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Background: Volatile organic compounds (VOC), which include many hazardous chemicals, have been
used extensively in personal, commercial and industrial products. Due to the variation in source
emissions, differences in the settings and environmental conditions where exposures occur, and
measurement issues, distributions of VOC concentrations can have multiple modes, heavy tails, and
significant portions of data below the method detection limit (MDL). These issues challenge standard
parametric distribution models needed to estimate the exposures, even after log transformation of the
data.
Methods: This paper considers mixture of distributions that can be directly applied to concentration and
exposure data. Two types of mixture distributions are considered: the traditional finite mixture of
normal distributions, and a semi-parametric Dirichlet process mixture (DPM) of normal distributions.
Both methods are implemented for a sample data set obtained from the Relationship between Indoor,
Outdoor and Personal Air (RIOPA) study. Performance is assessed based on goodness-of-fit criteria that
compare the closeness of the density estimates with the empirical density based on data. The goodness-
of-fit for the proposed density estimation methods are evaluated by a comprehensive simulation study.
Results: The finite mixture of normals and DPM of normals have superior performance when compared to
the single normal distribution fitted to log-transformed exposure data. The advantages of using these
mixture distributions are more pronounced when exposure data have heavy tails or a large fraction of
data below the MDL. Distributions from the DPM provided slightly better fits than the finite mixture of
normals. Additionally, the DPM method avoids certain convergence issues associated with the finite
mixture of normals, and adaptively selects the number of components.
Conclusions: Compared to the finite mixture of normals, DPM of normals has advantages by character-
izing uncertainty around the number of components, and by providing a formal assessment of
DL, method detection limit; DPM, Dirichlet process mixture; RIOPA study, Relationship between Indoor, Outdoor and
M, expectation maximization; MLE, maximum likelihood estimation; AIC, Akaike information criterion; BIC, Bayesian
nction; MSE, mean squared error; MAE, mean absolute error; NHANES, National Health and Nutrition Examination
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uncertainty for all model parameters through the posterior distribution. The method adapts to a spec-
trum of departures from standard model assumptions and provides robust estimates of the exposure
density even under censoring due to MDL.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Volatile organic compounds (VOCs) have been used extensively
in personal, commercial and industrial products (MDE, 2010; Ling
et al., 2011; Weschler, 2011; USEPA, 2012b), and these chemicals
are widely found in air in indoor, outdoor and occupational set-
tings. Many VOCs are hazardous, and exposure through inhalation
has been associated with a variety of acute and chronic health ef-
fects, such as respiratory disease and cancer (Kim and Bernstein,
2009; USEPA, 2012a,b). While concentrations of VOCs in environ-
mental settings are generally much lower than those in occupa-
tional settings (Rappaport and Kupper, 2004), moderate and
sometimes high concentrations and exposures can be encountered
among the general population during certain activities, such as
filling vehicles with gasoline and home renovations, in hobbies
such as furniture restoration, small engine repair and gun cleaning,
and using cleaners, pesticides, pest repellants and air fresheners in
poorly ventilated spaces (Batterman et al., 2006; Jia et al., 2008a;
D’Souza et al., 2009; Jia and Batterman, 2010; USEPA, 2012b).

The high concentrations found for a portion of the population,
along with the much lower concentrations for the bulk of the
population, typically results in highly right skewed concentration
distributions (Jia et al., 2008b). Extreme value theory and other
techniques can model the upper percentiles of VOC concentration
distributions, and generalized extreme value (GEV) distributions
have been shown to fit VOC datamuchmore closely than lognormal
or other types of distributions (Jia et al., 2008b; Batterman et al.,
2011; Su et al., 2012). Most data sets also contain many low ob-
servations, often including measurements that fall below the
method detection limit (MDL). These “non-detects,” which repre-
sent left-censored data, can be treated by substitution, single or
multiple imputation, regression on order statistics (modeling using
probability plots of known distributions to estimate summary
statistics), and laboratory-generated data (using the original data
without replacement) (Antweiler and Taylor, 2008). The extent of
data below MDLs can significantly affect the quality of the results
(Lubin et al., 2004; Antweiler and Taylor, 2008). The statistical is-
sues associated with the analysis of data with MDL issues are well-
known (Taylor et al., 2001; Krishnamoorthy et al., 2009).

Due to the variation in source emissions, differences in the
settings and environmental factors where exposures occur, and the
measurement issues just noted, distributions of VOC concentra-
tions can have multiple modes, heavy tails, and significant portions
of data falling below the MDL that are replaced by a single value.
These issues, which can be encountered in exposure and as well as
other types of data sets, challenge standard parametric distribution
models. While GEV distributions can fit the upper portions of dis-
tributions, they do not represent the full distribution of the data.
Information on the full distributions of exposure levels is needed to
establish exposure/risk guidelines, to estimate health risks and
uncertainty estimates across a population (Su et al., 2012), and to
facilitate probabilistic analyses (Hammonds et al., 1994).

