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Abstract. A predictive, physically based model for pumping water from a well using air 
injection (air-lift pumping) was developed for the range of flow rates that we explored in a 
series of laboratory experiments. The goal was to determine the air flow rate required to 
pump a specific flow rate of water in a given well, designed for in-well air stripping of 
volatile organic compounds from an aquifer. The model was validated against original 
laboratory data as well as data from the literature. A laboratory air-lift system was 
constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside 
diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its 
bottom at different elevations above the base of the long pipe. Experiments were 
conducted for different levels of submergence, with water-pumping rates ranging from 5 to 
70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min 
(0.2-1.1 m 3 STP/min). The theoretical approach adopted in the model was based on an 
analysis of the system as a one-dimensional two-phase flow problem. The expression for 
the pressure gradient includes inertial energy terms, friction, and gas expansion versus 
elevation. Data analysis revealed that application of the usual drift-flux model to estimate 
the air void fraction is not adequate for the observed flow patterns: either slug or churn 
flow. We propose a modified drift-flux model that accurately predicts air-lift pumping 
requirements for a range of conditions representative of in-well air-stripping operations. 

1. Introduction 

Air-lift pumping operations were recently proposed as a new 
in situ approach to remove volatile organic compounds 
(VOCs) from groundwater by in-well air stripping. A special 
well design, described earlier by Gvirtzman and Gorelick [1992, 
1993], consisting of air injection into a well at a specific sub- 
merged depth, causes water to be lifted and forces groundwa- 
ter flow toward the well. The water is then reinjected from the 
same well into the unsaturated zone (above the water table). 
This creates a circulation cleanup zone around the well. Dur- 
ing this process, VOCs are transferred from the contaminated 
water to the rising air bubbles inside the well. The combined 
air-lift pumping and in-well air stripping method is applicable 
to different sites whose groundwater is contaminated with 
VOCs. 

To design the air-lift pumping system, one must have an 
accurate model which can be used to predict the water flow 
rate that will occur for a given air injection rate and submer- 
gence. Previous models that have been proposed in the liter- 
ature were found to be deficient in the range of relatively high 
air flow rates of interest for application of the in-well air 
stripping system. The failure of the previous models to repre- 
sent the water flow versus air flow relationship seen in our 
laboratory data motivated the work presented here. Our con- 
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cern is not to obtain the maximum water pumping rate or the 
lowest air to water ratio, which corresponds to a maximum 
energy efficiency, but to create an efficient stripping system. In 
such a case, excess air may be required for stripping VOCs 
compared to a smaller air flow rate required merely for air-lift 
pumping. Having completed the laboratory and theoretical 
model development described in this paper, in future work the 
model will be compared to data from field demonstrations of 
the in-well air stripping approach for VOC removal. These 
demonstrations are currently underway. 

An experimental mock-up was designed and built at the 
stripping-well scale, as shown in Figure la. The system consists 
of a well within a well. The outer well has a diameter of 10 

inches (25.4 cm) and is 75 feet (22.9 m) long. The inner well is 
a 70-foot-long (21.3-m-long) pipe with a 5.5-inch (14.0-cm) 
inside diameter and a 6-inch (15.2-cm) outside diameter which 
contains a 1.3-inch (3.3-cm) injection air line that can be 
moved to different heights above the base of the inner well. 
The water level is adjusted and held constant in the annular 
space between the inner and outer wells. This maintains a 
constant submergence or back pressure in the inner well, while 
water is lifted and discharged at the top at atmospheric pres- 
sure. Lift is generated by injecting air at specified flow rates 
through the air injection line. The range of water flow rates is 
from 5 to 70 gallons/min (0.32-4.4 L/s), with air injection rates 
of 7 to 38 standard cubic feet/min (0.2-1.1 m 3 STP/min). Sub- 
mergence ratios, defined as the ratio of submergence of the air 
line to the total length, were varied from 33 to 70%, which 
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Figure 1. (a) Air-lift pumping lab test apparatus, and (b) detail at the sparger elevation. 

corresponds to a range of submergences from 15 to 45 feet 
(4.6-13.7 m), and lifts from 20 to 35 feet (6.1-10.7 m). 

In two-phase flow occurring in a vertical well, four flow 
patterns can be observed as a function of the air and water 
superficial velocities. These patterns are illustrated in Figure 
2a and are as follows. 

1. Bubble flow occurs when dispersed small bubbles flow 
upward with the liquid. 

2. Slug flow is characterized by large gas bubbles, of the 
diameter of the pipe and of lengths ranging from their diam- 
eter to several times this value (Figure 2b). These large bubbles 
are referred to as gas slugs or Taylor bubbles. Each space 
between these large bubbles is mostly liquid filled but contains 
numerous small gas bubbles and is referred to as a liquid slug. 
Between the Taylor bubbles and the pipe wall, liquid flows 
downward in the form of a thin falling film [Taitel et al., 1980]. 

3. Churn flow, which is similar to slug flow but with a more 
chaotic and disordered flow pattern, may occur at higher air 

injection rates. It is an intermediate flow pattern between slug 
flow and annular flow [Hewitt and Jayanti, 1993]. 

4. Annular flow occurs when the liquid phase flows upward 
as a film along the pipe wall, and the gas phase flows as a 
separate phase in the center of the well. 

We report the results of six experiments. The experiments 
showed that the air-lift operations led to either slug flow or 
churn flow, depending on the rate of air injection. Whereas the 
transition criteria between slug and churn flow have been in- 
vestigated by different authors [Taitel et al., 1980; Bilicki and 
Kestin, 1987; Jayanti and Hewitt, 1992], the existence of the 
chum flow pattern as a separate and distinct flow pattern remains 
problematic [Mao and Dukler, 1993]. Therefore the theoretical 
approach we followed will be based on the slug flow pattern. 

Initially we attempted to use existing air-lift pumping for- 
mulas found in the literature to reproduce our laboratory data. 
No existing model was successful. Therefore we developed a 
new model. We modeled the air-lift pumping system based on 
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Figure 2. (a) Two-phase flow patterns, after Taitel et al. [1980]. (b) Slug flow geometry, after Sylvester [1987]. 

the two-phase flow equations. This is commonly called the 
momentum balance approach. Clark and Dabolt [1986] used 
this approach but neglected the inertial energy effects or ac- 
celeration gradient in the differential momentum equation. In 
our model we take the inertial energy terms into account. 
Alimonti and Galardini [1992], who also took the inertial en- 
ergy terms into account, integrated the system of differential 
equations with simplified inertial energy terms. Therefore their 
formula is only applicable to small air-lift systems. In our 
proposed model a direct integration is employed that does not 
simplify the inertial energy terms and assumes that gas expan- 
sion occurs. It was necessary to choose a correlation to express the 
gas void fraction as a function of the air and water superficial 
velocities [Zuber and Findlay, 1965; Nicklin et al., 1962]. We mod- 
ified the correlation of Zuber and Findlay to take into account the 
presence of the air line and the existence of the two flow patterns: 
slug and chum. We show that our model can be applied to a 
broader range of air-lift operation conditions in terms of submer- 
gence values and air injection rates than could previous models. 

