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Abstract

Introduction

Post-traumatic arthritis (PTA) is a progressive, degeneratsonse to joint injury, such @as
articular fracture. The pro-inflammatory cytokines, interleukitL-I) and tumor necrosis
factor alpha (TNFe), are acutely elevated following joint injury and remain elevdted
prolonged periods post-injury. To investigate the role of local anémysinflammation ir
the development of post-traumatic arthritis, we targeted both rhml iacute local
inflammatory response and a prolonged 4 week systemic inflammatory resyankéiting
IL-1 or TNF-u following articular fracture in the mouse knee.

Methods

Anti-cytokine agents, IL-1 receptor antagonist (IL-l1Ra) or solubMF receptor |
(STNFRII), were administered either locally via an acuteatatticular injection o
systemically for a prolonged 4 week period following articulactfree of the knee i
C57BL/6 mice. The severity of arthritis was then assess@&lveeeks post-injury in joir
tissues via histology and micro computed tomography, and systemioa@idiomarkers
were assessed in serum and synovial fluid.

A== R}

Results

Intra-articular inhibition of IL-1 significantly reduced -cartilagdegeneration, synovial
inflammation, and did not alter bone morphology following articulartfir@c However
systemic inhibition of IL-1, and local or systemic inhibition of TNFvided no benefit g
conversely led to increased arthritic changes in the joint tissues.

-

Conclusion

These results show that intra-articular IL-1, rather than &Nptays a critical role in the
acute inflammatory phase of joint injury and can be inhibited lotaligduce post-traumatlic
arthritis following a closed articular fracture. Targeted lladhibition of IL-1 following joint
injury may represent a novel treatment option for PTA.

Introduction

Osteoarthritis (OA) is a debilitating disease charactdribg degenerative changes in
articular cartilage, bone, and other surrounding tissues. Of they @@arhillion Americans
with symptomatic OA, an estimated 12% have a post-traumatto@y, making post-
traumatic arthritis (PTA) one of the leading causes of joirakilisy [1,2]. The financial
burden of PTA is significant, as it is estimated to cost theed@omy over $7 billion
annually in work productivity and medical expenses [1]. Additionallgederative arthritis
following injury is the most common reason for US service mesnbet returning to active
duty [3]. PTA can develop after a variety of joint injuries including soft tissueieés such as
ligament and meniscal tears [4-6], articular impact [7,8] tcwdar fracture [9]. Articular
fractures are of particular interest, as they commonly artighably cause accelerated joint
degeneration [10]. The current standard of care for articulamufescis surgical reduction



and fixation. Yet, surgical intervention alone does not prevent the devetwf PTA. Even
with optimal treatment, displaced articular fractures of thveel extremity have exhibited a
10-20% incidence of clinically significant arthritic degeneration of jointias411].

The pathogenesis of arthritis following joint trauma is not fulglerstood, and a variety of
factors including chondrocyte death, altered joint mechanics, andnm#iéion have been
implicated in the disease. Following joint injury, elevated synofliat levels of pro-
inflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis faatpha (TNFe), have
been reported with the highest levels observed acutely withinr8ie2#f hours after injury
[12-15]. However, levels remain elevated for weeks to months postdrdlif)16-19].
Upregulation of IL-1 and TNk may play a significant role in the pathogenesis of PTA,
similar to their role in chronic OA of joint tissue in patientghwut antecedent injury
[20,21]. Clinically, cartilage derived biomarkers are significamiicreased within the first
month following knee injury [13,22,23], which suggests that significantl@agetidamage is
occurring within weeks of trauma and that early intervention m#yence the long-term
sequela of joint degeneration [24].

In order to further characterize arthritis development follovjimgt trauma, we developed a
murine model of closed articular fracture of the tibial platpeogressive arthritic changes in
the bone, articular cartilage, and other joint tissues [25] at 8 wmmtsnjury in C57BL/6
mice. However, the MRL/MpJ strain of mice known as the “superhealer” steamprtected
from PTA and did not develop degenerative joint changes followingukat fracture [19],
and exhibited lower levels of both local and systemic inflammatioMRL/MpJ mice
compared to C57BL/6 mice [26]. This attenuated inflammatory respoagehelp explain
how MRL/MpJ mice are protected from the development of PTA afteular fracture [19].
These findings also suggest that the controlled inhibition of thenmmflatory response, either
systemically or locally, may represent a novel therapeutic approaBff foafter joint injury.

Targeted blocking of specific pro-inflammatory cytokines hasnbthe focus of several
therapies for rheumatic diseases such as rheumatoid arthhissapproach has led to the
development of specific inhibitors of IL-1, such as anakinra (KinerdB@yvitrum,
Stockholm, Sweden), a recombinant form of human IL-1 Receptor antaghnisRa).
Endogenous and recombinant IL-1Ra act similarly in competitivélipiting the binding of
both IL-1o and IL-13 to their active receptor [27]. Specific inhibitors of TNFave also
been developed, such as etanercept (Enbrel®, Amgen, Thousand Oaks, CAgnasbluile
form of TNFo Receptor Il (STNFRII). STNFRII binds directly to TNF to btats interaction
with cell surface TNF receptors and modulate the biological nsgsoinduced or regulated
by TNF. Previous research has shown that administration of elthHRd [28] or TNF
inhibitors [29-31] reduces inflammation and cartilage destructiormouse models of
collagen-induced arthritis. IL-1Ra was also shown to enhance merepeal in anin vitro
model [32]. However, it is unclear how these inflammatory mediafodministered
following joint injury would influence synovial inflammation and cad#adegeneration
following intra-articular trauma. Although a role for IL-1 and T-Mkn the pathogenesis of
arthritis has been suggested, the role of pro-inflammatory cytokindse progression of
PTA has not been elucidated. Using these cytokine inhibitorsjaift¢injury may represent
a novel therapeutic approach for PTA.

We have previously demonstrated that an acute and prolonged increlaseanfiammatory
response following joint injury has been associated with the devetapoharthritis in mice.
To investigate the role of inflammation in the progression of aghiailowing articular



fracture, we targeted pro-inflammatory cytokines first, durhrginitial acute local response
to joint injury, and secondly, systemically for a prolonged 4 weeilogdollowing injury.
Following closed intra-articular fracture in the C57BL/6 mouse ktiheeanti-inflammatory
agents IL-1Ra (anakinra) or sTNFRII (etanercept) were admiad, either locally via a
single intra-articular injection immediately following injury sistemically for 4 weeks
following injury, and the severity of arthritis was assessed.