Mixture distributions, which extend parametric families of
distributions to fit datasets that are not adequately fit by a single
common distribution, provide a flexible and powerful approach of
representing the distribution of a random variable (Titterington
et al., 1985; McLachlan and Basford, 1988; McLachlan and Peel,
2000). As examples, a finite mixture of normals applies a set of
‘mixing weights’ to a specified and finite number of component
distributions, while a nonparametric Dirichlet process mixture
(DPM) of normals relaxes the need to pre-specify the number of
component distributions and is potentially advantageous in terms
of handling smoothing, modality and uncertainty (Escobar, 1994;
Mueller and Quintana, 2004). Mixture of normals have been
extensively used in a variety of important and practical situations,
although environmental applications have been very limited
(Burmaster and Wilson, 2000; Razzaghi and Kodell, 2000; Taylor
et al., 2001; Chu et al., 2005).

This paper evaluates the applicability of mixture of normal dis-
tribution method to environmental data, specifically, air pollution
concentration and exposure data. Both the traditional finitemixture
of normal and the nonparametric DPM of normals are evaluated
using a VOC exposure dataset that includes seasonal measurements
for approximately 300 individuals, which was collected as part of
the Relationship between Indoor, Outdoor and Personal Air (RIOPA)
study. Goodness-of-fit for the density estimation methods are
evaluated by a comprehensive simulation study.

2. Materials and methods

2.1. VOC measurements

The RIOPA study was designed to evaluate contributions of
outdoor and indoor sources to personal exposures of air pollutants,
including VOCs and PM2.5, among residents of three cities (Eliz-
abeth, NJ, Houston, TX and Los Angeles, CA) selected to reflect
potential differences in emissions and other factors likely to influ-
ence exposures (Weisel et al., 2005a). Sampling was conducted in
two seasons for approximately 100 adults (and a smaller number of
children) in each city from summer 1999 through spring 2001. In-
door, outdoor and personal (worn by participants) measurements
were obtained using passive samplers for 48 h periods, and 18 VOCs
were measured using gas chromatography and mass spectrometry.
Analytical work was performed by two laboratories. The RIOPA
study represents one of the larger VOC studies in the USA that
collected personal samples, which are generally considered to
provide exposure estimates that are more accurate than indoor or
outdoor samples.

Three VOCs (chloroform, 1,4-dichlorobenzene (1,4-DCB) and
styrene) were selected to evaluate mixture distributions. These
VOCs differ in terms of their distributions, detection frequencies
and other properties. Personal samples for adults were selected,
primarily because the sample size for the adult cohort (n ¼ 544 for
each VOC) was largest, and because the personal samples should
best reflect exposure. The two laboratories used to analyze samples
had different MDLs. Since the use of two laboratories is somewhat
unusual, all data under MDLs were replaced with a single value
using 0.5 � the higher MDL. Because the VOC data in RIOPA had
many extreme values (Su et al., 2012), the density estimation
methods were implemented using logarithms of the concentration
value, as described next.

2.2. Finite mixture of normal distributions

Finite mixture distributions are commonly used to identify and
model sub-populations within an overall population. Rather than
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identifying the sub-population that an individual observation be-
longs to, these models assume that the observed data randomly
arise from distributions with certain probabilities. Let Y ¼ (Y1,.,Yn)
be a random sample of size n from the overall population with the
probability density function of Yi given as f(yi). Y is assumed to have
arisen from a mixture of an initially specified number of distribu-
tions. A K-component mixture of distributions supposes that the
density of Yi can be written as

f ðyiÞ ¼
XK

k¼1
lkfkðyiÞ; (1)

where fk is the component density of the k-th cluster, and lk is the
corresponding weight with the constraint that 0 � lk � 1andPK

k¼1lk ¼ 1. In many applications, component densities fk are
assumed to be standard parametric families, such as normal dis-
tribution Nðmk; s2kÞ, then

f ðyiÞ ¼
XK

k¼1
lkN

�
mk;s

2
k

�
: (2)

The finite mixture of normals represented by Eq. (2) is a potential
choice for handling concentration and exposure data that can have
multiple modes and heavy tails. Such normal mixtures are popular
choices with attractive properties (Titterington et al., 1985). Since
the mixtures are constructed as a linear combination of normal
distributions, they are computationally and analytically tractable,
well behaved in the limiting case, and scalable to higher
dimensions.

Mixture distributions can be fitted using many techniques, e.g.,
graphical methods, the method of moments, maximum likelihood
estimation (MLE) and Bayesian approaches (Redner and Walker,
1984; Titterington et al., 1985; McLachlan and Peel, 2000). Since
closed forms of MLEs of Eq. (1) are not available, mixture distri-
butions are commonly fitted using expectation maximization (EM)
type algorithms (Dempster et al., 1977; Meng and Pedlow, 1992;
McLachlan and Krishnan, 1997). We used the EM algorithm and
considered a constrained maximum likelihood method to estimate
Eq. (2) with a further constraint that the location of the first cluster
(generally the lowest) is under the MDL, i.e., m1 � MDL. This
constraint ensures that a fitted cluster covers the MDL, which al-
lows it to be interpreted as the sub-population of the data below
the MDL.