2. Literature Review on Air-Lift Pumping 
Several studies have been devoted to model air-lift pumping 

systems. Their aim is to obtain a simple expression for the 
relationship between the rate of water flow that is induced by 
a given air injection rate, for a given submergence. There are 
three main approaches in the literature. One class of methods 
is based on empirical correlations. Zenz [1993] found a general 
correlation (see appendix) using a variety of published air-lift 
data covering lifts ranging from 5 inches (12.7 cm) to 65 feet 
(19.8 m) and diameters from 0.5 to 15 inches (1.3-38 cm). 
However, most of these data are for operations at high water 
and gas flow rates, and almost no data correspond to our 
laboratory experiments, which are representative of the condi- 
tions required in VOC air stripping systems. The correlation 

fO'*nd by Zenz is applicable for air-lift pumping when air-lift 
efficiency and maximum capacity are the two important factors 
(these terms will be defined precisely in section 5). This is not 
necessarily the case when in-well air stripping is involved because 
stripping usually employs larger wells and requires air injection 
rates outside the range of maximum efficiency or capacity. 

A second class of methods is based on energy balances 
assuming a range of values near maximum efficiency [Richard- 
son and Higson, 1962; Shaw, 1920]. The most common is the 
Ingersoll and Rand formula [Gibbs, 1971, Appendix A). Zenz 
[1993, p. 54] noted that this equation is "useful in estimating 
the yield from air-lift only under conditions of peak theoretical 
efficiency, but not over the entire range of possible operating 
conditions." Husain and Spedding [1976] developed a different 
energy balance theory, which was shown to be valid for small- 
diameter air-lift systems (less than 0.14 inches (3.5 mm)) and 
only at high flow rates [Jeelani et al., 1979]. 

A third class of methods considers an equivalent one- 
dimensional two-phase flow problem. This approach was first 
explored by Nicklin [1963]. These models are based on sepa- 
rate continuity and mixture momentum equations [Alimonti 
and Galardini, 1992; Grandjean et al., 1987; Clark and Dabolt, 
1986; Wang and Chen, 1979; Todoroki et al., 1973; Stenning and 
Martin, 1968]. Many approximations have been introduced to 
simplify the resulting expressions in order to evaluate the air- 
lift pumping performance analytically. These approximations 
limit the range of applications. For example, neglecting the 
kinetic pressure drops, or simplifying their integration, limits 
the range of water and gas flow rates to lower values of mixture 
velocities [Alimonti and Galardini, 1992; •lark and Dabolt, 
1986; Reinemann et al., 1990; Stenning and Martin, 1968], and 
neglecting air compressibility limits the range of total lengths 
that can be handled [Alimonti and Galardini, 1992; Wang and 
Chen, 1979; Todoroki et al., 1973; Stenning and Martin, 1968]. 
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In addition to these three main approaches, several partic- 
ular aspects of air-lift pumping system configurations were 
studied. Among them is the importance of entrance effects 
[Nicklin, 1963; Grandjean et al., 1987] and the effects of diffuser 
design on the efficiency of a small air-lift pumping system 
[Morrison et al., 1987]. The sensitivity of air-lift pumping per- 
formance with respect to the inner well diameter has been 
examined; Reinemann et al. [1990] studied 3- to 35-mm (0.1-1.4 
inches) air-lift pumps, and Jeelani et al. [1979] tested smaller 
diameters, ones on the order of 8 mm (0.3 inches) or less. The 
stability of an air-lift pumping system has been investigated by 
Ueda and Koizumi [1993] who examined the static and dynamic 
behavior of the two-phase mixture level in vertical pipes of 
diameters smaller than 2.6 cm (1.0 inch). In the analysis of 
Apazidis [1985], only the bubble flow regime was considered. 
Richardson and Higson [1962] concluded that the fluctuations 
in the rate of injection of air and in the velocity of the liquid 
rising in the pipe are dependent on the capacity of the air line. 
These complementary analyses on entrance effects, stability, 
and performance are actually secondary in our study. The most 
important factors are the influence of the flow pattern on 
model predictions and the assumption that the density of the 
gas phase is negligible compared to that of the liquid phase. 

We have developed a new model valid for slug and churn 
flow based on a momentum balance. We begin by following the 
analysis of Clark and Dabolt [1986], in which the flow is con- 
sidered isothermal and the regime is considered stationary. But 
as suggested by Alimonti and Galardini [1992], we take into 
account the kinetic pressure drop. The rigorous solution in- 
volves the integration of the entire system of equations. Ali- 
monti and Galardini simplified this integration for the inertial 
energy terms and therefore limited the range of applicability of 
their model. We integrate the system without simplifications 
and also consider the expansion of air bubbles. We neglect the 
density of air when it is added to that of water as in the case of 
the formula for the air-water mixture; otherwise we use the 
equation of state of gas to estimate the air density change with 
pressure. The average absolute velocity of the gas phase is 
expressed with the drift-flux model (section 4.3). 

Two two-phase flow parameters are then introduced: a co- 
efficient related to the effects of bubble distribution on the 

velocity profiles and a coefficient describing the drift velocity 
which is related to the effects of local relative velocity of the 
two phases. We give their values for different ranges of in-well 
air stripping injection rates and flow patterns. Our model is 
valid for short air-lift systems as well as for tall ones, within a 
range of flow rates that result in either slug flow or churn flow. 

3. Air-Lift Pump Design: Experimental 
Procedure 

The principle of air-lift pumping is to inject air in a well, 
which lightens the column of fluid contained in the well. Water 
will rise owing to the difference between the weight of the 
air-water mixture in the well and the weight of the water 
outside the well. In our laboratory study, whose setup is shown 
in Figure la, air is injected into an inner well while a constant 
head is maintained outside, in an outer well. To perform this, 
air is injected through a diffuser or sparger, as shown in Figure 
lb, located at the bottom of an air line which is in the center of 
the inner well. 

