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In the past when large investments have been made in tackling narrow scientific challenges, the enor-
mous expansion in our knowledge in one small area has had a spill-over effect on research and treatment
of other diseases. The large investment in HIV vaccine development in recent years has the potential for
such an effect on vaccine development for other diseases. HIV vaccine developers have experienced
repeated failure using the standard approaches to vaccine development. This has forced them to consider
immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic
specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance
of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immu-
nity. It has advanced the development of many novel vaccine vectors and vehicles that are now available
for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms
and community engagement on vaccine development. These developments and considerations have
implications for vaccinology more generally. Some suggestions are made for investigators working on
other ‘‘hard-to-develop” vaccines.
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1. Introduction

At the turn of the 20th century Sir William Osler, the Father of
Modern Medicine, said ‘‘He who knows syphilis knows medicine”
[1]. At that time the many manifestations of ‘‘the great imitator”
required syphilis to be part of the differential diagnosis of most
illnesses. Today, because the treatment and prevention of HIV
infection touches upon so many different aspects of the practice
of medicine it could be said that ‘‘Those who know HIV/AIDS
know medicine.” Also, the urgency of this new pandemic and
powerful advocacy of its at-risk populations has led to a very sub-
stantial biomedical research investment in a single disease. As in
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the past, when there have been large investments in tackling nar-
row scientific challenges, the enormous expansion in our knowl-
edge in one small area is having a spill-over effect1 on research
and treatment of other diseases. Among these are major advances
in drug development for Hepatitis C modeled on AIDS drug devel-
opment [2], and CAR-T cells using lentiviral vectors for treating
cancer [3].

While the development of an effective HIV/AIDS vaccine has not
yet been accomplished, the deeper understanding of the obstacles,
gained from the research effort, has the potential to transform the
way scientists think about vaccine development more generally.
There are two classic approaches to vaccine development: (1)
killed pathogen and (2) live-attenuated vaccines. Research in the
1970s added recombinant protein vaccines. These approaches are
where HIV/AIDS vaccine development started. A recombinant
HIV-1 envelope protein vaccine (AIDSVAX) was tested in large
scale clinical trials in the late 1990s and failed to demonstrate
any protection. A whole-killed vaccine (the Salk AIDS vaccine,
Remmune) was tested as a therapeutic vaccine in early phase clin-
ical trials with similarly unsuccessful results. And after early
promising results in nonhuman primate studies, a live-
attenuated HIV vaccine approach has been abandoned because of
safety concerns.2

This article will present the different approaches to vaccine
development that have evolved for HIV-1, approaches informed
by the recognition of obstacles to classical vaccine development
approaches. Others view new approaches to vaccinology from the
perspective of new technologies that can be used. These develop-
ments have been the subject of many recent reviews, most notably
those of Dr. Rino Rippuoli [4,5]. While citing how new technologies
are being applied in HIV vaccine development this article will
review studies more from the perspective of the obstacles that they
illuminate.
2. Antibodies and/or T cells?

An early question in vaccine development is whether the
mechanism of vaccine protection will be an antibody response
or a T cell response. Some say that an effective vaccine should
elicit both types of responses. The problem for such vaccine
development is that the vectors, adjuvants, or cytokine milieus
that promote strong antibody responses are usually not the
same that promote strong T cell responses. Thus, it may be dif-
ficult to optimize a candidate vaccine product for both types of
responses at the same time. It is logical to optimize different
modalities of immune responses separately to show they have
some effect on infectivity, pathogen replication or pathogenesis
independently before attempting to put them together in one
syringe. In this way biomarkers of probable efficacy can be
determined for each of the different immune responses indepen-
dently such that the vaccine developer will know whether opti-
mizing one is interfering with the other during early clinical
trials before attempting an expensive, large scale efficacy trial.
Similar independent development advice is given by the FDA
for combination vaccine development with vaccines against
different pathogens [6].
1 The Manhattan Project gave us nuclear energy and radiation medicine; the moon
race drove a generation of improvements in micro-circuitry, remote sensing, GPS, and
computer technology; and the Human Genome Project has delivered remarkable
advances in sequencing technology and promises new diagnostics, disease cures, and
personalized medicine.