An important issue in fitting finite mixture distributions is se-
lection of the number of components K. Criteria based on penalized
likelihood, such as the Akaike information criterion (AIC), have
been applied successfully to mixture distributions (McLachlan and
Peel, 2000). While this criterion generally favors larger K, there is
considerable practical support for its use due to simplicity (Fraley
and Raftery, 1998). The Bayesian information criterion (BIC) ap-
pears attractive due to their statistical properties as well as the
simplicity of implementation. Though the BIC always leads to a
smaller (or equal) number of components than AIC, the BIC can also
lead to an overestimate of the number of clusters regardless the
clusters’ separation (Biernacki et al., 2000). In general, with limited
amount of data, a corrected version of AIC such as AICc (Hurvich
and Tsai, 1989) may be preferable. For these finite mixture distri-
butions, we fitted model (2) with K ¼ 2 to 5 clusters, and selected
the optimal model based on AICc. This analysis was conducted for
each of the three VOCs.

As a benchmark for comparison, we also fitted the traditional
normal distribution, which is a special case of mixture of normals
with K ¼ 1. (As noted earlier, log-transformed VOC data were used
in all cases.)

The finite mixture of normals was implemented using the
‘mixtools’ package (Benaglia et al., 2009) in R (R Foundation for
Statistical Computing, Vienna, Austria). This package fits the finite
mixture of normals using EM algorithms through the function
normalmixEM.

2.3. Dirichlet process mixture of normal distributions

Bayesian density estimation methods using DPM of normal
densities have several practical advantages, including optimally
trading off local versus global smoothing, assessing modality, and
propagating uncertainty on inferences regarding the number of
components and thus uncertainty about the density estimate
(Ferguson, 1983; Escobar, 1994; Mueller and Quintana, 2004).
Instead of pre-specifying the number of clusters, these models
allow the number of clusters to be chosen in a data-adaptive way.
Let YiwNðmi; s2i Þ and let ðmi;s2i Þ ¼ qi. The DPM of normal distri-
butions assumes that these normal parameters qi follow a random
distribution G generated from Dirichlet process (Ferguson, 1973),
which can be represented as:

qijGwG i:i:d and Gja; G0wDPðaG0Þ: (3)

DP(a G0) is a Dirichlet process with concentration parameter a
and base distribution G0, which is also known as the prior expec-
tation of G. The precision parameter a determines the concentra-
tion of the prior for G around G0. Blackwell and Macqueen provided
the following representation for the leave-one-out conditional
distributions (Blackwell and MacQueen, 1973):

qi

����q1;.; qi�1; qiþ1;.; qnw
a

n� 1þ a
G0 þ

1
n� 1þ a

Xn

jsi
Iqjð$Þ

(4)

In this approach, q ¼ (q1,.,qn) will be reduced to certain K distinct
values (K < n) with positive probability. From Eq. (4), two well-
known extreme cases of the DPM can be derived. As a / N, the
DPM reduces to a parametric model, namely qi w G0 independent
and identically distributed (n clusters), whereas a / 0 implies a
common parametric model, namely q1 ¼/¼ qn ¼ q* with q*wG0 (1
cluster). The baseline distribution G0 is chosen to be the conjugate
normal-inverse-gamma distribution. Hyperpriors could be used on
this normal-inverse-gamma distribution to complete the model
specification.

The DPM of normals does not require specification of the
number of clusters as needed for parametric mixture distributions,
such as the finite mixture of normals discussed previously. In
practice, suitable values of K will typically be small relative to the
sample size n. The implicit prior distribution on K is stochastically
increasing with a and is related to the prior distribution on a

(Antoniak, 1974). For moderately large n, E(Kja,n)za log(1 þ n/a)
(Antoniak, 1974). A formal assessment of uncertainty regarding the
number of components K can be obtained through generated draws
from the posterior distribution of K as a part of the Bayesian
computation scheme.

For the VOC data, the precision parameter a was chosen to
follow a Gamma prior distribution, and a sensitivity analysis was
conducted with respect to choice of the Gamma parameters. Given
the sample size in the test dataset (n¼ 544), for prior information, a
w Gamma(0.3,0.4) favors K ¼ 1e3 clusters; a w Gamma(1.2,2.5)
favors 1e5 clusters; a w Gamma(2,1.5) favors 2e10 clusters; and a

w Gamma(5,2) favors 5e20 clusters. A sensitivity analysis was
conducted on these prior specifications.

Computational methods were followed that allowed the eval-
uation of posterior distributions for all model parameters and the
number of components, and also the resulting predictive distribu-
tions (Escobar and West, 1995). Density estimation using DPM can
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be directly implemented using the DP package (Jara, 2007; Jara
et al., 2011) in R (R Foundation for Statistical Computing, Vienna,
Austria), which provides posterior draws of all model parameters
under a DPM using Markov chain Monte Carlo methods. A sample
code is presented in the Appendix.

2.4. Goodness-of-fit criteria

Goodness-of-fit for the density estimation methods was deter-
mined by comparing the estimated cumulative distribution func-
tion (CDF) bF est to the empirical CDF bF emp based on the observed
data. Although all observed/generated data were used to estimate
the CDF by each method, goodness-of-fit was evaluated using only
the data above the MDL. Both the mean squared error
(MSE ¼ P

i;yi>MDL½bF empðyiÞ � bFestðyiÞ�2=
P

iIðyi > MDLÞ), and the
mean absolute error ðMAE ¼ P

i;yi>MDLjbF empðyiÞ � bF estðyiÞj=P
iIðyi > MDLÞÞ were considered. The estimated proportion of ob-

servations above the MDL, which is often termed the detection
frequency, for empirical and estimated distributions was compared.