The key variables that were controlled in the experiments 
are the air flow rate Q G, the water pumping rate, Qt., the 

Table 1. Characteristics of the Laboratory System 

Values in 

Description Variable Experiments 

Inside inner well diameter, cm 
Outside air line diameter, cm 

Total inner well length, m 
Elevation of air diffuser above the 

bottom of the outer well, m 
Fixed submergence 

With h = 1.5 m (5 feet) 

With h = 7.6 m (25 feet) 
Lift 

With h = 1.5 m (5 feet) 

With h = 7.6 m (25 feet) 
Water flow rate, L/min 

Gas flow rate, L/min 

d, 14.2 (5.5 in ) 
do 3.3 (1.3 in) 
gpipe 21.3 (70 ft) 
h 1.5, 7.6 (5, 25 ft) 

9.1, 10.7, 12.2, 13.7 
(30, 35, 40, 45 feet) 

4.6, 7.6 (15, 25 feet) 

6.1, 7.6, 9.1, 10.7 (20, 
25, 30, 35 feet) 

6.1, 9.1 (20, 30 feet) 
QL 19-265 (5-70 gallons/ 

min, 0.7-9.4 
standard cubic feet/ 

min) 
QG 198 to 1076 (52-284 

gallons/min, 7-38 
standard cubic feet/ 

min) 

submergence, S, and the lift, L. The submergence is the level 
at which air is injected below the water table, or, in our exper- 
iments, the level maintained in the outer well. The lift is the 
height of water rise above the water table. The submergence 
ratio is a parameter commonly found in air-lift analysis and is 
defined as the ratio of the submergence to the total length, a 
= S/(L + S). The air flow rate is measured through a flow 
meter at the exit of the compressor, and the water-pumping 
rate is controlled by an entrance valve and measured by a flow 
meter at the inlet. The characteristics of the laboratory system 
are listed in Table 1. Figures 3a and 3b are two photographs 
taken during the laboratory experiments. Figure 3a shows the 
laboratory well, which extends 50 feet (15.24 m) into an exca- 
vated pit and, as shown, goes up 20 feet (6.1 m). Figure 3b 
shows the leading Taylor bubble rising in the inner well, fol- 
lowed by the liquid slug. One can see the water level in the 
outer well (defining the submergence) and the air line in the 
center of the inner well. 

The laboratory tests involved two sets of runs, based on the 
elevation of the air sparger; 5 and 25 feet (1.5 and 7.6 m) above 
the bottom of the outer well. For a given sparger elevation a 
range of air flow rates was used, and specified submergence 
values were maintained. The corresponding water flow rates 
were measured. For the first set of experiments, in which the 
sparger was 5 feet (1.5 m) off the bottom, four series of runs 
were made, characterized by a fixed submergence (30, 35, 40, 
and 45 feet (9.1, 10.7, 12.2, and 13.7 m)). For the second set of 
runs, only two submergence values were considered (15 and 25 
feet (4.6 and 7.6 m)). In each run the water flow rate varied 
from 5 to 70 gallons/min (0.32-4.4 L/s), and was measured 
within + 1 gallon/min (0.06 L/s). The lift was measured within 
+2 feet (0.6 m). The air flow rate was measured within +_3 
standard cubic feet/min (0.085 m 3 STP/min). Measurements of 
pressure were given through transducers placed along the in- 
ner well, and the two-phase flow pattern was recorded on 
videotapes by cameras placed at various elevations. 

4. Air-Lift Pumping Theory 
We approach air-lift pumping theory as a two-phase flow 

problem. We solve the corresponding mixture momentum 
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Figure 3. Laboratory experimental setup. The laboratory well extends 50 ft into an excavated pit and goes 
up 20 feet (6.1 m) (Figure 3a). The flow regime, which occurs in the inner well, is either the slug flow regime 
which contains a Taylor bubble followed by a liquid slug, or it is the churn flow regime. The first rising Taylor 
bubble is shown in Figure 3b. 

equation in pressure (section 4.2.). Therefore the boundary 
conditions in pressure must be determined, especially the pres- 
sure at the sparger (section 4.1.). 

4.1. Expression for the Pressure at the Sparger 

Stenning and Martin [1968] provided an excellent starting 
point to express the pressure at the sparger. With a submer- 
gence S and a liquid flow rate Q•, the pressure below the point 
of air injection, P•, is given by Bernoulli's equation: 

Pc = Patm q- PLa S -- 5 PL (1) 

where Patm is the atmospheric pressure, p• is the water den- 
si•, g is the gravitational acceleration constant, and A is the 
inner well cross section. Air is injected through the sparger 
with the volumetric flow rate, a function of the e•sting pres- 
sure, Qo(P•) (Figure lb). Considering the inner well section 
at the sparger elevation as a control volume and neglecting the 
air densi• changes in this section, volume continui• yields 

Qm = A Wm,sparger = QG(PL) + Qc = Qo(P•) + AWc (2a) 
or 

Wm,sparger = W L 1 + Q L (2b) 

QL 
= (2c) 

where Wm,sparger is the mixture velocity above the sparger, Qm 
is the corresponding flux, and W• is the superficial velocity of 
water in the inner well. 

Neglecting, in the formulation of the momentum equation, 
the mass of air and the friction loss•of air in the air injection 
line, we have the pressure above the sparger, Psparger; 

1 

Psparger = PL -- •[PLQLWm,sparger -- pcQcW•] (3) 

Therefore by rearranging (1), (2), and (3), the pressure is 

1 pcWcQo 
Psparger-- Patrn + p•gS - • pc W2•- A (4) 

Clark and Dabolt [1986] show that Psparger - Patm reduces to 
the product p,gS, which is a good approximation at low water- 
pumping rates. If higher liquid flow rates are considered, the 
correction included in (4) as the last two terms must be made. 

4.2. Expression for the Total Pressure Drop 

The expression for the total pressure drop is shown by Clark 
and Dabolt [1986]. The air-water mixture will discharge at the 
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location H = L + S, at atmospheric pressure, or at any known 
pressure Ptop' The overall pressure drop in the inner well is 

(dP)__Psparger-Ptop • total L + S (5) 
Accurate models have been developed to predict the pressure 
drop in a slug flow pattern [Caetano et al., 1992a; Barnea, 1990; 
Sylvester, 1987], based on the hydrodynamic parameters of the 
slug: air void fractions, lengths, and velocities as denoted by 
Figure 2a. These models assumed an a priori knowledge of all 
these parameters. To simplify the prediction of the pressure 
drop, we use the momentum equation of the gas-liquid 
mixture: 

dP d ( W m x WmPm) 
dz + dz or g Pm or F 0 (6) 

The first term is the local pressure drop, where z is the eleva- 
tion. The second term reflects the acceleration effects ne- 

glected by Clark and Dabolt [1986], where Pm is the mixture 
density and W m is the mixture velocity. The third term corre- 
sponds to the gravitational effects due to the weight of the 
air-water mixture. The last term, F, represents the friction loss 
per unit pipe length, which we evaluate using the approach of 
Lockhart and Martinelli [1949]. We need to introduce here D, 
the frictional pressure loss per unit length of pipe that would 
occur if the liquid alone were flowing in the inner well: 

We use this equation to solve the gas phase continuity equa- 
tion: 

dpGQG 
dz = 0 (11a) 

where QG is the air flow rate and thus will vary with pressure over 
the height of the inner well. The solution of the liquid phase 
continuity equation yields a constant water flow rate, Qz•' 

dpLQL dQL 
d-•• = d• - 0 (11b) 

Finally, the mixture velocity, W m -- W G or W L -- (QG + 
Q z•)/A, is a function of pressure, through the superficial ve- 
locity of air, Wo = Q o/A. 

Once the air void fraction is known, the momentum equa- 
tion (6), rearranged through (7)-(11), can be integrated along 
the inner well. The air flow rate required to pump a certain 
amount of water is then determined through this integration. 