2 An attenuated HIV-1 would insert itself into the vaccinated person’s genome.
Regulators worry about insertional mutagenesis causing cancer as well as the
potential for recombination leading to reconstitution of a pathogenic virus.
3. Antibodies

a. Focus on epitopes

Despite the inability to induce broadly neutralizing antibodies
with a vaccine, since the 1990s investigators have been able to iso-
late monoclonal broadly neutralizing antibodies (BNAbs) from the
blood of some HIV-infected patients. Analysis of these BNAbs has
shown they are directed at a limited set (5) of conserved epitopes
on the HIV envelope surface glycoprotein (the CD4 binding site, a
V2 loop glycan epitope, a V3 loop glycan epitope, the gp41/
gp120 interface, and the membrane proximal region) [7]. This lim-
ited target space on the surface of the relatively large, 160,000 Dal-
ton virus surface protein is explained by both the small amount of
conserved amino acid sequence on the surface of this protein and
extensive glycosylation shielding much of the surface of the pro-
tein from antibodies (fully half of the HIV-1 envelope protein is
self-like sugar molecules). Also, these targets are partially buried
in protein structure or glycan chain-formed crevices such that a
restricted angle of approach further limits the number of different
germline-encoded B cell receptors (BCRs) or antibodies that can
access them. When the whole protein is presented to the host
immune system more abundant variable and internal epitopes
are more likely to elicit an antibody response than the rarer and
less accessible BNAb targets. Thus, HIV vaccine developers have
been forced to focus their attention on inducing antibodies against
specific epitopes within the surface protein rather than immuniz-
ing with a whole antigen and letting the immune system react
with what is easiest.

‘‘Original antigenic sin” is a phenomenon described for influ-
enza infection where exposure to a second, different strain of the
virus results primarily in boosting the antibody response to the
first strain encountered, to the detriment of an effective antibody
response to the new strain [8]. Because HIV vaccine developers
have rarely obtained a neutralizing antibody response to even
the first strain on vaccination, there has been little worry about
original antigenic sin. However, hypotheses of mechanisms under-
lying original antigenic sin may inform a key difficulty in HIV vac-
cine development. Prior exposure to the first influenza antigen
causes the proliferation of responding specific B cells to create a
much larger pool of memory B lymphocytes that recognize the first
antigen than the naïve B cells that may bind the new antigen better
[9]. In competition for limited amount of antigen the larger pool of
cells is more readily activated and thus the antibodies produced
reflect the earlier immune response. Perhaps, in the case of the lim-
ited HIV envelope target epitopes with restricted access, there are
rarely enough naïve B cells with the right BCR to out compete the
vastly larger number of naïve B cells that can respond to the large
number of easily accessible variable or internal epitopes in the
large amount of denatured envelope protein circulating in infected
persons or presented as immunogens in earlier HIV vaccination
attempts.

b. Use of structural biology tools to map and define conforma-
tional and difficult to access epitopes

Epitopes localized to the outer surface of antigens are frequently
on amino acid loops and easily defined as discrete sequences of 5–6
amino acids in length (i.e. linear epitopes). Other epitopes may be
composed of amino acids quite distant in the primary sequence
which come into proximity as the protein folds. Some of the broad
neutralization target epitopes recognized by BNAbs isolated from
HIV-infected patients are such ‘‘conformational” epitopes. The anal-
ysis of such epitopes has been enabled by advances in structural
biology which has revealed important details of these epitopes that
have facilitated immunogen design [10]. Some epitopes have been
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constructed as scaffolded minimal epitopes once actual conforma-
tions were known [11,12]. Detailed knowledge of the native envel-
ope trimer has also allowed the construction of more stabilized
trimers (by informing placement of amino acid mutations that
can then form intramolecular bonds to stabilize the three-
dimensional structure of the protein) that express fewer non-
neutralizing, denatured protein epitopes forcing the immune
response to focus on BNAb targets [13]. Stabilization of the overall
protein structure may also provide critical stabilization of the con-
formation of conformational epitopes as well as stabilization of
access to epitopes buried in protein crevices. Furthermore, detailed
structural analysis of BNAb binding to envelope has guided subtle
mutation of envelopes to allow for the binding of antibodies with
intermediate binding affinity to select for critical antibody muta-
tions in the process of affinity maturation [14].

c. Affinity maturation may be crucial to vaccine activity

The monoclonal BNAbs isolated from HIV-infected patients
themselves have become the subject of research. They are unusual
in several ways.3 One distinct difference is that they appear to have
undergone significantly more somatic hypermutation than antibod-
ies formed in response to other pathogens [16]. If this is required for
BNAbs, investigators reasoned it could explain the difficulty inducing
such antibodies with the usual regimen of 3–4 immunizations,
which would only drive a limited amount of the re-entry to lymph
node germinal centers required for such extensive antibody muta-
tion. Several reasons are hypothesized to explain the necessity for
such extensive somatic hypermutation. They are: sparsity of surface
antigen, less epitope exposed, mutations requiring multiple base
changes, framework mutations, and antibody-envelope co-
evolution (Table 1).