2.5. Simulation study

For further evaluation of the mixture distributions, several
forms of underlying true distributions and varying amounts of left-
censored data (below MDL) were considered as true generation
models. Three methods were compared: a single normal distribu-
tion; a finite mixture of normals; and DPM of normals. Two un-
derlying distributions with features similar to the three VOC
samples from the RIOPA study were selected: a normal N(0, 22) and
a mixture specified as 1/2 Gamma(3,1.5) þ 1/2 Uniform(�3,8). The
former is symmetric and the latter is right skewed with heavy tails,
and both have multiple modes when data under MDL were
replaced by 0.5 MDL. The proportion of data below theMDL, P0, was
set to 15%, 30% and 50% in separate simulations. Goodness-of-fit
Fig. 1. Fitted density plots for chloroform (log scale) for three models: normal, finite mixtur
mixture (DPM) of normals. Vertical line shows MDL. Sensitivity of priors for DPM, settings
settings 4: a wGamma(5,2).
measures (MSE and MAE described above) were calculated for
each method, target distribution, and choice of P0. A dataset of size
n¼ 1000was generated for each simulation under each setting. The
average values of MSE and MAE across 500 simulations are
reported.

For the finite mixture of normals, the number of components K
was based on the smallest AICc. A convergence problem was
encountered when P0 was high (in the range of 30e50%), possibly
because the censored data were set to a single value (0.5 MDL),
which resulted in a very small variance of the first (lowest) cluster.
Additionally, the MLE method for finite mixture models is suscep-
tible to other problems, e.g., nonunique solutions (Redner and
Walker, 1984; Titterington et al., 1985; McLachlan and Peel,
2000). Thus, data below the MDL was replaced by uniformly
generated pseudo-data from Uniform (0, MDL) if the finite mixture
of normals did not converge. In contrast, all of the single normal
and DPM method simulations converged.
3. Results

3.1. Descriptive analysis

The distributions of the sample data sets are shown as histo-
grams in panel A of Figs. 1e3 for chloroform, 1,4-DCB and styrene,
respectively. (Fitted density plots for the three density estimation
methods are also shown in these figures.) These VOCs show distinct
features. For chloroform, 17% of observations fell below the MDL,
and observations exceeding the MDL were approximately lognor-
mally distributed. For 1,4-DCB, a larger amount of data, 34%, was
below the MDL and the remainder was highly right skewed even
after log transformation and contained a number of extreme values.
For styrene, most of the data, 66%, fell below the MDL and, like 1,4-
DCB, was highly right skewed after log transformation with
extreme values. These three VOCswere selected to demonstrate the
e of normals (with the smallest AICc and components indicated), and Dirichlet process
1: a wGamma(0.3,0.4); settings 2: a wGamma(1.2,2.5); settings 3: a wGamma(2,1.5);



Fig. 2. Fitted density plots for 1,4-DCB (log scale). Otherwise as Fig. 1.
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sensitivity and performance of the mixture models across a broad
range of levels of censoring.

The selected VOCs differ with respect to sources, exposures, and
health effects. Chloroform is considered a probable human carcin-
ogen (causing renal tumors) based on an adequate data of animal
studies (USEPA, 2012a). Most inhalation, ingestion and dermal ex-
posures result indoors through contact with chlorinated water, e.g.,
Fig. 3. Fitted density plots for styren
showering, drinking, and swimming, from which chloroform is
released as a by-product of chlorine disinfection (ATSDR,1997). The
median chloroform indoor (0.94 mg m�3) and personal
(1.04 mg m�3) concentrations in RIOPA considerably exceeded
outdoors levels, which were mostly at the MDL (replaced with
0.21 mg m�3), thus outdoor levels of chloroform provided only a
negligible contribution to personal exposure. (MDLs in the two
e (log scale). Otherwise as Fig. 1.
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laboratories used in RIOPA were 0.28 and 0.42 mg m�3.) The unit
risk factor (URF) for chloroform in air, 2.3 � 10�5 (mg m�3)�1, cor-
responds to a one-in-a-million cancer risk level for long term
exposure (USEPA, 2012a). Of the personal samples collected in
RIOPA, 9.6% exceeded a cancer risk level of 10�4, and the maximum
chloroform level (46.5 mg m�3) corresponds to of 1.1 � 10�3.
Notably, RIOPA participants did not wear their samplers during
showering and swimming activities, and thus the highest RIOPA
measurements are likely biased downwards from true exposures.
The RIOPA measurements may be compared to personal exposure
measurements in the National Health and Nutrition Examination
Survey (NHANES) 1999e2000, a nationally representative sample
conducted about the same time period. NHANES showed a similar
median chloroform exposure (1.1 mg m�3) as RIOPA (Jia et al.,
2008b; CDC, 2012). However, NHANES had slightly higher con-
centrations at the upper percentiles than RIOPA, e.g., 16% of in-
dividuals had estimated cancer risk exceeding 10�4, and the
maximum exposure was 53.9 mg m�3. VOC exposures in RIOPA and
NHANES can differ for multiple reasons, including the use of
different sampling strategies (convenience sampling in three cities
for RIOPA versus national probability-based sampling for NHANES),
demographics (RIOPA participants were older and more likely to be
females), occupations (RIOPA participants had fewer VOC-related
occupations), and employment (fewer employed in RIOPA).