Methods

Closed articular fracture model in the mouse knee

All procedures were approved by the Duke University Institutidmamal Care and Use
Committee. Male C57BL/6 mice (n = 62, Charles River) were obthat 8 weeks of age and
housed until 16 weeks of age, at which time active growth has decreased, and peak bone mass
is achieved [33,34]. All animals received a moderate closedulartifracture of the tibial
plateau as previously described [25]. Animals were anesthetizeglaced on a custom
cradle. With the left hind limb in a neutral position of 90° of flexianl0 N compressive
preload was applied to the tibial plateau using a materiatthgesystem (ElectroForce
ELF3200; Bose, Framingham, MA) via a custom indenter. The tibiathes loaded in
compression at a rate of 20 N/second to induce fracture. The displacement of the waente
limited to 2.7 mm during loading, which results in moderately severe fracturdsdtion or
surgical intervention was employed. Animals were given analdésigrenorphine, 48 h)
following fracture inductions and allowed immediate ad libitum Wwelgearing and motion.
All animals were sacrificed 8 weeks post-injury.

Acute local and prolonged systemic drug delivery

Either saline, IL-1Ra (anakinra, Kineret®, Biovitrum, Stockholm, SwedensTNFRII
(etanercept, Enbrel®, Amgen, Thousand Oaks, CA) were delivered folldraictgre (n = 6-

9 per group). For the local inhibition group, animals received a simigéearticular injection
immediately following fracture of saline (@, n = 7), IL-1Ra (0.9 mg, n = 8), or STNFRII
(0.3 mg, n = 8). For the systemic inhibition group, saline, IL-1Ra, TMFRIl was
administered for 4 weeks following fracture. Due to the shortlifi@lbind method of action
of IL-1Ra, either daily subcutaneous injections or continuous infusienreégaiired. For this
study, systemic IL-1Ra was delivered by continuous infusion at agdosf 1.0 mg/day
[35,36] using subcutaneously implanted osmotic pumps (model 2004; AlzetctDure
Cupertino, CA) [37]. Pumps loaded with either IL-1Ra (n = 9) or sdline 9) were
implanted immediately following fracture for a duration of 4 week®r systemic
administration of STNFRII, the method of delivery was intraperitbimpections at a dose of
0.2 mg/day [38,39]. Either STNFRII (n = 9) or saline (n = 95 wdministered 3 times per
week for a duration of 4 weeks starting on the day of fractwlen administered
systemically at the indicated dosage, both clinically availdblgs have been shown to be
effective at reducing inflammatory arthritis in murine models [28,40-45].

Serum drug levels

Serum levels of delivered IL-1Ra and sTNFRIl were measurezblgcting blood from the
maxillary vein in live mice. To insure the safety of the angnélood was collected at 2
week intervals for each animal. For mice receiving localatatticular drug delivery



immediately after fracture, early time points following iréirgicular injection were chosen
for blood collections, day 1, 3, 14 and 15 or 18 post-fracture. Due to limateqbles
remaining following quantification of delivered IL-1Ra, suffitiequantities of serum from
the intra-articular saline group for quantification of STNFRIravenly available at the day
14 time point. For mice receiving systemic STNFRII or satiebvered via intraperitoneal
injections for 4 weeks following fracture, weekly and bi-weekhyetipoints were chosen for
blood collections, day 1, 7, 14, 28 and 42 post-fracture. For mice receigtegnsy IL-1Ra
or saline for 4 weeks following fracture delivered via a subcutanesmstic pump, due to
technical challenges, blood was only sampled on the last dayugfdélivery at 4 weeks
post-fracture. Blood was centrifuged at 10,000 g for 5 minutes, and seasnstored at
—80°C until analyzed. Due to limited volumes of blood collected frow@ inice, samples
were pooled by time point to provide sufficient volume necessargrfalysis. Serum levels
of delivered drugs were measured using human IL-1Ra and sTN&RMercially available
enzyme-linked immunosorbent assays (ELISA kit; IL.-1Ra, DRAOOBYFRII DRT200;
R&D Systems, Minneapolis, MN). To assess the effect of drligedyg, native levels of
mouse IL-1Ra or sTNFRII were quantified in serum obtained at ¢ifrgacrifice in those
animals that received either drug using commercially avaiBbI8A kits (IL-1Ra, MRAOQO;
STNFRII, MRT20; R&D Systems).

Sample and tissue collection

All mice were sacrificed at 8 weeks post-fracture. Serushawdlected via retro-orbital bleed
followed by a cardiac stick. Synovial fluid was collected from Hathes using a calcium
sodium alginate compound [46]. Serum and synovial fluid were storeeBGIC until
analyzed. After sacrifice and limb harvest, both hind limbs weaseepl in 10% neutral-
buffered formalin for 72 hours.

Bone morphology

The knee joints of both fractured and contralateral control limbs seaened by a micro
computed tomography system (microCT 40, Scanco Medical AG, BdederSwitzerland)
to assess bone morphology. A hydroxyapatite calibration phantom wdgaiscale values
(mg/cnT). Morphometric parameters of fully calcified bone were deiteethusing a direct 3-
D approach [47,48] in the distal femoral condyles, proximal tibetleplu immediately distal
to subchondral bone, and metaphyseal region of tibia beginning at fditdahment [25].
Parameters reported in the femoral condyles were cancellous thacgon (bone
volume/total volume) for the trabecular bone only and bone mineral demsiicn?).
Parameters reported in the tibial plateau were bone volumé)(tame fraction, and bone
mineral density, and in the tibial metaphysis bone volume and bone mineral density.