We now present a solution to the momentum equation (6). 
Readers not interested in this development should skip to 
section 4.3. By integration of (11a), in which the air mass flow 
rate is denoted as G = p oQo, the air superficial velocity WG 
is determined as a function of pressure P: 

QG GPatm M 

W• = •- = APp•a - P (12a) 
Then W m = W L or (M/P) and 

4pœf W• WG M D = 2d (7) e = = 
CoW m or Vdrif t CoM or P(CoW L or Vdrift) 

M 

CoM + SP 

where f is the Fanning friction factor and is estimated as a 
function of the Reynolds number (see appendix). After Clark 
and Dabolt [1986], we represent the frictional losses F as pro- 
portional to D and as a linear function of the cross-sectional 
average air void fraction, 8: 

= + (8) 

Equation (8) is valid only for air void fractions below 50%, and 
within this range, the frictional parameter n will be equal to 1.5 
[Clark and Dabolt, 1986]. Alimonti and Galardini [1992] have 
defined F as a nonlinear function of 
Actually, Clark and Dabolt [1986, p. 59] recognized that "al- 
though it is acknowledged that more sophisticated models 
might be adopted to predict the slug flow pressure loss, these 
will cause only a small increase in overall accuracy for practical 
air-lift pump designs, and will prohibit the development of a 
design equation in closed form." 

The air-water mixture density, Pm, is also a function of the 
air void fraction, 8: 

Pm = 8PG or (1 -- 8)PL • (1 -- 8)PL (9) 

Since the air density p o is small compared to that of water, the 
air density term is neglected in this equation. However, owing 
to air expansion along the inner well length, po is a function of 
the pressure P. Applying the ideal gas law to air, with POa as 
the air mass density at atmospheric pressure, we have the 
relationship 

po P 
= (•0) 

PGa Patm 

with 

S = CoWL or Vdrift, M = GP atm/A PGa 

Replacing the friction term in (6) with (7) and (8) and the 
mixture density with (9), the momentum equation (6) becomes 

dP d(W dPI( 
2mPm) 

0=•-+ d•+#pm+F=• 1 + W• 

+ rr (CoM + SP) 2- 2 Wr + pL 1 

CoM + SP • + #pr 1- CoM + SP' + D 1 

CoM + SP (12b) 
This is a differential equation in pressure that is written as 

As 

az + a? = 0 (2c) 
with A s and Bs as polynomials of degree 5 in pressure. If 

R = M{gp•(C0- 1) + D(Co + n)} 

As = (CoM + Sp)2p 3 + (W•P + M)prM{(WLP + M)SP 

_ pS+a p4 - 2[SP + (Co 1)M](CoM + SP)} = as 4 

p3 + a p2 + a•P + ao +a3 2 

Bs = (CoM + Sp)p3[sP(#p• + D) + R] 
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with 

a 5 : S 2 

a4 = 2CoMS 

a3 = (C0M)2 + pLMSWL(Wt- 2S) 

a2- -2ptM2S[2Wt(Co- 1) + S] 

a• = -ptM3[2WtCo(Co- 1) + S(4C0- 3)] 

a0 = -2pt M4Co(Co - 1) 

The decomposition of this polynomial fraction yields 

As 1 • /3 
--- q- q- 
Bs gpt + D SP(gpt + D) + R CoM + SP 

+ •-2 + p3 (12d) 

where 

CoM(gpt + D) - R 
8= + 

gPL +D CoM(got + D) - R b2 

s( gPt + D + D + b3 - b4(gPt 
i [ b2 13 = CoM(gpL + D) - R gPL + D 

(CoM)2(gpL + D) -b3 + CoM 

gpt + D -b3 
CoM(gpL + D) + R 

(RCoM) 2 

b4 

CoM(gpL + D) - R 

3/2 = (gPt + D)SRCoM b3- b4 CoM(#pt + D) + R] RCoM 

and 

•/3 = (gPt + D) S2 a2 + RCoM 

b2 = ptMSWt(Wt- 2S)(#pt + D) 

b3 = (gPt + D)Sa•- a2{CoM(gpt + D) + R} 

b4 = (gPt + D)S2ao- a2CoMR 

Therefore the integration between the sparger location and the 
top of the pipe results in 

1 

L + S g pt + D (Psparger Ptop) 

S(gpt + D) IS(got + D)Psparger + R] In S(gpt + D)Ptop + R 

13 CoM q- SPsparger• 
+ • In •7•]1,•-• SPtop ] + •/• In Prop 

-- T2 Psparger P•op -- • Psparger 2 P•op (12e) 

Both the water flow rate and the air mass flow rate are present 
in this equation. This nonlinear equation is solved by succes- 
sive iterations to predict the air flow rate for a given water flow 
rate. 

It is interesting to note that by setting various coefficients 
equal to zero in the above equation, we obtain the formula 
presented by Clark and Dabolt [1986], assuming 

b2 = b3 = b4 = 0 

4.3. Expression for the Gas Void Fraction 

In this section the expression for the air void fraction is 
developed. For small wells, or when gas expansion can be 
ignored, the average gas void fraction _s is given as a function 
of the submergence ratio a by the approximation 

S_=L+S= 1-a (13) 

For the range of lengths of the pipes that we are interested 
in, the air void fraction cannot be considered as a constant. In 
order to determine its value in the slug flow regime, different 
models have been suggested [Nakazatomi et al., 1993]. The 
most commonly used is the drift-flux model (Zuber and Find- 
lay's drift-flux model), first developed for the bubble flow pat- 
tern [Nicklin et al., 1962]. Zuber and Findlay [1965] showed that 
the average absolute velocity of the gas phase, V G = WG/e, is 
expressed as the sum of a term proportional to the mixture 
velocity, Wm, and the weighted average drift velocity, Vdrift. 
This is the drift-flux model: 

WG 
V G -- '• CoW m q- Vdrif t (14) 

The effects of local relative velocity of the two phases are 
incorporated in the drift velocity. In bubble flow or churn- 
turbulent bubble flow, this velocity is given by the terminal rise 
velocity of bubbles, ['•bs [Harmathy, 1960]: 

[ø'gAp] TM Vbs-- 1,53 p2 L (15) 
where rr is the air to water surface tension, and Ap - Pz. - 
p•. Thus Vbs is about 0.24 m/s for the air-water system under 
normal conditions. The coefficient C o reflects the effect of the 
velocity and air concentration profiles. The concentration pro- 
file represents the "variation of the in situ volume fraction of 
the phases with position. If the phases were uniformly mixed, 
as in a fine emulsion, the concentration profile would be flat, 
but in general the phase distribution is not uniform" [Govier 
and Aziz, 1972, p. 384]. If one assumes that the gas phase flows 
entirely through the channel center, then it can be shown that 
the flow parameter, C o , equals the ratio of the channel center 
velocity to the cross-sectional average velocity. For turbulent 
flow this ratio is approximately equal to 1.2. Therefore the 
usual value selected for Co is 

Co: 1.2 (16) 