The second VOC considered, 1,4-DCB, is considered a possible
carcinogen (causing renal and liver tumors) based on animal
studies (IARC, 2012). 1,4-DCB is a component of many commercial
products, including moth repellents, deodorants, insecticides and
resins (Chin et al., 2012), and inhalation of vapors that have subli-
mated from these products is a primary exposure route (ATSDR,
2006). Like chloroform, 1,4-DCB exposure is due to predominantly
indoor sources. In RIOPA, indoor and personal concentrations
(median ¼ 1.40 and 1.88 mg m�3, respectively) were similar; and
outdoor levels were typically at the half MDL (0.46 mg m�3). (MDLs
in RIOPA were 0.43 and 0.91 mg m�3.) The URF for 1,4-DCB in air is
1.1 �10�5 (mg m�3)�1 (OEHHA, 2005), and 23% of personal samples
in RIOPA exceeded a 10�4 risk. The maximum 1,4-DCB level in
RIOPA (2153 mg m�3) corresponds to high risk, 2.4 � 10�2. Again,
the median 1,4-DCB exposure (1.7 mg m�3) in NHANES was close to
that in the RIOPA study (Jia et al., 2008b). However, the top per-
centiles of 1,4-DCB exposure found in NHANES exceeded those in
RIOPA, e.g., 30% of NHANES observations exceeded the risk level of
10�4, and the maximum was 2236 mg m�3.

Like 1,4-DCB, styrene is considered as a possible carcinogen
(lymphatic, hematopoietic and pulmonary tumors) based on
limited human and animal evidence (IARC, 2012). Styrene is widely
used in industry as a raw material for plastic and rubber products,
and is a component of cigarette smoke, vehicle exhaust and other
combustion processes, and thus exposure occurs via inhalation
from styrene-contained products in many settings, near certain
industrial facilities, in traffic and near smokers (ATSDR, 2010).
Because most data fell below the MDL (0.34 and 0.84 mg m�3),
personal, indoor and outdoor measurements in RIOPA had the
same median (0.42 mg m�3); 75th percentile values were 1.10, 1.07
Table 1
Goodness-of-fit statistics of each density estimation method for chloroform, 1,4-DCB and

VOCs (Estimated) Proportion below MDL

Observed Normal MN DPMN

Chloroform 0.17 0.21 0.23 0.23
1,4-DCB 0.34 0.28 0.33 0.33
Styrene 0.66 0.56 0.64 0.64

MSE: mean squared error; MAE: mean absolute error; (MSE and MAE are multiplied by
Dirichlet process mixture of normals.
and 0.42 mg m�3, respectively. The URF for styrene in air is
2.0 � 10�6 (mg m�3)�1(Caldwell et al., 1998), and 0.2% of personal
samples in RIOPA exceeded the risk level of 10�4. The maximum
styrene concentration (59.5 mg m�3) gives a risk of 1.2 � 10�4.
RIOPA excluded smokers and smoking households, and participants
were predominantly women (75%) (Weisel et al., 2005b), thus,
styrene levels may be lower than national norms. Personal styrene
exposure was not collected in NHANES 1999e2000.

Table 1 contrasts goodness-of-fit statistics for the three density
estimation methods (normal, finite mixture of normals, DPM of
normals) and the three VOCs from RIOPA (chloroform, 1,4-DCB and
styrene). The table helps to identify situations where a particular
method may be advantageous, as discussed below.

3.2. Single normal and GEV distributions

For chloroform, which is roughly lognormally distributed except
that 17% of the data is under the MDL, the single normal distribu-
tion model fits about as well as the finite mixture of normals and
DPM of normals (described below) on the basis of MSE and MAE
values, and gives a 21% probability of being below the MDL, similar
to that observed (Table 1). However, for 1,4-DCB and styrene, which
have more data under the MDL as well as heavy tails, the fit of the
single normal distribution model is inferior compared to those of
themixture models. For example, the predicted probability of being
below MDL is 28% and 56% for 1,4-DCB and styrene, respectively,
compared to 34% and 66% observed, and 33% and 64% estimated by
the mixture models. The single normal distribution overestimated
the mean of these VOCs since it underestimated the non-detection
frequency.

Using the top 5% and 10% of concentrations as extrema, the
RIOPA VOC data previously has been fitted to GEV and Gumbel
distributions (Su et al., 2012). However, distributional characteris-
tics such as multi-modality and left censoring are not captured by
such analyses. For example, the finite mixture of normals discussed
next show that at least two (chloroform) to four (1,4-DCB) com-
ponents are needed to reflect the multiple modes, skewness and
extreme values in the observed distributions.