Histological assessment of articular cartilage andynovium

All limbs were decalcified (Cal-Ex Decalcification Solutidfisher Scientific) for 72 hours,
processed, and paraffin-embedded for histology using a commerasiallgide automated
tissue processor (ASP300S, Leica Microsystems). Histologicabss were taken at @m in

the coronal plane of the joint. Sections that captured the tibioferactialilation were
selected. Each quadrant—lateral tibia (LT), lateral femur,(kif€dial tibia (MT), and medial
femur (MF)—was evaluated separately. The degree of artbhioges was assessed from
Safranin-O and fast green stained sections using a modified Mattda [£5,49,50]. The
maximum possible score was 30 for each quadrant. The scores frauadliants were



summed for a total joint score with a possible maximum jointesebd20. For H&E stained
sections, the degree of synovial inflammation was assessed ustagdardized synovitis
score [15,51], which evaluates the synovial insertion of each quadrasyrfovial lining
thickness and cellular density in the synovial stroma. The maxinsare $or each quadrant
was 6. A medial and lateral side synovitis score was summedtfrmssociated quadrants
with a maximum score of 12 per side of the joint. A total of dhgeaders, blinded to
treatment group, scored all specimens. The mean scores of gred@&s were used for
statistical analysis. The overall inter-grader and intraegragliability of the synovitis score
was evaluated using Krippendorff's alpha.

Serum and synovial fluid biomarkers

Due to the limited volumes of blood and synovial fluid collected, it waisfeasible to
perform analyses in duplicate, therefore for each of the asab/tgingle value was obtained.
Osteocalcin, a measure of osteoblast activity and bone formatienmeasured in mouse
serum, diluted 5-fold as directed, using a sandwich ELISA (Biomled®ehnologies, Inc,
#BT-470, Stoughton, MA). A competitive ELISA was used to quantify @il
telopeptides of type | collagen (CTX-I) in mouse serum (IDSL.&= EIA, Scottsdale, AZ),
which is a measure of osteoclast activity and bone resorption. Fectide of type I
collagen degradation products of C-terminal telopeptides of tymelkhgen (CTX-II), a
sandwich ELISA (IDS, Serum Pre-clinical Cartilaps) was uSsfum samples were run
undiluted as directed. Two different sandwich ELISAs were emglégethe determination
of Free Active (FA) TGH, (BioLegend, #437707, San Diego, CA) and Total TRzF-
(BioLegend, #436707). Samples were run undiluted for FA BG&Rd diluted 1000-fold for
Total TGFf; as recommended by the manufacturer. Serum and synovial fluid Ne& le
were measured using a commercially available ELISA kitiBpgor mouse IL-6 (R&D
Systems, M6000B). Serum samples were run undiluted as recommemtiegnovial fluid
samples were diluted 5-fold. Values obtained for synovial fluid saawpdéee multiplied by 5
to account for the assay dilution as well as by 50 to account falilthi®n factor introduced
by the collection method employed. A competitive ELISA (MD Biopraslu£M046012, St.
Paul, MN) was used to quantify cartilage oligomeric matrotgan (COMP) in synovial fluid
samples. Samples were diluted 5-fold and final values were medtiply 5 to account for
this dilution as well as by 50 to account for the dilution factaoduced by the collection
method employed.

Statistical analysis

All statistical analyses were performed using Stafstr software (StatSoft). Statistical
analysis of arthritis severity from the Mankin score was perédl using a repeated measure
two-way ANOVA (Fisher LSD post-hoc) with limb as the repdatactor and treatment
group as the second factor. Statistical analysis of synovitismseand synovial fluid
measures were performed using non-parametric analyses udicxdvii matched pairs for
comparison of fractured and contralateral control limbs, and KruskdiSAANOVA for
comparison among treatment groups. Statistical analysis of chamgaone morphology
were performed using a one-sampiest to test if differences between fractured and
contralateral control limbs were significantly different th@phand a one-way ANOVA
(Fisher LSD post-hoc) to test for significant differencesomagn treatment groups. The
Spearman’s rank-order correlation coefficiegtyas determined to assess the strength of the
association between outcome measures. For all tests, signifisasceeported at the 95%
confidence level.



Results

Treatment groups following closed articular knee facture in mice

Moderate articular fractures that were typically locatedhi@ lateral aspect of the tibial
plateau were successfully created in 60 mice. However, not@l enmpleted the study at 8
weeks post-fracture for analysis due to various complications ingyalimp implantation
and health issues unrelated to treatment. Therefore, at 8 weekisaptge (the time of
sacrifice), we had a sample population of n = 52 consisting diotloeving: intra-articular
local saline (n = 7), intra-articular IL-1Ra (n = 8), intracfar sSTNFRII (n = 8), systemic
saline via osmotic pump (n = 7), systemic IL-1Ra via osmotic pun®pg) systemic saline
via intraperitoneal (IP) injections three times weekly (n =a®) systemic sTNFRII via IP
injections three times weekly (n = 7). For all outcome measthe two methods of systemic
administration of saline were compared. Because no significaatahffes were detected for
any of the outcome measures in mice receiving systemigesaia osmotic pump or IP
injections, all mice receiving systemic administration ofrgalvere combined for statistical
analyses.

Longitudinal serum quantification confirms drug delivery during treatment

For mice receiving local intra-articular drug delivery, serenels were quantified at early
time points (Table 1). Levels of both delivered IL-1Ra and sTNFRikee on day 1 and
remained detectable at day 3. However, both were undetectabledinctiiation by day 14.
Serum quantification of locally delivered drugs demonstrated thatl lodra-articular
injection of either IL-1Ra or sTNFRII into the joint space subsedyemgrated to the serum
on days 1 and 3 and was cleared fully from the circulation by day 14.



Table 1 Serum drug levels during treatment
Serum levels of locally delivered IL-1Ra (pg/ml)

Time (days) Local Saline Local IL-1Ra
1 180 1460
3 151 271
14 23 18
15 6 10
Serum levels of locally delivered sTNFRII (ng/ml)
Time (days) Local Saline Local sTNFRII
1 803
3 128
14 0.01 0.2
18 0.6
Serum levels of systemically delivered IL-1Ra (pg/ml)
Time (days) Local Saline Local IL-1Ra
28 3 36,000
Serum levels of systemically delivered sTNFRII (ng/ml)
Time (days) Local Saline Local sTNFRII
1 0.01 5,615
7 0.01 3,789
14 0.01 44
28 0.01 97
42 0.01 0.11
56 0.01 0.01

Serum levels of the drugs delivered either locally via alesimgtra-articular injection
immediately following fracture or systemically for 4 weeksldaing fracture. Delivered
drugs were measured in serum using human IL-1Ra and human sTN¥ifRteccially
available enzyme-linked immunosorbent assays. Data presented as inetandard
deviation.