Some of the reasons discussed in Table 1 are associated with the
extreme mutability of HIV-1. After antibody is elicited that can
neutralize virus by binding to a BNAb target, mutations occur in
the epitope, or surrounding areas, that hinder antibody binding.
Individuals eventually develop BNAb responses because somatic
hypermutation allows antibody to co-evolve with the virus envel-
ope protein facilitating continued high affinity recognition of the
evolving epitope and/or continued access to a partly buried, con-
served epitope [21]. Such co-evolution results in an antibody with
enough breadth of epitopic recognition to neutralize many HIV-1
isolates. How to induce such breadth with a vaccine which usually
contains only a single or small number of antigens is problematic.
Some HIV vaccine developers are exploring several types of
sequential immunization schemes [22]. All schemes start with a
priming immunogen (sometimes a scaffolded minimal epitope)
with high affinity for the rare, unmutated germline antibody gene.
Some schemes select boost immunogens by analysis of B cell anti-
body and envelope lineages isolated from HIV-infected patients
who have developed BNAbs. Envelope variants with high binding
affinity for intermediate antibodies in the lineage are used as
boosting immunogens until BNAb activity is obtained [15]. Other
schemes rely on structural analysis to design intermediate boost-
ing immunogens that select for critical mutations in BNAb evolu-
tion [23]. Also, there is renewed interest in the TfH and TfR cell
responses that promote and regulate the germinal center response
where affinity maturation occurs. These complicated vaccination
schemes are for proof of concept. Once BNAbs can be induced with
any of these complicated schemes it will become an engineering
problem to combine multiple immunogens into single shots using
optimal adjuvants and rapid and delayed release materials.
3 Most monoclonal HIV BNAbs have one or more of the following uncommon
characteristics: a high number of somatic mutations, restricted VH gene usage, long
heavy chain CDR3 regions, or poly- or auto-reactivity [15].
Another approach has been to treat the extremes of variation in
specific BNAb target epitopes as essentially different epitopes for
a multivalent vaccine. Thus, instead of inducing antibody matura-
tion to accommodate multiple variations in an epitope, computa-
tional analysis has been used to establish viral envelope
sequence signatures associated with differing extremes in sensitiv-
ity to the same BNAb. It has been found that immunization with
combinations of envelope immunogens constructed to cover sev-
eral signatures will induce greater breadth in a poly-specific anti-
body response than single immunogen constructs [24]. How
many variants will be needed to give enough breadth to protect
against a large percentage of the HIV strains circulating in the pop-
ulation is unclear; but this approach should not require as much
somatic hypermutation as attempting to induce monospecific
BNAbs.

d. Tolerance regulation may interfere with broadly neutraliz-
ing antibody induction

It was noted fifteen years ago that some of the isolated BNAbs
were highly polyreactive, even reacting with multiple host anti-
gens [25]. It is not surprising that the CD4 binding site which
may be self-like enough to interact with CD4, which is a host pro-
tein, elicits some autoreactive response. In one case (the 2F5 BNAb)
the HIV-1 envelope epitope’s amino acid sequence is found in the
human genome [26] which also makes autoreactivity unsurprising.
However, most cases of autoreactivity are directed at epitopes of
intracellular enzymes with no known relation to the virus [27].
Nevertheless, studies in mouse strains knocked-in with several
BNAb antibody genes and their unmutated germline ancestors ver-
ify that production of HIV-1 BNAbs of multiple specificities is
restricted by different levels of self-tolerance controls [28]. It
may be the case that more antibody lineages are under tolerance
restrictions than commonly thought. The explanation for seeing
it so frequently with HIV-1 could then be that the extremely lim-
ited number of germline antibody genes for HIV-1 BNAbs forces
the use of such tolerance-restricted genes while for normal infec-
tions or vaccines, where many more germline antibody genes are
responsive, the immune response just uses the readily available,
less-restricted antibody lineages. This clearly causes problems for
specific antibody induction by vaccination, so some HIV vaccine
developers are investigating transient immunomodulation tech-
niques to get around tolerance controls to enhance immunity [29].

e. Fc/biological functions: pay attention to the other end of the
antibody

In 2007 it was recognized that sequences in the Fc region of an
HIV-1 BNAb influence its protective capacity in BNAb passive
transfer studies [30]. This is less important when high affinity neu-
tralizing antibodies are studied [31]. However, as it may be difficult
to induce high affinity antibodies, anything that enhances the pro-
tective capability of lower affinity BNAbs may enhance vaccine
efficacy. Also, in 2009 the USMHRP-Thailand Ministry of Public
Health co-sponsored RV144 trial demonstrated modest efficacy
(31%) in prevention of acquisition of HIV infection with a vaccine
regimen that induced little if any neutralizing antibodies or cyto-
toxic T cell activity [32]. Post hoc analysis of correlates of risk sug-
gested that non-neutralizing antibodies binding to HIV-1 envelope
protein might have mediated the protection observed [33]. The Fc
region of these antibodies must have mediated some biological
function, other than direct virus neutralization, that was able to
prevent establishment of infection. A clearer answer to the mech-
anism of protection in this trial should be obtained from analyses
of samples from a follow up study (HVTN 702) which will be
unblinded in 2021. Work is ongoing on refining assays for multiple



Table 1
Hypotheses explaining a requirement for extensive somatic hypermutation.