3.3. Mixture of normals

Fitted density plots (and component clusters) are shown in
Figs. 1B, 2B and 3B for chloroform, 1,4-DCB and styrene, respec-
tively. The fitted parameters (weight lk, location mk and dispersion
s2k ) of each cluster k for the mixture of normals are given in Table 2.
The optimal Ks (based on the AICc) were 2, 4 and 3 for chloroform,
1,4-DCB and styrene, respectively. These choices of K clearly re-
flected themulti-modality and right-skewness of the VOC data, and
the resulting mixture of normals closely fitted the observed dis-
tributions. For example, Fig. 2B represents the four clusters that
fitted the 1,4-DCB data: the first (red) cluster captured the left
censoring due to the MDL, the second and third (green and blue)
clusters reflected the majority of the data and the skewness, and
the fourth (blue) cluster modeled the heavy tail.
styrene sample data from the RIOPA study.

MSE MAE

Normal MN DPMN Normal MN DPMN

0.07 0.07 0.08 7.18 6.89 6.95
31.81 0.08 0.04 167.05 7.00 5.30
32.61 0.07 0.04 160.47 6.10 4.27

a scalar of 1000 to reflect the significant figure.) MN: mixture of normals; DPMN:



Table 2
Fitted weight, location and dispersion parameters under the finite mixture of normals for chloroform, 1,4-DCB and styrene sample data from the RIOPA study.

Chloroform 1,4-DCB Styrene

Weight Mean SD Weight Mean SD Weight Mean SD

K ¼ 2 AICc ¼ 1774 AICc ¼ 2403 AICc ¼ 1735
Cluster 1 0.11 L1.78 1.31 0.16 �1.05 0.96 0.40 �1.12 1.86
Cluster 2 0.89 0.19 1.06 0.84 1.35 2.23 0.60 �0.40 0.62

K ¼ 3 AICc ¼ 1778 AICc ¼ 2330 AICc ¼ 1716
Cluster 1 0.12 �1.78 1.23 0.12 �1.05 1.58 0.41 L1.12 1.31
Cluster 2 0.60 0.08 0.90 0.63 0.31 1.14 0.51 L0.35 0.54
Cluster 3 0.28 0.55 1.20 0.25 3.84 1.93 0.08 1.82 1.01

K ¼ 4 AICc ¼ 1781 AICc ¼ 2328 AICc ¼ 1714
Cluster 1 0.11 �1.78 1.27 0.14 L1.05 1.54 0.39 �1.12 1.33
Cluster 2 0.07 �0.52 0.25 0.60 0.27 1.08 0.49 �0.37 0.60
Cluster 3 0.05 0.61 0.15 0.23 3.29 1.55 0.04 �0.29 0.08
Cluster 4 0.78 0.24 1.09 0.04 6.64 0.67 0.07 1.90 0.97

K ¼ 5 AICc ¼ 1785 AICc ¼ 2329 AICc ¼ 1722
Cluster 1 0.11 �1.78 1.26 0.14 �1.05 1.52 0.33 �1.12 1.32
Cluster 2 0.17 �0.39 0.43 0.05 �0.24 0.16 0.05 �1.51 1.28
Cluster 3 0.10 0.60 0.21 0.62 0.48 1.21 0.04 �0.29 0.08
Cluster 4 0.58 0.22 1.21 0.04 6.66 0.66 0.51 �0.37 0.60
Cluster 5 0.04 1.31 0.12 0.16 3.86 1.27 0.08 1.86 0.99

Bold: the smallest AICc; SD: standard deviation.
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3.4. DPM of normals

Fitted densities using DPM of normals for the three VOCs are
shown in Figs. 1C, 2C and 3C. This method clearly captures the
censoring, right-skewness, and potential multi-modality of the
exposure data. In terms ofMSE andMAE, the DPM approach attained
slightly lower values than the finite mixture of normals (Table 1).

Panel D on Figs.1e3 shows results of the sensitivity analysis with
the four different gamma distributions used as priors for precision
parameter a. As noted before, K stochastically increases with a as
E(Kja,n)za log(1þ n/a) formoderately large n (Antoniak,1974). The
four prior distributions were informative and formed up to 20
clusters that reflected more specific subject matter information.
Estimated densities obtained using the four priors nearly over-
lapped and showed very similar MSE andMAE for each of the VOCs,
although the corresponding posterior distribution of the number of
clusters K varied (Table 3). The posterior mean of K under all prior
settings of a (Table 3) slightly exceeded the K selected using the AICc
(Table 2). The higher K in the DPM is due to the prior information of
a, and does not introduce any additional complexity or more model
parameters. The initial prior variance of a critically influences the
extent of smoothing (Escobar and West, 1995). Given K distinct
values among the elements of q, a larger variance leads to increased
dispersion among the K group means, which increases the likeli-
hood of multiple modes and decreased smoothness in the resulting
predictive distribution (Escobar and West, 1995). The general goals
in selecting a and K to partition the data is to avoid over-smoothing
Table 3
Posterior distribution of the number of clusters K based on various prior settings of a
as a sensitivity analysis.