For mice receiving either systemic saline or IL-1Ra vieoamotic pump, serum levels of
delivered IL-1Ra were measured at 4 weeks post-fracture, 1 ri@ytp pump removal
(Table 1). Serum levels of delivered IL-1Ra levels were extadpdlito be 32,000 pg/ml,
which was above the upper limit of the ELISA range, and thesys saline group exhibited
no detectable levels. For mice receiving either systemid=&INor saline via intraperitoneal
(IP) injections 3 times weekly for 4 weeks post-fracture, sdawels of delivered sTNFRII
in the systemic sSTNFRII group were maximal on day 1 and rexdaat similar levels on day
7 with lower levels on days 14 and 28 (Table 1). Minimal levels detected on day 42 and
undetectable levels on day 56. The systemic saline group exhibitedentadk levels of
STNFRII. The serum levels confirmed that the systemic STNFRII gexgived a substantial
systemic dose of the drug. The reduction in day 14 and 28 serumm td\s&aINFRII, despite
continued treatment throughout this time course with sSTNFRII, wast fikely due to the
formation of antibodies to the administered sTNFRIIl. Similatesyg administration of
STNFRII in mice has been effective in reducing inflammatatigritis, but some mice have
developed antibodies to hsTNFRII after 1 week of administration, andie developed
antibodies after 4 weeks of administration [52]. Levels of mou&eR& or sTNFRII were
guantified in serum at the time of sacrifice to determirtha@fmice expressed native IL-1Ra



or sSTNFRII in response to treatment. There was no significdattebf either local or
systemic delivery of human IL-1Ra or sTNFRII on native levels8 aveeks post-injury
[Additional file 1].

Reduction in joint degeneration with local IL-1Ra fllowing articular fracture

For local intra-articular (IA) delivery following articularrdcture, the saline group
demonstrated significant degenerative changes in the fracturdy iIncluding loss of
cartilage structure and proteoglycan staining on all artiqule#faces of the knee joint (Figure
1A). The fractured limb in the local saline group had significahniger total joint Mankin
scores compared to the contralateral control limb (p = 0.02) (FidgreFor local IL-1Ra,
the articular fractures were evident on histologic sections, buk tinere minimal
degenerative changes in the joint with no statistically sigmtidifferences in Mankin scores
between the fractured and contralateral control limbs (p = 0.37).ldeat sSTNFRII,
fibrocartilage was frequently found at the fracture site, and dosseof cartilage structure
and proteoglycans were observed, but there was no significant m¢nel&ankin score in
the fracture limb compared to the contralateral limb (p = 0.18)alLmtra-articular IL-Ra
resulted in significantly lower Mankin scores in the fracturetblicompared to saline (p =
0.03) but sTNFRII did not (p = 0.38).

Figure 1 The effect of local intra-articular and systemic administration of IL-1Ra and
STNFRII on degenerative changes in joint tissues following articularécture. Histologic
images of knee joints stained with Safranin-O (red) and fast green (go#ew)rfg fracture
(F = femur, T = tibia, M = meniscus, white arrow = articular fracturbowearrow =
fibrocartilage), and Total Joint Mankin score of arthritic degenerative changest tissues
for contralateral control and fractured limbs following local intra-artic(lk®) administration
of saline, IL-1Ra and sTNFR(A-B) and systemic administration of saline, IL-1Ra and
STNFRII(C-D). Data presented as mean + standard deviation (*significant difference
between limbs’significant differences between treatment groups).

Systemic delivery of saline following articular fracture dent@ied similar results to the
local intra-articular saline in terms of cartilage degemerachanges. The fractured limb
showed loss of cartilage structure and staining with significagrhater Mankin scores
compared to the contralateral control limb (p = 0.03). Systemic k-d&ivery following
articular fracture was associated with significant degeimerathanges with frequent
complete loss of articular cartilage and the presence of fillilaga: In contrast to local
treatment with IL-1Ra, systemic treatment with IL-1Raulesl in significantly higher
Mankin scores in the fractured limbs compared to contralateratotdimhbs (p = 0.001).
Systemic treatment with sSTNFRII was associated with theguent appearance of
fibrocartilage at the fracture site and loss of cartilagecgire and proteoglycan staining,
with altogether significantly greater Mankin scores comparembitralateral control limbs (p
= 0.04). Systemic IL-Ra resulted in significantly higher Mankiores in the fractured limb
compared to the fractured limbs in both saline (p = 0.0001) and sTNFRII (p = 0.007).

Reduction in synovitis with local IL-1Ra following articular fracture

The reliability of the synovitis scores was high for both intadgr reliability,a = 0.908, and
intra-grader reliabilitypg = 0.958. The articular fractures were typically located inldheral
aspect of the tibial plateau. All fracture groups, independent ofrtegdit had significantly
higher synovitis scores on the lateral side of the fractureddonipared to the contralateral



control limb (Figure 2A). This increased synovitis on the laterde is consistent with
proximity to the location of the articular fractures. Loaatra-articular IL-Ra resulted in
significantly lower lateral synovitis scores in the fractutedb compared to the local
STNFRII fracture limb (p = 0.04). However, on the medial side ofdim, the local saline
group also demonstrated significantly increased synouvitis in the fractlyetimpared to the
contralateral control limb, indicating global synovial inflammatittmoughout the joint
following fracture. The local IL-1Ra group demonstrated no $tlly significant
differences in synovitis scores on the medial side of the joinweeet fractured and
contralateral control limbs (Figure 2A). The local IL-1Ra group aestrated a thin cell
lining layer and low cellular density (Figure 2B). The locaN&RII group also showed no
statistically significant differences in synovitis scoreslnmedial side of the joint between
fractured and contralateral control limbs and demonstrated less syrwvithe medial side
of the joint compared to the lateral side of the joint.

