P11(k)1r

α1P11(k−1)1r
, R(k − 1) 6= 0,

0, otherwise,

=

{
1− R(k)

R(k−1) , R(k − 1) 6= 0,

0, otherwise,

with λ(0) = 1−R(0).

2) RG-failure rate function: Due to some difficulties in
applying the BMP-failure rate function on some discrete-
time systems, an alternative failure rate function r has been
proposed

r(k) =

{
− ln R(k)

R(k−1) , k ≥ 1,

− lnR(0), otherwise,

called the RG-failure rate function at time k ∈ N.

D. Mean Hitting Times

1) Mean time to failure:

Definition 17. The mean time to failure (MTTF) is defined as
the mean lifetime, i.e. the expectation of the hitting time to the
down set D, MTTF := E[TD].

The mean time to failure in a semi-Markov model follows

MTTF = α1(I − p11)−1m1.

2) Mean time to repair:

Definition 18. The mean time to repair (MTTR) is defined
as the mean of the repair duration, i.e. the expectation of the
hitting time to the up set U , MTTR := E[TU ].

The mean time to repair is given as

MTTR = α2(I − p22)−1m2.

IV. NUMERICAL APPLICATION

In this section, we apply the previous results to a three-state
semi-Markov system described as follows. The state space of
the system E = {1, 2, 3} is partitioned into the up-state set
U = {1, 2} and the down-state set D = {3}. To define it
completely, we need the initial law α = (0.9 0.1 0) and
the transition kernel p of the EMC J , given by

p =

 0 1 0
0.6 0 0.4
1 0 0

 .

The conditional distributions of the sojourn times are

f(k) =

 0 f12(k) 0
f21(k) 0 f23(k)
f31(k) 0 0

 ,

where the conditional distributions for the sojourn times
f12(k) and f31(k) are geometric distributions with parameters
p = 0.15 and p = 0.20 respectively, and the distributions
f21(k) and f23(k) follow the discrete Weibull distribution with
parameters (q, b) = (0.9, 1.2) for the transition 2 → 1 and
(q, b) = (0.8, 1.2) for the transition 2→ 3. The realization of
a trajectory of fixed length M ∈ N∗ of the SMC Z with state
space E, transition matrix p and initial law α is simulated
through a Monte Carlo method.

We observe 20000 independent trajectories of the SMC Z
up to the censoring time M = 100. The empirical and EML
estimations for all the measures are based on the estimators
(2) and (3) of the DTSMK. We present now the plots for the
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Fig. 1. Reliability plot.

Fig. 2. Availability plot.

Fig. 3. BMP-failure rate plot.

reliability, availability and failure rates, presented in Section
III and their estimations.

In Table I, the empirical and EML estimation are given for

Fig. 4. RG-failure rate plot.

True Value Empirical Estimation EML Estimation
A∞ 0.8589 0.8556 0.8566

MTTF 29.7578 27.8198 29.2270
MTTR 5.0000 4.8017 5.0067

TABLE I
ESTIMATION OF STEADY-STATE AVAILABILITY AND MEAN HITTING TIMES.

the steady-state availability and mean hitting times

V. CONCLUSION

In the case of a single observed trajectory, the backward
recurrence time at time M , is neglected from empirical es-
timators. In contrast, in the case of multiple observations,
significant difference between the two estimations is observed.
Even in the case of a large number of trajectories, when the
time M is small, the estimated values of all the reliability
measures differ, making the empirical estimation to seem less
accurate than the EML estimation, which appear to be almost
identical to the theoretical values.

The time interval until the system reaches the steady state
is of great significance for real data applications and provide
important information for the evolution of a system. For this
interval, the differences of the two estimators in Figures 1 and
2 seem even wider.
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