Zuber and Findlay [1965] showed that this is only a rough 
approximation. Its value varies from 1 to 1.5 if the air concen- 
tration at the center line is larger than that at the wall, and is 
less than 1 if the air concentration at the center line is smaller 

than that at the wall. 
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Application of the drift-flux model to slug flow is more 
complicated than in bubble flow because of the different drift 
velocity of the Taylor bubble compared with that of the small 
bubbles in the liquid slug. We assume, as is commonly done, 
that the liquid slugs do not contain any gas bubbles, that the 
drift velocity is now the rise velocity of a single Taylor bubble 
in a stagnant liquid, Vtb. This velocity Vtb is defined as 

Apgd] 1/2 Vtb -' C2 PL / (17) 
in which the value of C2, dimensionless velocity, remains con- 
stant at 0.345 for many practical systems: 

C2 = 0.345 (18) 

The simplest modification would consist of expressing the co- 
efficients C o and C2 as a function of the ratio of the air line 
diameter to the inner well diameter: the most common mod- 

ifications found in the literature are listed in the appendix. 
However, we will propose new expressions for Co and the drift 
velocity Vdrift through evaluation of our lab data. This is the 
purpose of section 6. 

Our model builds on the modified Clark and Dabolt model. 

In this new model we always take into account the inertial 
energy terms, presented in (6), in determining the air-lift 
pumping operating curve, even though at low flow rates the 
kinetic energy effects could be neglected. In addition, the fric- 
tion factor is expressed as a function of the Reynolds number, 
even though at low flow rates it can be taken as a constant. 

By rearranging (14), in which the air velocity, VG, is approximated 
by the Taylor bubble velocity, Vt in Figure 2, the average gas void 
fraction for the entire slug is approximated using gdrif t • gtb: 

Wo Wo 

= = iAp#d]i/2 (19) t• CøWm nt- Vtb CøWm nt- C2 OL 
We note that the relationship (19) usually corresponds to the 
air void fraction of the Taylor bubble only and not to that of 
the entire slug unit. 

More sophisticated theories have investigated the motion of 
large gas bubbles rising through liquid flowing in a pipe. Collins 
et al. [1978] incorporated a dependency on the liquid velocity 
profile in their theoretical treatment, for both laminar and 
turbulent liquid flow, and found good agreement with the 
formula (19) for turbulent flow. Bendiksen [1985] extended the 
work of Collins et al. [1978] by incorporating surface tension 
dependency (using the inverse E6twos number or surface ten- 
sion number, Z -- tr/pL#d 2, which leads to an extension of the 
formula (19) within a certain range of Z. The resulting coeffi- 
cients C o and C2 will thus depend on Reynolds and inverse 
E6twos numbers. Kelessidis and Dukler [1990] developed a 
model for the rise velocity of an elliptic bubble rising through 
a stagnant liquid in a concentric annulus. These studies show 
that the formula (19) may be used as a good approximation for 
the air void fraction in slug flow. 

To account also for the difference in the drift flux between 

the liquid slug and the Taylor bubble, a number of hydrody- 
namic models have been investigated [Caetano et al., 1992b; 
Issa and Tang, 1990; Barnea, 1990; Fernandes et al., 1983]. They 
are widely known as "two-fluid" models and incorporate the 
slug structure model to predict the average gas void fraction. 
Issa and Tang [1990] found that the comparison to the drift- 
flux model show good agreement for low test pressures on the 
order of 2.46 MPa or less. At higher pressures, their two-fluid 
model gives better results than the drift-flux model. Hasan and 
Kabir [1992] proposed a hybrid two-fluid model/drift-flux 
model to calculate the gas void fraction in annuli for slug flow. 
As we consider only low pressures, we do not apply the two- 
fluid models, which will lead to more complicated expressions. 
Rather we estimate the gas void fraction using the basic drift- 
flux model (19). 

Without an annulus, slight differences in the values of Co 
and C2 are presented in the review of Sylvester [1987]. The 
presence of an annulus in the inner well, represented in our 
experimental system by the area between the air line and the 
inner well, forced us to further modify the values of Co and C2. 

5. Operating Curves for Air-Lift Pumping: 
Behavior of Models 

The purpose of this section is to define key terminology used 
in air-lift pumping and to inspect the behavior of our model, as 
well as others, over a wide range of air and water flow rates. 
We base our discussion on the conditions of our laboratory 
experiments; however, the simulations shown exceed the range 
of flow rates that we observed in the laboratory. 

The operating curve for air-lift pumping is the plot of the 
injected air flow rate, Q G, versus the pumping water flow rate, 
Q L, for fixed submergence and lift, as in Figure 4a. As air is 
injected the water begins to respond. Initially, no water flow up 
the well takes place until a certain air injection rate is reached. 
This is because the water level in the inner well does not 

exceed the delivery height H - L + S, lift plus submergence. 
Once the air flow rate exceeds its critical value, noted as Q o- 
min, the discharge or water flow rate increases rapidly with 
increasing air flow rate, until a maximum water flow rate is 
reached. The maximum discharge is labeled "maximum capac- 
ity" in Figure 4a. After reaching the maximum the discharge 
decreases with further increases in the air injection rate. 

The physical explanation for the shape of the operating 
curve relies upon the dominant terms in the momentum equa- 
tion (6). As air is initially injected, the mixture density de- 
creases, and gravity forces the mixture up the well. In this state 
the third term, the gravitational term, dominates because the 
velocity is small and the sum of inertial energy plus frictional 
terms is negligible. The dominance of the gravitational term 
continues until the maximum capacity is reached. As the ve- 
locity increases further, the velocity dependent terms (hydrau- 
lic losses) grow. Beyond the maximum capacity the hydraulic 
losses overwhelm the gravitational terms, and an increase in air 
flow rate no longer results in an increase in the liquid flow rate. 

The air-lift pumping system also may be characterized by its 
efficiency, r•, defined as the net work done to lift the liquid, 
divided by the work done by the isothermal expansion of air 
[Richardson and Higson, 1962]: 

QLSpLg 
= (20) 

T• (Psparger) Q o Patm In P arm 
Figure 4b shows a typical air-lift pumping efficiency curve. It 

is a plot of the water-to-air ratio, a value proportional to r• in 
(20), plotted against the air flow rate, which is proportional to 
the energy input from air injection. With increasing air flow 
rate, the water-to-air ratio increases sharply to the point of 
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Figure 4. (a) Air-lift pump operating curve and (b) air-lift 
pump efficiency curve. 

maximum etficiency. For a fixed submergence and lift the max- 
imum efficiency corresponds to the lowest air-to-water ratio 
and is the tangent point on the operating curve, Figure 4a. Our 
laboratory test conditions are such that the efficiencies of the 
air-lift pumping system ranges from 9 to 82% and are always 

below the point of maximum efficiency, which is thus greater 
than 82% (to the left of the maximum efficiency point in 
Figure 4b). 