Figure 2 The effect of local intra-articular and systemic administration of IL-1Ra and
STNFRII on synovial inflammation of the knee joint following articular fracture.
Synovitis scores of lateral and medial sides of knee joints for contralatatedland
fractured limbs and histologic images of synovium stained with H&E on the mgthalfs
joint with femur (F), tibia (T), and synovial lining near medial meniscus (M) idedtliy
black arrows following local intra-articular (IA) administration ofirsa, IL-1Ra and
STNFRII(A-B) and systemic administration of saline, IL-1Ra and sSTNF&ID). Data
presented as mean + standard deviation (*significant difference betwdsri ignificant
difference between treatment groups).

Systemic saline demonstrated significant synovitis on both thallaed medial side of the
joint in the fractured limb compared to the contralateral contmdb I{Figure 2C). However,
both systemic IL-1Ra and sTNFRII were different from the ll@chninistration in that the
fractured limb demonstrated significantly increased synovitis coedpi® the contralateral
control limb on both the lateral and medial side of the joint, whiclcateld that the global
synovial inflammation throughout the joint following fracture was ntieraated with

systemic administration of either of these agents. In contragemig IL-1Ra was trending
towards increased synovitis on the medial side of the fractoredgompared to systemic
sTNFRII (p = 0.08).

Bone morphological changes following fracture witHocal or systemic
administration of saline, IL-1Ra, or STNFRII

Articular fracture has been reported to induce decreases & \mwbdame fraction and bone
mineral density in the periarticular tibial plateau [15,19,25]. We assessédtettteoélocal or
systemic administration of saline, IL-1Ra or sSTNRII on bone moggyofollowing fracture.
Within the tibial plateau, the changes in bone fraction in the frattumds normalized to the
contralateral control limbs following fracture were not stat#dly different from zero for
local saline, IL-1Ra, or STNFRII groups (Figure 3A). However, local HIN&dministration
following fracture resulted in significantly reduced tibial pki bone fraction compared to
both local saline and IL-1Ra. Systemic saline demonstrated reducedracien following
fracture but the normalized difference between fractured and tditibs were not
significantly different than zero. Both systemic IL-1Ra andesyg STNFRII had reduced
tibial plateau bone fraction following fracture that were sigaiitly different than zero, but
were not statistically different than systemic saline.



Figure 3 The effect of local intra-articular and systemic administration of IL-1Ra and
STNFRII on bone morphology of the tibial plateau following articular fracture. (A)

Bone fraction an@B) bone density of the fractured limb as normalized to the contralateral
control limb of each mouse for the tibial. Data presented as mean * standaridleviat
(*difference between paired limbs is significantly different than Zsignificant difference
between means in treatment groups). Representative axial microCT imagesilogl

plateau followingC) local intra-articular an¢D) systemic administration of IL-1Ra and
STNFRII at 8 weeks following articular fracture. Bar, 1 mm.

Tibial plateau bone density was reduced following fracture withall@nd systemic

administration of saline, IL-1Ra, or sSTNFRII (Figure 3B). Ngn#icant reduction in bone

density was observed following articular fracture for the lsedihe group. However, local
IL-1Ra and local sTNFRII resulted in a significant reductiorbohe density. Changes in
bone density were greater with local sSTNFRIlI compared to kemale and trended toward
being greater than local IL-1Ra (p = 0.07). Groups administeredrggssaline, IL-1Ra or

STNFRII had significantly reduced tibial plateau bone density berewiot significantly

different from each other.

Within the tibial plateau, local saline and IL-1Ra administefetiowing fracture
demonstrated similar bone morphology, whereas local sTNFRII edsuit reduced bone
fraction (Figure 3C). Bone morphology changes after fractueee wgreater with systemic
administration of saline, IL-1Ra, or STNFRII as demonstraterktiyced bone fraction with
IL-1Ra and sTNFRII (Figure 4D). Similar bone morphological gesnwere found in the
femoral condyles and the tibial metaphysis [Additional file 2].

Figure 4 Synovial fluid levels of COMP were elevated with fractureSynovial fluid levels
following fracture for contralateral control and fractured limbs \(&thLocal intra-articular

(IA) and (B) Systemic administration of saline, IL-1Ra and sTNFRII (*significaned#ifice

between limbs).

Global joint changes following articular fracture: Correlations between
histological assessments of arthritic changes, syral inflammation, and bone
morphology following articular fracture

To better characterize PTA disease progression followingulatiéracture, the relationship
between synovial inflammation and arthritic changes in the jointe wvexamined by
correlating Mankin and synovitis scores for all groups (Table r&erdstingly, for the
fractured joints, medial Mankin and synovitis scores were significaorrelated ¢= 0.61).
However, significant correlations were not found in the laterak jpcores for the fractured
limbs, nor in the contralateral control joints.



Table 2Global joint changes following articular fracture: correlations betwean arthritic changes,
synovial inflammation and bone morphology

Lateral Medial synovitis Lateral Medial synovitis
synovitis score score synovitis score score
Contral limb Fractured limb
Mankin Total Joint Score sF 0.06, rs=0.19, Mankin Total Joint Score sF 0.10, rs=0.48,
p=0.68 p=0.17 p=0.47 p=0.001
Lateral Mankin Score s=0.16, rs=0.17, Lateral Mankin Score s 0.06, r¢=0.14,
p=0.26 p=0.24 p=0.68 p=0.31
Medial Mankin Score o= —-0.07, rs=0.10, Medial Mankin Score /= 0.16, rs=0.61,
p=0.60 p=0.46 p=0.27 p=0.001
Mankin Total Joint Score Lateral Synovitis Score Medial Synovitis Score
Control limb Fractured limb Control limb  Fractured limb Control limb Fractured limb
Tibial Plateau Bone Volume r,=-0.30, rs=-0.39, rs=0.10, rs=0.13, rs=0.11, rs=-0.25,
(mn?) p=0.02 p = 0.002 p=0.43 p=0.32 p=0.38 p=0.05
Tibial Plateau Bone Density rs = —0.08, rs=-0.29, rs=0.10, rs=-0.37, rs=0.10, rs=-0.48,
(mglcm) p =0.55 p =0.02 p=0.43 p = 0.004 p=0.46 p = 0.001
Femoral Condyle Cancellous, = -0.07, rs=-0.48, rs = 0.09, rs=-0.27, rs=0.16, rs=-0.45,
Bone Fraction p =0.50 p =0.001 p =0.36 p = 0.006 p=0.10 p =0.001
Tibial Metaphysis Bone rs=0.22, rs=-0.11, r«=0.13, rs=-0.30, rs = 0.06, rs = —0.20,
Density (mg/cr) p =0.08 p =0.40 p=0.34 p=0.02 p =0.60 p=0.12

Significant Spearman correlations, lbetween Mankin scores of arthritic changes, synovitis scores,
and bone morphology parameters following articular fracture in kinee indicate a complex
interaction among joint tissues with PTA disease progresdiold Correlation coefficients are
statistically significant, p < 0.05).