1. Sparsity of surface antigen [17,18]
There are only 10–15 envelope trimers on the surface of any HIV-1 virion. Because of the distance between sparsely distributed trimer molecules an HIV-specific
antibody is not able to use both its antigen binding arms (Fabs) to bind, bivalently, to the virus surface as is possible for antibodies binding to the surface of more
densely coated pathogens. Higher binding affinity for the epitope is required of anti-HIV neutralizing antibodies to compensate for the decreased avidity. This higher
affinity is achieved by affinity maturation or the evolution of a tighter fit of the antibody paratope for the epitope. The distance between trimer spikes may also
explain why whole-killed HIV-1 is a poor inducer of neutralizing antibodies as the distant antigens would have difficulty engaging multiple B cell receptors to
activate naïve B cells.

2. Less epitope exposed
A difficult angle of approach to the epitope for antibodies and B cells may also necessitate affinity maturation. When the neutralization epitope is buried in a protein
cleft or at the bottom of a well formed of glycan chains less of the epitope will be exposed for binding within the paratope than would occur with a surface-exposed
epitope; less contact between the paratope and the epitope logically will result in lower affinity of binding.

3. Mutations requiring multiple base changes
Analysis of the evolution of HIV BNAbs in mice knocked in for the germline genes from which those antibodies developed has shown that some of the mutations
critical to high affinity binding are difficult to obtain mutations either not in mutational hotspots or requiring multiple base changes [19]. Such mutations may only
occur as a side-effect of a large amount of mutational activity.

4. Framework mutations
Enhancing access to a buried epitope may require greater flexibility in the antibody to engage the walls of the crevice, especially as those walls evolve with envelope
protein mutation. Such flexibility is acquired by mutating framework regions of the antibody which are not hotspots for somatic hypermutation [20]. Mutations
there may also only occur as an accidental result of a large amount of mutational activity.

5. Antibody-envelope co-evolution
After antibody is elicited that can neutralize virus by binding to a BNAb target, mutations occur in the epitope, or surrounding areas, that hinder antibody binding.
Somatic hypermutation allows antibody to co-evolve with the virus envelope protein facilitating continued high affinity recognition of the evolving epitope and/or
continued access to a buried, conserved epitope [21].
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Fc-mediated antibody functions [34] as well as development of
multivariate analyses (systems serology) to characterize the con-
tributions of multiple different Fc-mediated antibody functions
[35]. As with neutralizing antibodies, the epitopic specificity of
functional non-neutralizing is important, although the epitopes
may differ from the neutralizing epitopes as different envelope epi-
topes may be presented on the surface of infected cells [36].

f. Implications for other vaccines

The scientists who aim to develop vaccines against families of
viruses will be forced to focus on specific conserved epitopes. A
similar focus on specific epitopes has already developed among
the universal influenza vaccine developers because only a limited
amount of the hemagglutinin surface is conserved [37]. Both
groups are focusing on a smaller number of epitopes than HIV vac-
cine developers. Their chances of success will be improved if they
have more epitopes to target. Improved monoclonal antibody iso-
lation technology, coupled with FACS sorting of B memory cell
populations has allowed HIV vaccine scientists to obtain mono-
clonal BNAbs from patients with barely detectable levels of BNAb
activity [38]. This has been valuable for target epitope characteri-
zation, and it could be a useful supplement to other vaccine devel-
opers who could screen multiply infected people to discover more
epitopic targets for BNAb attack. Likewise, vaccine developers for
diseases where antigenicity evolves or adapts to the host over
the course of chronic infection, such as syphilis, malaria, and Afri-
can trypanosomiasis, might be able to use this approach to iden-
tify rare BNAb epitopes amid the noise of unhelpful antibody
responses to variable or strain-specific epitopes.

A combination of envelope protein diversification, sparsity of
surface antigen, less epitope exposure, mutations requiring mul-
tiple base changes and hard-to-get framework mutations proba-
bly explains the need for the extensive somatic hypermutation
in affinity maturation observed for BNAbs against HIV. Other
vaccine developers may not encounter so many obstacles, but
all working with sparsely distributed (syphilis) or difficult to
access surface (universal influenza) epitopes are advised to iso-
late and sequence neutralizing antibodies to their pathogen to
determine if affinity maturation will be required. If more than
minimal somatic hypermutation is detected be prepared to
investigate immunization strategies and adjuvants that promote
affinity maturation.