We now compare the results of our new model to the models 
of Ingersoll and Rand, and Clark and Dabolt for a wide range 
of air injection rates. The models of Ingersoll and Rand, and 
Clark and Dabolt, reviewed in section 2, predict different op- 
erating curves, which can differ substantially at high flow rates. 
This is shown in Figure 5 in which we also show our model for 
two different cases. The upper curve, labeled "modified mod- 
el," is for the case of a friction factor that varies dynamically 
with the Reynolds number, while the lower curve is the new 
model with a constant friction factor. These curves are for the 

conditions of the lab configuration with a submergence of 45 
feet (13.7 m) and a lift of 20 feet (6.1 m). The three main 
conclusions drawn from Figure 5 are as follows: (1) The In- 
gersoll and Rand formula is only valid at maximum efficiency 
and therefore predicts the lowest air-to-water ratio. (2) In 
comparing the Clark and Dabolt model with the new model, 
assuming a constant friction factor, one can see a discrepancy 
at higher air flow rates. The primary difference between the 
two models is the inclusion of inertial energy terms in the new 
model, which are ignored in the Clark and Dabolt model. The 
effect of the inertial energy terms is to create greater head 
losses and therefore reduce the water flow rate. (3) We com- 
pare the modified Clark and Dabolt model, into which we 
inserted a friction factor that is a function of the Reynolds 
number, with the same model containing a constant friction 
factor. The value of the constant friction factor was 0.01, while 
the average value of the functional friction factor was about 
0.005. We note that the maximum capacity attains a higher 
value and the maximum is reached with a lower air injection 

Modified Clark and Dabolt Clark and Dabolt model with 
600 model with variable constant friction factor 

friction factor 

Ingesroll and Rand • - I 
500 

•400 ß 

300 
200 

ß 

factor la experiments I I .... I .... 
Range of Modified Clark and Dabolt 

100 model with constant friction 

0 , , , , , i , 

0 50 100 150 200 250 300 

Air flow rate (scfm) 

Figure 5. Comparison of Ingersoll and Rand formula, Clark and Dabolt model, and the modified Clark and 
Dabolt model. The conditions for the simulation are based on the lab setup with S = 45 feet (13.7 m) and 
L - 20 feet (6.1 m). 
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Figure 6. Predictions using the new model for the experimental conditions with the sparger 5 feet (1.5 m) 
above the bottom of the well. (a) Co = 1.2 and C2 = 0.345, as in the Clark and Dabolt model. (b) Co = 
1.094 and C2 = 0.23. (c) Co - 0.915 and C2 = 0.3. The squares represent one set of experiments. The 
triangles and the diamonds are two repetitions of the experiments. The experimental error is represented by 
the scatter shown for a particular lift. 

rate. This is explained by the value of 0.01 for the friction 
factor which is a clear overestimate of the true value. 

6. Model Comparisons to Laboratory 
Experiments 

The new model was run for the conditions of our laboratory 
experiments. Only the experiments with the sparget fixed at 5 
feet (1.5 m) above the bottom of the well will first be consid- 
ered. The other experiments will be used for validation. Our 
laboratory data represent the range of flow rates in the oper- 
ating curve from 5 to 70 gallons/min (0.32-4.4 L/s), which is 
below the maximum efficiency point. Over this range of exper- 

imental flow rates, neither the change in the friction factor, nor 
the kinetic energy effects have any significant influence. There- 
fore the new model is comparable to the Clark and Dabolt 
model. If the usual drift-flux coefficients are used, Co = 1.2 
and C2 = 0.345 (which leads to Vdrif t : 43.31 cm/s (17.1 
inches)), as in the model of Clark and Dabolt, predictions do 
not match the experimental data. As seen in Figure 6a, the pre- 
dictions are shifted to the right compared to our data. That is, for 
a given water flow rate, the model overestimates the required air 
flow rate by about 5 to 10 standard cubic feet/min (0.14-0.28 m 3 
STP/min), which corresponds of an error of up to 50%. 

To further evaluate the efficacy of the new model, the con- 
stants Co and C2 of the drift flux model were systematically 
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varied. First we grouped all of the data from all experiments 
over the range of lifts from 20 to 35 feet (6.1-10.7 m). We then 
determined the least squares/best fit values for the drift-flux 
coefficients based on (14). The best fit values were Co = 1.094 
and C2 = 0.23 (or Vdrif t = 28.87 cm/s (11.4 inches/s). It is 
important to note that this procedure required us to assume a 
constant average air void fraction, •, over the entire height of 
the well as shown in (13). Using these values, the match is 
generally quite poor (Figure 6b), with a noticeable shift to the 
left for the predictions compared to the laboratory data. The 
only exception to this trend is the simulation corresponding to 
the experiments for the lowest lift, 20 feet (6.1 m). Second, we 
determined four distinct best fit values of Co and C2 for each 
of the four experimental lifts. These were then averaged to 
obtain values of Co = 0.915 and C2 = 0.3 (or Vdrif t = 37.68 
cm/s (14.8 inches/s). Results using these values of the drift flux 
coefcient are displayed in Figure 6c. In general, the simulated 
values are shifted to the left relative to our data, with better 

agreement only for the low lift experiments, at 20 and 25 feet 
(6.1 and 7.6 m). 

The failure of this new model, which is a modified Clark and 
Dabolt model, led us to conduct a series of sensitivity analyses 
to determine the influence of the drift flux coet•cients on the 

position and slope of the operating curves. Our analysis indi- 
cated the following: (1) Co is the primary control on the slope. 
Furthermore, when its value decreases, the operating curves 
are shifted to the left. (2) Increasing C2 will result in shifting 
the operating curve to the right. (3) The sensitivity to these 
drift-flux constants is more important at higher lift or lower 
submergence. (4) None of these adjustments are able to rep- 
resent the experimental data at low water flow rates, with lifts 
higher than 25 feet (7.6 m). 

Over the range of the lab test values, where the percentage 
of submergence varies, and when churn flow occurs, a simple 
drift-flux expression is not appropriate. When evaluating Co 
and C2, or Vdrift, by comparison with the experimental data, 
we noticed that Co exhibits no obvious dependency on veloc- 
ities, average void fraction, or pressure. Its value is between 
0.68 and 0.95. We note that Bendiksen [1985] argued that Co is 
a decreasing function of the Reynolds number. We did not find 
such a relationship in our analysis for our laboratory condi- 
tions. C2 was dependent upon the average void fraction or 
percent of submergence, and increased to a constant value 
following a relationship of the form 1-exp[ f(a) ]. The range of 
C2 values is 0.21 to 0.40, which corresponds to Vdrif t ranging 
from 26 to 50 cm/s (10.2-19.7 inches/s). 