Bone morphological changes following articular fracture also ledee with both severity of
arthritic changes and the degree of synovial inflammati@blél 2). Increasing total joint
Mankin scores in the fractured limbs correlated with degenerathanges in bone
morphology, including decreasing bone volume=(r0.39) and bone density, & —0.29) in
the tibial plateau and decreasing cancellous bone fractior (0.48) in the femoral
condyles. Similarly, synovitis in both the lateral and medadésiof the fractured limbs also
inversely correlated with degenerative changes in bone morphditgpugh the articular
fractures were located on the lateral aspect of the tiagaul, the medial side demonstrated
the greater correlation with periarticular bone in the tibia #amur of the knee joint,
including cancellous bone fraction in the femoral condyles *+0.48), bone volume (=
—-0.25) and bone tissue density & —0.48) of the tibial plateau. The association of joint
inflammation with arthritic changes and degenerative bone changbs omedial side of the
joint, away from the lateral tibial plateau fractures, suggdbht global interactions
throughout the whole joint may play a role in the progression of @tfoltowing articular
fracture.

Serum and synovial fluid biomarkers

Biomarkers of bone metabolism showed minimal differences witatnrent following
fracture. Local intra-articular STNFRII showed a trend in iaseel serum osteocalcin (p =
0.08) and an increase in serum CTX-I following fracture (Table 8)diNerences in either
bone marker were found with systemic treatment groups followatgure. Serum levels of
free active (FA) TGH; were not significantly different with local delivery of saljrie-1Ra,

or sTNFRII following fracture. Total TGB: was significantly lower in with local STNFRII
compared to local saline or local IL-1Ra. However, the ratioAJfTétal TGF{; was not
significantly different between local treatment groups. Fetesyic groups, there was a trend
in increasing FA TGH; with systemic IL-1Ra delivery (p = 0.07), no difference in Total



TGF1, and a significantly higher ratio of FA/Total T@r-with systemic IL-1Ra compared
to systemic sTNFRII. Interestingly, TGkh-levels inversely correlated in both limbs with
tibial plateau bone volume (FA TGh: control limb, g = —0.33; fractured limb,s= —0.47)
and bone fraction (Total TGEx control limb, = —-0.54; fractured limbs= —0.51), and the
FA/Total TGF$; ratio inversely correlate inversely with tibial plateau beakime in both
limbs (control limb, = —0.36; fractured limbg= —0.47).



Table 3Biomarkers and cytokines

Local - saline Local - IL-1Ra Local - STNFRIl  p, Kruskal-Wallis Systemic - Saline Systemic - IL1-Ra Systemic - STNFRII p, Kruskal-Wallis
Serum Osteocalcin (OC) (ng/ml) 7.3+9.0 11.1+6.7 111.4 +199.5 0.08 11.1+11.3 10.6 +9.9 10.6 +9.9 0.93
Serum CTX-I (ng/ml) 17.3 7% 159 +3.6 342+248 0.03 22.5+16.6 23.0+14.1 19.9+9.9 0.73
Serum Free Active (FA) TGP (pg/ml) 19.1 +8.2 20.7 +10.3 224 +11.4 0.97 82211.9 343+8%0 20.2+19.1 0.07
Serum Total TG, (pg/ml) 121,025 + 45,8%4 108,251 + 17,188 84,573 +12,760 0.004 95,781 + 24,239 99,868 + 4,063 90,003 + 11,717 0.18
Serum FA/Total TG, (x 10°%) 0.18 +0.09 0.19+0.08 0.27+0.14 0.50 0.23100° 0.34 £0.0% 0.24 £0.28 0.048
Serum CTX-II 5.7 +10.1 57+7.7 3.8+53 0.83 4231 1.7+4.4 27+4.6 0.88
Serum IL-6 (pg/ml) 32.5 £ 41°% 6.3+2.8 67.0 £ 108 0.004 17.6 +35.6 57.9 +78%0 483 +77.3 0.09
SF IL-6 Control limb (pg/ml) 1,294 + 38§ 1,348 + 53% 626 + 505 0.02 523 + 657 1,333 + 365 1,197 £ 1,675 0.08
SF IL-6 Fractured limb (pg/ml) 1,513 + 977 1,238 + 299 820 + 506 0.04 730 + 59% 1,370 + 587 653 + 486 0.04

Serum and synovial fluid (SF) measures of the liormver markers osteocalcin and CTX-I, cartilagevked CTX-II, joint tissue related growth factoGF{3;, and the cytokine IL-
6. Data is presented a mean * standard deviatiata With different letters are statistically di#at from each othefp < 0.05)as measured by Kruskal-Wallis with multiple
comparison of the mean ranks. Thealuesof the measures with significant differences (@.85) areshown in Bold Data with§ indicate a trengjp < 0.09).



Serum IL-6 levels following fracture were significantly gter with local STNFRII than local
IL-1Ra but not local saline (Table 3). With systemic IL-1Ra aystesnic STNFRII, there
was a trend in elevated serum IL-6 levels compared to syssatme (p = 0.09). In contrast
to the serum levels, synovial fluid levels of IL-6 were lower in both limbis leital STNFRII
compared to local IL-1Ra but not different than local saline. Wigttegyic administration,
the trends in synovial fluid IL-6 levels were similar to serum levels. Syhibwid IL-6 in the
control limbs trended toward being increased with systemic ILdiBsTNFRII compared
to systemic saline and was greater in the fractured limb sygtemic IL-1Ra compared to
both systemic saline and sTNFRIIl. Synovial fluid levels of IL-6ravnot statistically
different between control and fractured limbs in all groups.