HIV vaccine scientists are developing scaffolded, minimal epi-
tope, stabilized immunogens, sequential and combination immu-
nization strategies to get around the limited germline gene,
diversity, and affinity maturation obstacles to HIV vaccine develop-
ment. They have already applied the scaffolded epitope approach
[39] and the stabilization approach [40] to RSV vaccine develop-
ment with good result. Other vaccine developers may benefit from
some of these approaches. For example, Alzheimer’s disease vac-
cine developers have noted that their target is an aberrant confor-
mational epitope in a normal host protein that has folded
improperly. However, their vaccine attempts have been compli-
cated by adverse T cell responses to other parts of the protein
immunogens they have used in vaccinations [41]. Perhaps using
a scaffolded minimal B cell epitope [11] would be a safer approach.
And all vaccinologists experiencing difficulty inducing neutralizing
antibody responses with a surface antigen identified as a good tar-
get by antibodies from recovering patients should perform struc-
tural studies to determine whether structural stabilization is
required to maintain the conformation or access to the epitope.

Tolerance controls interfering with vaccination may be a special
problem for HIV-1 vaccine developers. However, if the use of a lim-
ited number of germline antibody genes explains tolerance restric-
tions for many HIV BNAbs then other vaccine developers targeting
rare germline genes may also encounter tolerance problems in vac-
cine development. They are advised to screen rare broadly neutral-
izing monoclonal antibodies against fixed host cells and/or a host
proteome array for autoreactivity early in development to rule
out a tolerance problem.

Lastly, attention is rarely focused on Fc region mediated func-
tions until post hoc efficacy correlates analyses suggest their
importance. This was the case with HIV vaccine development
and the RV144 clinical trial. However, there are some situations
where the need for Fc-mediated functions such as ADCC are pre-
dictable. Such is the case of malaria where an important prolifer-
ative phase of development occurs inside red blood cells which
lack the MHC antigens needed to present pathogen epitopes to
cytotoxic T cells. ADCC could facilitate antibodies in the killing of
early infected red blood cells stemming parasite proliferation and
disease.
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4. T cells

a. Diversity

One major problem confronting the T cell-based HIV-1 vaccine
developer is diversity, both human MHC diversity and viral diver-
sity. Because of diversity in MHC different people will not present
the same epitopes within the virus sequence to T cells. Thus, T cell
responses to any given antigen are highly variable in the human
population. Additionally, extreme virus sequence diversity in
HIV-1 makes it even more difficult to rely on a vaccine, which nec-
essarily will only contain a small amount of that diversity, to
induce T cells responses that will provide broad protection in a
large human population to the diverse population of viruses to
which they are exposed. Taken together the great sequence diver-
sity of HIV-1 and human population diversity in antigen presenta-
tion suggests that the identification of the most effective subset of
target virus amino acid sequences may simplify the construction of
a broadly applicable vaccine.

b. Epitopic specificity

CD8 T-cell anti-viral immune responses measured in the labora-
tory are not all equally effective at killing infected cells or sup-
pressing virus proliferation to control viral load. Sometimes
peptide epitopes which can be synthesized and recognized by an
in vitro ELISPOT assay, which enumerates T cells that detect speci-
fic epitopes [42], are not efficiently processed or presented in vivo.
In cases of pathogen antigens present in small concentrations the
presentation of recognizable epitopes on the surface of the infected
cell may be overwhelmed by pathogen epitopes made in much lar-
ger amounts. In other situations, escape from different responses
by mutation of specific target epitopes may have very different fit-
ness costs for the virus which will be reflected in different levels of
control of viremia [43]. If the response to ‘‘easy to escape from”
epitopes is immunodominant that may divert the immune
response from more useful subdominant epitopic responses. In
yet other cases what may be effective epitopic targets in some
virus isolates may not be present in other virus strains or may
not be presented by the polymorphic antigen presenting molecules
of other individuals. Simply getting a response to a large enough
diversity of epitopic targets as measured by an ELISPOT assay
Table 2
Competing optimal T-cell epitope theories.

1. Consensus approach [44]
Use consensus or ancestor sequences of the virus proteins to minimize the sequen
people are exposed. This is suited to situations where sufficiently broad and poten
infection before escape from the immune response can occur.