Our expression of the drift-flux velocity Vdrift, or corre- 
sponding C2, is based on our analysis of the experimental 
results coupled with physical reasoning. At a low mixture ve- 
locity, which corresponds to a higher percentage of submer- 
gence and to a lower average gas void fraction, the Taylor 
bubbles and slug flow are not well developed. In this case the 
drift flux velocity can be represented by the terminal bubble 
rise velocity, Vbs. At a higher mixture velocity (lower percent- 
age of submergence or higher average gas void fraction), the 
Taylor bubbles and slug flow are well developed, and the drift 
velocity can be represented by the Taylor bubble velocity, Vtb. 
As the bubble/slug transition occurs when the average gas 
void fraction is around 0.25 [Taitel et al., 1980], or a = 75%, 
we propose the following formula, for which 25% < a 
<75%: 

Vdrift= (Vtb- Vbs)(1-exp [ 0.06 + I/,,s 

(21) 

gdrift 

C2 = [ Ap#d] l/2 (22) PL ] 

In using the relationships (21) and (22), it can be seen that 
when the average void fraction is 0.25, then a = 75%, and 
Vdrif t equals the terminal bubble rise velocity, V•s. Approach- 
ing the other extreme, when the average void fraction is greater 
than 0.45, then 25% < a < 55%, and the value of Vdrif t 
approaches the Taylor bubble velocity, Vt•. 

Because Co does not follow any particular trend, a constant 
value was found by matching the experimental data for two sets 
of runs. For the first set, Co varied between 0.78 and 0.96, and 
for the second set, the values ranged from 1.18 to 0.94. Al- 
though there is a wide range of values, we consider Co as a 
constant equal to the average value for the two sets. The new 
constant Co for this experimental annulus configuration where 
d i = 14.07 cm (5.5 inches) and do = 3.33 cm (1.3 inches), 
and with the flow conditions where 2 cm/s <WE < 29 cm/s 
and 13 cm/s <WG < 68 cm/s (0.8 inches/s <WL < 11.4 
inches/s and 5.1 inches/s < WG < 26.8 inches/s), is 

Co = 0.95 (23) 

The relationships (21) and (23) were based on the laboratory 
data for which the sparger was 5 feet (1.5 m) above the bottom 
of the well. They were validated using the lab test data for 
which the sparger was moved 25 feet (7.6 m) above the bottom 
of the well. Using these relationships, the new model was 
labeled the Stanford model in Figures 7a and 7b. Good agree- 
ment was found for the operating curves predicted by the 
Stanford model and the experimental data, with the higher 
sparger elevation. Results are shown in Figures 7a and 7b. 

To summarize, we propose these relationships: 

with do/d i = 3.33/14.07, 

Co = 0.95 (23) 

(24) 1.1 < Co < 1.2 

when do = 0, and, again, (21) and (22): 

l-a-0.251) 0.06 +Vs Vdrift = (Vtb -- V•,s)(1 - exp [ 
[?drift 

= 1/2 

Apgd] C2 I pL ] 
7. Comparison Between Stanford Model and 
Other Experimental Data 

To explore the validity of our model beyond the conditions 
of the experiments, we compared it to data presented in the 
literature. The conditions of each experiment for water pump- 
ing by air-lift operations are shown in Table 2. They are sorted 
by increasing diameter and total length. As can be seen, there 
are few experiments in our range. The two experiments that 
are somewhat comparable are those presented by Clark and 
Dabolt [1986] and Alimonti and GalaMini [1992]. 
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Figure 7. Predictions of the Stanford model for the experimental data. (a) The sparger is 5 feet (1.5 m) 
above the bottom of the well. (b) The sparger is 25 feet (7.6 m) above the bottom of the well. The squares 
represent one set of experiments. The triangles and diamonds represent two repetitions of the experiments. 

Table 2. Conditions for Experimental Data Presented in the Literature 

Authors 

Maximum Maximum 

Well Total Length Percent Liquid Air 
Diameter H = L + S, Submergence Velocity* Velocity* 
d, mm m S WL, cm/s WG, cm/s 

Alimonti and Galardini [1992] 
Clark and Dabolt [1986] 
Franqois et al. (present study) 

26 
38.1 

140.7 

Conditions comparable to our experiments 
7.25 60 

15 82 

13.7, 19.8 33-70 

Conditions not comparable to our experiments 
Jeelani et al. [1979] 2-3.5 1.21-1.30 10-90 
Apazidis [1985] 13 0.49 45-73 
Reinemann et al. [1990] 3.18-19.1 1.8 47-98 
$tenning and Martin [1968] 25.4 4.27 44.2-70.7 
Richardson and Higson [1962] 25.4 13.77 50 
Gorier et al. [1957] 26 6.97 24-90 
Wang and Chen [1979] 30 4.65 75.3 
Morrison et al. [1987] 38.1 3.04 68.75 
Todoroki et al. [1973] 28.3, 50.6 7.5, 6.8 30-80 
Govier and Short [1958] 16-63,5 6.97 47-84 
Moore and Wilde [1931] 25.4-101.6 20.5 3.6-96.5 
Shaw [1920] 127 138-174 29-47 
Parker and $uttle [1987] 37.5-300 0.15-1.20 100 

70 

80 

29 

50 

37 

100 

50 
225 

75 

200 
170 

106 
142 

1657 
16 

265 
5O 

68 

26O 

43 
20 

1000 

336 
843 
500 

61 
850 

456 

1561 

2575? 
20 

*Liquid velocity and air velocity are the superficial velocities, as defined by (2c). 
?The data of the Shaw experiments are primarily in the annular flow regime. 
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Figure 8. Comparison between the Stanford model and the Clark and Dabolt model for the data presented 
by Clark and Dabolt [1986]. 

7.1. Clark and Dabolt Experiment, or Average Air-Lift 
System 

The air-lift installation described by Clark and Dabolt is 
similar to the conditions of our laboratory experiments. Their 
total well length was H = 15 m (49.2 feet), versus ours of 13.7 
and 19.8 m (45 and 65 feet); their well diameter was d i = 3.81 
cm (1.5 inches), versus ours of 14.07 cm (5.5 inches). For a 
submergence ratio of 82%, air-lift operations were below the 
maximum efficiency, with efficiency ranging from 23 to 53%, 
and with a liquid-to-gas ratio up to about 1.6. This compares 
with our experiments, in which the submergence ratio ranged 
from 33 to 70%, with a liquid-to-gas ratio up to 0.7 and with 
efficiency ranging from 9 to 82%. Figure 8 shows the compar- 
isons between the Clark and Dabolt data and our respective 
models. C2 was calculated using (21) and (22) and had a value 
of 0.471. Co was set equal to 1.15. This value was selected to be 
greater than the value used in our experimental setup because 
their setup had no internal air line (no annulus), and their well 
diameter was about 25% of ours. We note that the value of 1.2 

selected for Co is close to the value suggested by Clark and 
Dabolt. Our model results agree nicely with their experimental 
data. 