Synovial fluid levels of COMP were significantly greater mctured limbs compared to
contralateral control limbs in all groups with fracture (Figdje However, there were no
statistically significant differences in COMP level&hwiocal or systemic administration of
saline, IL-1Ra, or sSTNFRII following articular fracture foactured or contralateral control
limbs. Synovial fluid COMP levels correlated with increasing syimwicores in the lateral
side of the fractured limbss(# 0.29) and inversely correlated with cancellous bone fraction
in the femoral condyles of the fracture limbs<r-0.25). Interestingly, COMP synovial fluid
levels increased with Mankin scores, but the correlation was atadtisially significant (=
0.177, p = 0.18). Serum levels of CTX-1l were not significantly defieérbetween those
receiving local or systemic delivery of saline, IL-1Ra, or STNFRIbfaing fracture.

Discussion

Increasing evidence from clinical and animal studies indic#ites pro-inflammatory
cytokines are elevated following joint injury, yet the specifiesobf IL-1 and TNFe: in the
development of post-traumatic arthritis are not fully understood. Mexeshow that early
local inhibition of IL-1 with a single intra-articular injectiari IL-1Ra significantly reduced
arthritic changes in cartilage, reduced synovitis, and did notladtee morphology or bone
healing after a closed joint fracture in mice. Local inhibitionTdfF-o with a single intra-
articular injection of sTNFRII had a moderate effect in redu@ntritic changes in the
cartilage and synovitis, although not as effectively as IL-1Ra. Howesgengérative changes
in bone morphology were not reduced with sSTNFRIIl. Systemic infusion.-dRb for 4
weeks post-injury, and both local and systemic inhibition of BN#th either a single intra-
articular injection of STNFRII or three times weekly injeas of STNFRII for 4 weeks did
not reduce arthritic changes, and instead led to significant degeeethainges in bone
morphology and evidence of fibrous fracture healing. These resultstehowtra-articular
IL-1, rather than TNF, plays a critical role in the acute inflammatory phaskevohg joint
injury and can be inhibited locally to reduce post-traumatic &ghiollowing a closed
articular fracture.

While the role of anti-cytokine therapy in PTA remains to bmlfirestablished, its role in
autoimmune mouse models of arthritis is relatively well-cliareeed. For example,
continuous high doses of systemic IL-1Ra prevented collagen-indutteitican(CIA) in
DBA/1 mice [35]. Furthermore, chronic overexpression of TNF using aahuifiNF-
transgenic mouse model of TNF-induced arthritis could be best redutted weatment of
anti-TNF-antibody (infliximab) and recombinant human IL-1Ra (anakif#2]. When
administered concurrently, combination therapy of infliximab andkiare blocked
proteoglycan loss in a synergistic fashion [42]. However, systeyakine inhibition in the
present study did not demonstrate any benefit in reducing PTA, stinggthat future efforts



should target intra-articular methods of therapeutic adminstratGiven that IL-1Ra
(anakinra) is commercially available and FDA-approved for thatrirent of rheumatoid
arthritis, the results of the current investigation have broadhpbkatic implication and
support the extension of translational studies and potential clinigial in humans. To date,
there has been one pilot study of anakinra for acute joint infjutyumans [53]; this trial
showed that IL-1Ra, administered intra-articularly within thiet fmonth following severe
knee injury, reduced knee pain and improved function over a 2-week intervalvétowe

ability of IL-1 inhibition to reduce the development of PTA was not addressed.

In contrast, for treatment of chronic OA, previous clinical trizds’e reported that neither
systemic nor local inhibition of IL-1 were able to reduce clingganptoms in patients with
symptomatic OA of the knee. Systemic inhibition of IL-1 with human miomat antibody
to IL-1 receptor 1 administered for 12 weeks was well tolerateolvesd a trend in pain
reduction, but the effect was not significant, and the clinicaktiewas small [54]. Local
inhibition of IL-1Ra with a single intra-articular injection of humegecombinant IL-1Ra
(anakinra) was also well tolerated but only showed a reduction ofgtad4 days and no
improvement in OA symptoms compared to placebo at 4, 8, and 12 weeks [55]
Pharmacokinetic data indicated that the mean terminal haléfifd-1Ra in serum after
intra-articular injection was approximately 4 hours and was ucidéie at 24 hours. With
the acute local inhibition of IL-1 in this study, we observed lesslage degeneration and
less synovial inflammation. We were also able to detect IL{ibR&erum up to three days
after intra-articular injection, potentially due to decrease@drance due to joint swelling
following injury. Our results support a direct role for IL-1 in tloait@ inflammatory phase of
articular injury that can be inhibited at the injury site bggenous administration of IL-1Ra
to reduce PTA.

The systemic IL-1Ra group had the most severe arthritic changes demeahisyréhe highest
Mankin and synovitis scores. It is important to consider the rold_df in the healing
response to fracture. ILB1stimulates proliferation and differentiation of pre-osteoblasts
vitro, as MC3T3-E1 cells produced more mineralized bone matrix when$ Ilas
introduced [56]. Moreover, IL{l can alter the ratio of cartilage volume to callus volume in
mice following a diaphyseal tibial fracture within two weeki®iathe injury [56]. The dosage
and timing of administration of the 4-week continuous systemic wriusf IL-1Ra was
selected based on previous data showing its effectiveness liorameg arthritis in mouse
models of inflammatory arthritis [35-37]. However, in our articuia@cture model, this
strategy of systemic IL-1Ra delivery appears to haveedltdre healing response. Given our
findings, along with previous evidence suggesting a potential role biiiLfracture repair, it
could be speculated that IL-1 may transition from playing a negatle in the acute phase
of trauma to a positive role in the healing and bone remodeling phase.

In this study, acute local inhibition of TNk-or systemic inhibition of TNFe for 4 weeks
post-injury did not prevent the progression of PTA. From histologicduatians, fibrous
healing could be observed at the site of fracture 8 weeks post-imjimyadministration of
STNFRII. Likewise, bone morphology assessed with microCT ireticétat bone fraction
and bone density were significantly reduced with administration NFERTI. Our findings
suggest that inhibiting TNE-following articular fracture may inhibit fracture healiagd
bone remodeling. This is consistent with results in a model of siolpsed fracture repair in
wild-type and TNFe receptor-deficient mice wherein the absence of BNdtgnaling led to
impaired fracture healing [57]. We also found that detrimentalgdsgaim bone morphology
were correlated to histologic measures of cartilage deggmerand synovial inflammation.