2. Mosaic approach [45]
A small set (2–4) of ‘‘mosaic” proteins, assembled from fragments of natural seque
sequence diversity. This also is suited to a situation where broad coverage is the g

3. Conserved sequence approach [46,47]
Building on the observation that greater viremia control correlates with CD8+ cell
(suggesting these immune responses might be more difficult to escape from becaus
vaccine designers use immunogen constructs that only contain the most conserve

4. Networked epitope approach [48]
Assuming epitopes with the greatest fitness cost for escape are a subset of conserv
largest number of other residues in the protein three-dimensional structure; i.e. hi
structure to identify such residues then builds a vaccine immunogen from the sm

5. Functional epitope approach [49]
Investigators who have analyzed HIV-infected individuals to determine which epit
these are difficult to escape from epitopes) have formulated vaccine immunogens

6. Critical function epitope approach [50]
This approach targets the conserved sequences around essential virus protein pro
debilitate virus maturation.
may not suffice for effective control of infection. It is believed that
an effective vaccine will require focusing the immune response on
the specific epitopes most commonly and efficiently presented on
the surface of infected cells and those from which escape imposes
the greatest fitness cost. Competing theories of how to select the
optimal virus antigen target epitopes have been proposed. These
theories are the consensus, mosaic, and conserved sequence
approaches, and the networked epitope, functional epitope, and
critical function epitope approaches (Table 2).

c. T cell quality

Other questions arise about the qualities of the T cells needed to
be effective in a vaccine. The licensed vaccines where T cell
responses are believed to play a role in efficacy are live-
attenuated vaccines where developers have not had to reason out
needed T cell quality because it was determined by innate immune
responses to the attenuated pathogen which are like the unatten-
uated pathogen. However, vaccine developers using quite different
viral or bacterial vectors to deliver pathogen antigens must worry
if different innate responses to the vector will set up the body to
deliver the correct quality of T cell response needed to control
the new pathogen. Recently a vaccine vectored in an attenuated
cytomegalovirus demonstrated some unusual efficacy in a nonhu-
man primate model for HIV. It appears that the underlying mech-
anism of protection may be CD8+ T cell recognition of virus
epitopes presented by MHC-E or class II MHC instead of class I
MHC presented epitopes [51]. This unusual presentation to CD8+
T cells derives from the unique vector in which the virus antigens
were delivered. Another factor in the effectiveness of cytotoxic T
cells is T cell avidity. In addition to the TCR-peptide-MHC interac-
tion, T cell avidity is influenced by CD8 co-receptor expression and
intracellular signaling molecules [52]. It has been noted that cyto-
toxic T cells induced by antigen in some vectors may have greater
avidity for their targets than the same specificity of T cells induced
by other vectors. Thus, it has been observed that HIV antigens vec-
tored in fowlpox, which presents antigens via lung antigen pre-
senting cells, induces cytotoxic T cells with greater avidity than
CTL against the same antigen presented in other ways [53].

Another question related to quality is the location of the T cell
response; reactive T cells may be needed in different places
depending upon the transmission pathway and pathogenesis of
ce differences between vaccine constructs and the virus in circulation to which
t coverage of sequence diversity will enable T cell-mediated control of the

nces via a computational optimization method, is proposed to cover most virus
oal.

recognition of epitopes in protein sequences that showed little variability
e the sequence of the protein in that place was more critical to virus replication)
d regions of the virus protein to focus the immune response.

ed epitopes (those epitopes containing amino acid residues interacting with the
ghly ‘‘networked” amino acids) the vaccine developer analyzes pathogen protein
all sequences containing those residues.

opes are recognized by those that appear to control viremia best (reasoning that
with just those epitopes.

tease cleavage sites reasoning that mutational escape of these epitopes will
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the disease. As a sexually transmitted disease some HIV vaccine
developers have postulated that an effective HIV vaccine should
induce tissue resident memory T cells in the mucosal portal of
entry of the virus. They have experimented with vectoring HIV
antigens in replicating vectors that target mucosal membranes
[54]. While they have been successful at inducing high levels of
such antigen specific T-cells they have not reported protection in
animal models, perhaps because they have failed to focus the T cell
response on critical epitopes.

d. Implications for other vaccines

Developers of vaccines against most single pathogens should
not have a problem with pathogen sequence diversity. However,
sequence diversity may be a problem for universal influenza vac-
cine developers or developers of vaccines against families of
viruses hoping to add a cytotoxic T cell component to antibody-
based protection, as well as developers of T cell-based vaccines
against parasites with extreme strain variability such as Theileria
parva [55]. Unfortunately, studies of the different approaches to
selecting optimal T cell epitopes for an HIV vaccine have not
advanced far enough to inform developers of the very best strategy
for other vaccines with epitope selection problems.