Posterior distribution of K

Chlorofrom 1,4-DCB Styrene

Prior Settings Mean Median SD Mean Median SD Mean Median SD

Setting 1 2.8 2 1.4 32.8 34 20.2 10.9 5 10.8
Setting 2 3.9 3 2.4 5.6 5 2.5 4.6 4 2.8
Setting 3 4.1 4 2.2 7.1 7 3.4 7.9 7 4.4
Setting 4 10.5 9 6.0 15.3 14 6.5 13.1 12 6.0

SD: standard deviation.
Setting 1: a wGamma(0.3,0.4); Setting 2: a wGamma(1.2,2.5).
Setting 3: a wGamma(2.0,1.5); Setting 4: a wGamma(5.0,2.0).
and also excessive jaggedness. The prior distributions of a regarding
the number of clusters K reflect a subjective assessment that bal-
ances these competing goals. Prior distributions might also reflect
normative and objective representations of parameter values,
although there is no consensus on the “best” way to elicit a sub-
jective prior (Dey and Liu, 2007).

No convergence issues using the DPM method were encoun-
tered, and density estimation results were robust given the mod-
erate sample size (n¼ 544). Another advantage of the DPMmethod
is that a constraint to ensure a cluster below MDL is not required
since the sampling scheme (4) is data driven. As shown in Eq. (4),
the DPM can handle values under theMDL that are represented as a
point mass, because a newly sampled value has equal probability 1/
(n � 1 þ a) to be drawn from the observed set of values.

3.5. Simulations

Simulation results, summarized in Table 4, show similar pat-
terns for the MSE and MAE criteria. Both finite mixture and DPM of
normals provided much better fits than a single normal distribu-
tion, except that the former two methods are only slightly better
under distribution 1 with P0 ¼ 0.15. For both distributions, as the
fraction P0 of data below the MDL increased, there is evidence of
increasing trend of lack of fit for a single normal distribution, while
the finite mixture and DPM of normals fitted considerable better
and without such trend. The DPM of normals shows advantage of
robustness regarding P0. It fits equally well, or even better, as P0
increased. For distribution 1, the finite mixture of normals provided
a slightly better fit than the DPM of normals, but this trend can be
offset since the prior variance of a can be decreased to promote
smoothness. In this regard, DPM is much more flexible than the
finite mixture of normal. Here, we have used a w Gamma(1.2,2.5)
which favors 1e5 clusters given our sample size (as the prior in-
formation of K). For distribution 2 which is right skewed and with a
heavy tail, the DPM of normals provided a much better fit than
finite mixture of normals under all settings.

4. Discussion

Finite mixture of distributions has been used to address prob-
lems of classification, density estimation and pattern recognition



Table 4
Summary of goodness-of-fit statistics of each density estimation method in the
simulation study.

Proportion
below MDL

MSE MAE

Normal MN DPMN Normal MN DPMN

Distribution 1 0.15 0.09 0.03 0.08 7.65 4.64 7.11
0.30 0.19 0.04 0.08 11.19 4.80 7.29
0.50 0.43 0.05 0.05 16.77 5.26 5.69

Distribution 2 0.15 1.55 0.10 0.02 32.58 8.19 3.57
0.30 2.53 0.10 0.02 43.69 8.59 3.29
0.50 2.62 0.12 0.02 46.52 8.22 3.28

MSE: mean squared error; MAE: mean absolute error; (MSE andMAE are multiplied
by a scalar of 1000 to reflect the significant figure.) MN: mixture of normals; DPMN:
Dirichlet process mixture of normals.
Distribution 1: Normal(0,22); Distribution 2: 1/2 Gamma(3,1.5) þ 1/2 Uni-
form(�3,8). Prior distribution on a is Gamma(1.2,2.5).
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problems across a wide range of areas (Titterington et al., 1985;
McLachlan and Basford,1988;McLachlan and Peel, 2000). However,
applications in the environmental literature have been limited. For
human exposure and risk assessment, mixtures of lognormal dis-
tributions have been used to model concentrations of radon 222 in
drinking water, and the model yielded a high-fidelity fit that was
not achievable with any single parametric distribution (Burmaster
and Wilson, 2000). In another risk assessment application, a
mixture doseeresponse model was used to derive the upper con-
fidence limits on risk and benchmark doses (Razzaghi and Kodell,
2000). A mixture of distributions of true zero exposures and
lognormal distributions with left censoring was used to account for
non-detects (Taylor et al., 2001). In a medical intervention that
examined biomarkers of aflatoxin, finite mixture of distributions
were selected using bootstrap- and cross-validation-based infor-
mation criterion to portray bimodal biomarker distributions that
had a significant fraction of measurements below MDL, and that
also varied due to differences in exposure, metabolism, interven-
tion effect and other factors (Chu et al., 2005). To quantify vari-
ability and uncertainty in emission inventories, the use of a mixture
of lognormal distributions showed a better fit and more efficient
estimates of uncertainty to NOx emission data than the use of a
single distribution (Zheng and Frey, 2004).

This paper is one of the first demonstrations of mixture distri-
bution models for environmental exposure data. No application of
the DPM method specifically for pollutant concentration and
exposure data was identified. Our analysis compared both finite
mixture of normals and DPM of normals methods to parametric full
distribution models and extreme value models, and included a
sensitivity analysis of smoothing parameters. None of this infor-
mation is available in the literature.