This demonstrates the complex inter-relationship between the vaoioagissues in the
development of post-traumatic arthritis.

We have previously reported reduced bone fraction and bone mineral dertisnyiniy
fracture [15,19]. However, these degenerative bone changes appeaettuced in the local
saline group along with the local IL-1Ra group. The data suggestiritratarticular
injections of saline may be altering the intra-articular mmrnent in a manner which is
beneficial to the periarticular bone. One hypothesis is tha-artrcular injections may be
diluting catabolic factors or washing out the joint. However, loakhe provided no benefit
in reducing cartilage degeneration or synovial inflammation. Norfredture healing
involves the upregulation of many inflammatory cytokines and growtlors and the
temporal profiles of these factors are different during thalifge process [58,59]. The
cytokines IL-B and TNFe have also been shown to stimulate the production of active BMP-
2 [60], which may be involved in the repair process. Understandinglénef such systemic
factors found in the circulating serum following trauma may prouwdgght into articular
fracture healing and the development of PTA. Although we saw diffesein bone
morphology between treatment groups, systemic measures of borveturwere not
significantly different among treatment groups following fractWke found that markers of
both osteoblast and osteoclast activity increased with increasing Vaaome or bone
fraction in the tibial plateau and metaphysis at 8 weeks pagtifea This time point would
represent the remodeling phase of bone repair and has been clrm@digrhigh levels of
bone resorption and formation markers [61]. Bone turnover markers manyghout the
fracture healing process, and although biochemical markers of boe«r have been
helpful in understanding and clinical treatment of metabolic bone di&asesteoporosis,
their usefulness in assessing fracture healing has not beensbstdp62]. TGH1 may play
a role in endochondral ossification [63], and is reported to be actigatew) osteoclast bone
resorption [64,65]. In this study, increasing total or free active-f3kas associated with
decreased bone volume and bone fraction in the tibial plateau.pT@Fmotes bone
formation through chemotactic attraction of osteoblasts and the entemicef osteoblast
proliferation [66]. However, bone resorbing osteoclasts may helpdaselfree active TGF-
B, via their acidic microenvironment [67,68]. Longitudinal assessment of systemkensaf
bone turnover and healing may provide more insight into our understandimjcofaa
fracture healing and lead to new methods of assessing intervettimnmay prevent or
mitigate the development of PTA.

Serum IL-6 concentrations were significantly lower in mice tteteived local IL-1Ra
following articular fracture compared to those that received |&3@FRII, and no
differences in synovial fluid concentrations of IL-6 were found betwfactured and
contralateral limbs among all groups. IL-6 is reported to be &dvan synovial fluid
following meniscal and ligamentous tears [12,69]. However, IL-6 setantentrations
significantly decrease during fracture healing [70], which maplagx the minimal
differences among treatment groups at 8 weeks post-fractusredtibgly, serum and
synovial fluid IL-6 concentrations increased with increasing cartilagerdgative changes in
the medial tibia following articular fracturén vitro studies have demonstrated that IL-6
influences cartilage catabolism with mechanical trauma reguh increased proteoglycan
loss [71]. IL-6 with the soluble IL-6 receptor triggered osteddt@snation and has also been
associated with osteoclast-like cell formation in rheumatoid iasthpatients and may
contribute to bone resorption [72,73], which supports our observation of an associat
between increased synovial fluid IL-6 concentrations and decgeasine fraction in the
medial tibial plateau. Serum IL-6 also correlated with in@dasynovitis scores following



articular fracture. The interaction between inflammatorpkiyies like IL-1, TNFe and IL-6
following joint trauma is not well understood. However, in this mousdeiof joint injury,
the data suggest a complex relationship between systemic ahditotaemical factors and
joint pathology of the cartilage, synovium and adjacent bone.

The progression of PTA following joint injury is not well charaded, and current clinical
measures are unable to predict which patients may developdi®ihg injury. Identifying
serum or synovial fluid molecular biomarkers of degenerative jointggsafollowing injury
would provide insight into the early stages of the disease and befd asd relatively
noninvasive diagnostic tool. In this study, synovial fluid COMP whle @0 distinguish
between fractured and contralateral control limbs at 8 weeks npasivle. COMP is an
extracellular matrix protein found predominantly in cartilage, bisb an synovium,
meniscus, ligaments, tendons, and associated with osteoblasts [74-76P G&dVibeen
suggested as a candidate biochemical molecular marker otiartiecause of its relative
specificity to joint tissues. Interestingly, synovial fluid COM®&Trelated with synovitis and
decreased bone fraction but not cartilage degenerative changesughi COMP has been
used as a marker of cartilage turnover [76], COMP has also beereck to be associated
with clinical synovitis in patients with knee OA [77], elevated mjuied tendon sheath
synovial fluid [78], and expressed by adult osteoblasts and may batindiof metabolic
bone activity [74]. In this study, synovial fluid COMP was not sigatitly different among
treatment groups. However, COMP was only measured at a singlgpdimt; 8 weeks post-
fracture. Longitudinal analysis of COMP may provide more insight in futuckest.

Conclusion

This study indicates that acute treatment of an articular fracttiidogal IL-1Ra therapy can
prevent cartilage degeneration and synovial inflammation in the mouse. Khar

investigation supports a direct role for IL-1 in the acute plodsbe inflammatory process
that follows articular injury. These results further our undadstey of the biological
mechanisms governing PTA and provide evidence to support the therapewiit bt a

novel method of treating acute joint injuries that may be useddpasictive therapy to
surgical stabilization.
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Additional file 1 Native serum levels of mouse IL-1Ra or sSTNFRII. Native levels of mouse
IL-1Ra or sSTNFRII were quantified in serum obtained at time of sacrifice ie duusals

that received either local or systemic administration of saline, B A TNFRII following
articular fracture.
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Additional file 2 Bone morphology as measured by microCT. Bone morphology was

assessed for the contra-lateral control (R) and fractured limbs (L) ibigdeptateau, tibial
metaphysis, and femoral condyles.
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