5. Vaccine vectors

a. HIV vaccine developments

Some vectors are organisms themselves like viruses or bacteria
used to deliver the sequence of a protein immunogen (Table 3). The
selection of such vectors is dependent upon certain factors:
absence of pre-existing vector-specific immunity, nature of illness
associated with the wild type vector or assurance of replication
incompetence, tissue tropism, and manufacturability. Other vec-
tors are biological information encoding molecules (DNA or mRNA)
that encode the immunogen gene sequence for delivery into cells.
These have a good safety profile, are relatively easy to manufac-
ture, extremely stable and do not suffer from pre-existing vector
immunity problems.

Data suggest that viral vectors, depending upon their target
cells for infection as well as a multiplicity of pattern recognition
Table 3
Viral, bacterial and gene sequence vectors used for candidate HIV vaccine
development.

1. Non-replicating viral vectors [56]
� Canarypox (ALVAC)
� Vaccinia vectors (NYVAC and MVA)
� Fowlpox
� Adenoviruses
� Rhabdoviruses
� Alphaviruses

2. Replicating viral vectors [57]
� Vesicular Stomatitis virus (VSV)
� Cytomegalovirus (CMV)
� Adenoviruses
� Poxviruses
� Canine Distemper virus [58]
� Sendai virus [59]
� Yellow Fever virus [60]
� Measles virus [61]
� Rubella virus [62]

3. Bacterial vectors
� Salmonella [63]
� Listeria [64]
� BCG [65]

4. Information encoding biomolecules
� Plasmid DNA [66]
� mRNA [67]
and activating factors, can actively recruit elements of innate
immunity to create a cytokine milieu which can influence immune
responses. Most attention has focused on non-replicating viral vec-
tors for safety concerns. However, replication-competent virally-
vectored vaccines are potentially more immunogenic than
replication-incompetent vectors because they may replicate in tis-
sues to levels that exceed the total dose of replication-incompetent
vectors. Also, replication-competent vectors are more easily man-
ufactured. Novel replicating vectors with diverse biological proper-
ties are being explored to increase or prolong expression of the
HIV-1 envelope protein or other HIV antigens, and to direct antigen
expression to mucosal surfaces [68,69]. While much optimism sur-
rounds the field of replicating vaccine vector development, at pre-
sent safety concerns make the regulatory hurdles for testing
replicating vectors higher. Earlier in HIV vaccine development
the use of bacterial vectors was also explored; but work in this area
has not progressed as much as viral vectors.

HIV vaccine investigators are also using information encoding
molecules for vaccine development. DNA plasmid products have
been a major focus because, like viral vectors they cause vaccine
antigens to be made inside host cells to induce cellular immune
responses. Unfortunately, early generations of DNA plasmid vacci-
nes with HIV antigen inserts were not very immunogenic in peo-
ple. Co-administration of DNA vaccines with cytokines and
electroporation appears to give more robust T-cell responses at
lower vaccine doses, and with fewer vaccinations [66]. Investiga-
tors are also experimenting with a strategy to direct vehicle-
induced vaccine immune responses toward mucosal portals of
HIV entry by supplementing DNA vaccines with mucosal chemoki-
nes [67]. More recently HIV vaccine developers have been explor-
ing mRNA for delivery of HIV antigens [70], especially for the
delivery of expensive to manufacture envelope protein. Advances
in nanoparticle delivery systems and optimization of mRNA
sequence to avoid activating degradation mechanisms and innate
immune system sensors have made mRNA a very attractive vaccine
vector. Also, various molecular modifications have made mRNA
more stable and highly translatable. Cytokine and immunomodula-
tory molecules can be encoded in mRNA and delivered at the same
time allowing for the modulation of the quality of the immune
response.

b. Implications for other vaccines

HIV vaccine investigators have put much effort into developing
novel vaccine vectors for delivery of vaccine antigens. Vaccine vec-
tor developers interested in other vaccines have frequently used
HIV-1 antigens as models because of the greater availability of
HIV vaccine development funding. This is especially true for those
interested in T cell functions in protection because these systems
will express antigens inside cells which is necessary to induce T
cell responses; but even some antibody-based vaccine designers
are looking at these delivery systems to bypass expensive, time-
consuming and often complicated protein vaccine manufacturing
problems. Investigators developing vaccines for other pathogens
such as Ebola [71], tuberculosis [72], and Zika [73,74] have
already made use of vectors developed for HIV vaccines.

6. Research support

a. Research structure and funding

Until this point, the discussion in this review has focused on
specific scientific obstacles in HIV vaccine development. However,
sometimes the structure of funding scientific research can present
an obstacle to performing needed research. The basic mechanism
for biomedical research funding at the NIH is the unsolicited
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5-year R01 research grant. This funding mechanism is superb for
supporting investigator-initiated, hypothesis-driven basic research.
For small scale, highly speculative research designed to obtain pre-
liminary data to compete for an R01 grant there are smaller 2-year
R21 or R03 mechanisms. However, a gap exists in funding for large
scale, data-landscape developing work sometimes needed to pre-
pare a field for hypothesis-testing research [75].