Our intent was to develop and characterize the performance of
mixture models for fitting environmental exposures. The methods
can be applied to other types of data, e.g., airborne concentrations,
biomarkers, and pollutants other than VOCs. In exposure and risk
applications, such models can improve the accuracy and realism in
estimating cumulative exposure, cumulative risk, population
attributable risk (PAR), and uncertainty (of exposure, risk or PAR)
based onMonte Carlo simulations or othermethods. For example, it
would be straightforward and potentially informative to evaluate
the differences in risk or numbers of individuals affected at a spe-
cific risk level using the cumulative distributions presented in the
paper.

Finite mixture of distribution models continued to receive
attention from both theoretical and practical points of view. In
environmental applications, such as the description and analysis of
air pollutant concentration and exposure data, the key advantage of
this class of parametric mixture of distributions over a single
parametric distribution model is their ability to simultaneously
portray the multimodal nature of exposure data, the heavy tails,
and observations aroundMDLs. These models also have advantages
over extreme value distributions (e.g., Gumbel or GEV) since the
entire distribution is fitted (not just the tail), and it is not necessary
to select a cut-off to define extrema. Information on the full dis-
tributions of exposure levels can be used to estimate health risks
and uncertainty estimates across a population (Su et al., 2012) and
facilitate probabilistic analyses. Even if the goal is only to predict
extreme values, DPM methods can provide closer fits to any
empirical distribution than GEV models, although GEV models
often, but not always, perform well in such applications, as
demonstrated by Su et al. (2012) for NHANES data. Further, the use
of a cluster to represent observations below the MDL is appealing
for datasets where a fair fraction of data is believed to be at or near
this level. Finally, the parameter estimates corresponding to this
lowest cluster may be heuristically interpretable as the parameters
corresponding to MDL and its uncertainty. Importantly, we have
found that a constrained MLE was required in the presence of data
censoring due to the MDL, otherwise the estimated clusters may
not contain the mode below the MDL.

Further work may be needed to develop consistent rules and
guidance for finite mixture of distributions that address the num-
ber of components K, the selection of performance criteria, the
effect of the estimation algorithm, use of constraints in the pres-
ence of data censoring, and the minimum sample size needed for
analysis (Mendell et al., 1991). Such decisions can depend on the
nature of the original data and the purpose of the analysis, e.g.,
focus on extrema or the entire distribution. We assessed perfor-
mance in terms of the accuracy of point predictions above the MDL,
but also compared the proportion of data points predicted to be
below the MDL, thus reflecting datasets with censored data. Other
techniques to select appropriate models include resampling infor-
mation criteria (McLachlan, 1987; Chu et al., 2005), likelihood
methods (McLachlan, 1987; Chen et al., 2001), and Bayesian ap-
proaches that treat K as a parameter (Richardson and Green, 1997).
Chu et al. (2005) also suggests that the D-test via the L2 distance
between competing models (Charnigo and Sun, 2004), which has a
closed form expression, is advantageous for selecting K as
compared to likelihood statistics, which are nontrivial functions of
both the parameter estimators and the full dataset.

We note that estimating the “true” numbers of clusters is not a
necessary goal for practical applications of mixture of distributions.
However, marginalizing over the distribution of K is critical for
capturing the uncertainty in the density estimates. Rather than
using some pre-specified number of clusters, which is always a
concern of the traditional mixture distribution problem, the DPM of
normals provides a semi-parametric Bayesian alternative to
nonparametric histograms and provides greater flexibility and
precision in modeling the underlying characteristics of the sample
data. This was clearly demonstrated in simulation results, where
the performance of the DPM models was not substantially altered
(and sometimes even improved) as the fraction of data below the
MDL increased.

The nonparametric DPM of normal distributions assume that
observed data randomly arise from sub-distributions with certain
probabilities as the finite mixture of distribution models. (Again,
sub-populations that an individual observation belongs are not
identified.) Compared to the finite mixture models, DPM distribu-
tions have advantages in providing a formal assessment of uncer-
tainty for all model parameters, including the number of
components K, through generated draws from the posterior dis-
tribution. With a suitable Dirichlet process prior structure (Escobar
and West, 1995), these models produce predictive distributions
qualitatively similar to kernel techniques, and they allow for
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differing degrees of smoothing by the choice on priors for precision
parameter a. The density estimation results were robust given a
moderate sample size (n ¼ 544) without any convergence issues
noted.

Both types of mixture models explored in this study are well
suited to VOC data containing a large fraction of censored data due
to MDLs, fat tails, and multiple modes. They offer clear advantages
over parametric full distributionmodels and extreme valuemodels,
and also appear appropriate for many other types of environmental
data, such as concentrations or doses of persistent and/or emerging
compounds and biomarkers. The use of mixture models has the
potential to improve the accuracy and realism of models used in a
variety of exposure and risk applications, and further environ-
mental applications are warranted.

5. Conclusions

Compared to the finite mixture of normals, DPM of normals has
advantages by characterizing uncertainty around the number of
components, and by providing a formal assessment of uncertainty
for all model parameters through the posterior distribution. The
method adapts to a spectrum of departures from standard model
assumptions and provides robust estimates of the exposure density
even under censoring due to MDL.
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