Responding to an international group of senior HIV vaccine
investigators [76] the NIAID launched the Center for HIV/AIDS Vac-
cine Immunology (CHAVI) a large budget, multi-disciplinary, extra-
mural effort in HIV vaccine development in 2005. CHAVI was
tasked with investigating early HIV-1 infection to discover why
the early host immune responses were unable to contain and con-
trol infection. Although the award competition attracted investiga-
tors anxious to design and test candidate HIV vaccines, they were
constrained to detailed exploration of early immune responses to
infection in order to establish a richer database to facilitate them-
selves and others formulating better hypotheses to test in vaccine
development. Key to this exploration was recruitment of a cohort
of individuals extremely early in infection to be followed through
development of early immune responses and early stages of viral
control. Facilitated by the development of a novel strategy for diag-
nosis of acutely infected individuals [77] CHAVI assembled, and
followed with intense sampling, a cohort of more than 300 acutely
infected subjects. This led to the clear establishment of the cyto-
toxic T cell response as a determinant of early virus control [43],
as well as the crucial role of affinity maturation in the development
of broadly neutralizing antibody responses [78], the co-evolution
of virus envelope and antibody [21], the B cell lineage-based design
hypothesis for immunization [15], and the possible contribution of
non-neutralizing antibodies to protection [33]. After seven years
the award was recompeted as the Center(s) for HIV/AIDS Vaccine
Immunology and Immunogen Discovery (CHAVI-ID) because it
was felt that enough understanding had been developed to move
into vaccine immunogen discovery and design. Much of the per-
spective discussed in this article comes from the work of CHAVI
and CHAVI-ID investigators.

b. Community engagement

Another lesson learned from HIV vaccine development is the
importance of community engagement. This is not just a matter
of recruitment for clinical trials. The HIV-infection at-risk Men
Who Have Sex with Men (MSM) population in the United States
was pivotal in motivating all types of HIV/AIDS research. The rapid
pace of antiretroviral drug development would not have occurred
without the push for mobilization of resources from this commu-
nity. HIV vaccine development has also benefited from the mobi-
lization of the large amount of resources scientific investigators
have needed to pursue the work. But mobilization of resources is
not the whole story. Many HIV vaccine investigators have friends
or family who have been infected and some who have died. Their
suffering and their struggles have motivated the field and continue
to inspire it.

c. Implications for other vaccines

The large funding approach of CHAVI is not needed for most
vaccine development. However, fields where scientists have been
struggling for a long time with at best marginal results and where
the public health need is great might benefit from a CHAVI-like
effort in assembling a crucial clinical cohort for intensive sample
collection and immunologic study to develop the data-landscape
for better hypothesis formulation. The fields of tuberculosis,
malaria, and syphilis vaccine development stand out as areas fun-
ders should consider for such an effort.
Also, the importance of community in vaccine development is
not a new story. In the 1940 s and 1950 s the effort at that time to
develop a polio vaccine was similarly spurred by community
engagement – the March of Dimes [79]. The bigger the scientific
challenge the more certain it is that a long-term commitment will
be needed andwill only benefit fromdedicated community support.
7. Conclusions

HIV vaccine developers have experienced repeated failure using
the standard approaches to vaccine development that have worked
for so many other pathogens. This has forced them to consider
immune responses in greater depth and detail than other vaccinol-
ogists. It has led to a recognition of the importance of epitopic
specificity in both antibody and T cell responses. Also, it has led
to an understanding of the importance of affinity maturation in
antibody responses and the quality of T cell responses in T cell-
mediated immunity. It has advanced the development of many
novel vaccine vectors and vehicles that are now available for use
in other vaccines. Further it has focused attention on the impact
of research funding mechanisms and community engagement in
vaccine development. Scientists attempting to make vaccines
against other pathogens will probably not encounter the many dif-
ficulties that HIV vaccine scientists have encountered. Yet they
may encounter some of the same obstacles. Recognition and
understanding these obstacles are contributions HIV vaccine
development makes to vaccinology in general. Leading HIV scien-
tists believe that the only way to truly end this epidemic is with
a vaccine [80]. HIV vaccine investigators are determined to make
an effective HIV vaccine. However, new strategies and technologies
will be needed. The determination exists among HIV vaccine scien-
tists to develop these new strategies and technologies. These new
strategies and technologies will contribute even more to the
science of vaccinology.
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