7.2. Alimonti and Galardini Experiment, or Small Air-Lift 
System 

The experiment described by Alimonti and Galardini [1992] 
is a small air-lift system (diameter of 2.6 cm (1.0 inch), total 
length of 7.25 m (23.8 feet), and a percentage of submergence 
of 60%). Most of the experimental points are near the maxi- 
mum efficiency point or above. When adjusting Co in our 
model to fit these experimental conditions, the best fit for the 
points below maximum efficiency was given with Co = 1.1. 
The model determined C2 = 0.37. Figure 9 shows the Ali- 
monti and Galardini experimental data as well as the predic- 
tions of the respective models. For the highest flow rates, 
neither model accurately fits the experimental data. Because 
we are most concerned with the points corresponding to air 
flow rates less than'the point of maximum efficiency, our model 
fit in this range is superior to that of Alimonti and Galardini. 

8. Model Parameter Sensitivity Analysis 
A model parameter sensitivity analysis was conducted 

around those parameters fit to our laboratory data, for the 
conditions of submergence of 40 feet (12.3 m), lift of 25 feet 
(7.6 m), water flow rate of 24.6 gallons/min (1.55 L/s), and 
predicted air flow rate of 14.7 standard cubic feet/min (0.42 
L/s). We varied each parameter by _ 10% and noted the rel- 
ative change in the air flow rate. In addition, we inspected the 
relative change in both the maximum efficiency and maximum 
capacity resulting from parameter changes of __ 10%. 

The relative change in the gas flow rate as a function of a 
change in one parameter is defined as R•: 

QG* -- QG 

RG = QG (25) 
where the asterisk denotes a value of Q G with the ___10% 
variation of the parameter. 

The results are presented in Figure 10. Several key points 
can be made by inspecting the figure. First, the primary control 
on the sensitivity of air flow rate is the inner well diameter, di, 
which generates Ro values of ranging from _+ 18 to _+29%. 
Second, changing the submergence, S, by +_10% causes a 
change in the operating air flow rate of about 10%, but causes 
a change of up to 25% in the maximum capacity. Third, there 
are five parameters (the discharge pressure, Ptop; the acceler- 
ation of gravity, #; the lift, L; and the drift coefficients, Co and 
C2) that cause less than a 10% change in the air flow rate. 
Fourth, there are six parameters (temperature, T; water den- 
sity, PL; water flow rate, Qz•; air line diameter, do; frictional 
parameter, n; and friction factor, f) that generate less than a 
3% change inRG. Although some of these parameters, such as 
pipe and air line diameters, are generally accurately known, 
others, such as water flow rate, temperature, and discharge 
pressure, are less precisely known. The parameters that cannot 
be directly measured are the frictional parameter, the friction 
factor, and the two drift-flux coetficients. Changes in the 
former coefficients are inconsequential to the predicted air 
flow rate, while the latter are important. Of all of the impre- 
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Stanford model with C0=1.1 
Maximum efficiency Stanford model with C0=1.15 
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Figure 9. Comparison bc•ccn the Stanford model and the •imonti and •aIa•dini model fo• the Al•mom• 
• •l•r• []99•] data. 

cisely known parameters, the ones that have the greatest in- 
fluence are the discharge pressure and the drift coefficients. In 
many cases it is logical to assume that the discharge pressure is 
atmospheric. However the drift-flux coefficients, Co and C2, 
are never well known. One contribution of our model is to 

better define the drift-flux coefficient C2. 

9. Conclusion 

We conducted a series of full-scale air-lift pumping experi- 
ments in the laboratory. Our aim was to observe the regimes of 
air flow and to evaluate existing expressions for air-lift pump- 
ing. Because of the inability of previous air-lift pumping sim- 

0.30 

0.20 

0.10 

I +10%, operating point 

•]-10%, operating point 

[] +10%, max efficiency 

[] -10%, max efficiency 

[• +10%, max capacity 

[] -10%, max capacity 

0.00 

-0.10 

-0.20 

-0.30 

Figure 10. Model parameter sensitivity analysis showing a change in the air flow rate due to a 10% change 
in each parameter. The starting conditions for this sensitivity study are S = 40 feet (12.2 m), L = 25 feet 
(7.6 m), QL = 24.6 gallons/min (1.55 L/s), and QG = 14.7 standard cubic feet/min (0.41 m 3 STP/min). 
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ulation models to reproduce our laboratory data, we developed 
a new relationship. We suggest the use of our model for the 
operating conditions: (1) at flow rates less than the point of 
maximum efficiency; (2) with inner well diameters between 4 
and 10 inches (10 to 25 cm); and (3) with percentages of 
submergence between 30 and 70%, which in many practical 
cases of in-well air stripping corresponds to air-to-water ratios 
between about 2 and 30. 

Comparisons between our laboratory data and the model of 
Clark and Dabolt indicated that in this flow regime their model 
is inapplicable. Specifically, their model is appropriate for wells 
of very small diameters, perhaps less than 3 inches (7.5 cm), 
and a large percent of submergence. Use of the Clark and 
Dabolt model tends to overpredict the water flow rate resulting 
from a given air flow rate, even for their own experiments (see 
Figure 8). For our experiments, in which the percent submer- 
gence is only about 50% (compared to their 82%), using the 
Clark and Dabolt model tends to underpredict the water flow 
rate resulting from a given air flow rate, and becomes worse 
with increasing lift. 

We developed a model for the range of our experimental 
conditions that adds the following features to the original 
model of Clark and Dabolt: (1) the drift flux coefficient C2 is 
now represented by a function of the percent submergence; (2) 
the friction factor is a dynamic function of the Reynolds num- 
ber; and (3) inertial energy terms are included in the model, 
thereby accounting for head losses due to gas expansion, which 
causes the water to accelerate. 

This new model matches the operating curves for the six 
experiments that we have conducted, over a range of lifts and 
submergences. In addition, our model matches the data pre- 
sented by Clark and Dabolt [1986] and by Alimonti and Galar- 
dini [1992]. Although our model was quite successful in match- 
ing these experimental data, it is restricted to air flow rates less 
than the maximum efficiency. We suspect that a more complex 
relationship for the frictional losses than the linear form we 
have employed, would further improve the applicability of our 
model. Performance of this under field conditions will be part 
of ongoing demonstrations and applications of the in-well air 
stripping approach for removing VOCs from groundwater. 

Appendix 
Ingersoll and Rand Formula 

Gibbs [1971, chap. 31, p. 7] reported that "an empirical 
formula for free air quantity in cubic feet per gallon of water 
pumped, Va, has been developed from many tests. This may be 
used for preliminary estimating." This is the usual Ingersoll 
and Rand formula: 

C 1og•0 
S+34 

34 

with S and L in feet. The constant C is given graphically as a 
function of the percentage of submergence. This formula is 
only applicable for conditions of maximum efficiency, and will 
plot as a horizontal line on Figure 4b. 

Zenz Formula 

Zenz [1993] proposed a general correlation based on pub- 
lished air-lift data. This correlation is a mean curve where the 
ordinate is 

Y = •- do / 0.5 6-•-.•1og•0 34 
and the abscissa is 

QG ( 48pG } 0.s X = •- diLpm] 
In this formula, QL is in gallons per minute, A is in square 

feet, L and S are in feet, d i is in inches, and Pm and PG are in 
pounds per cubic foot. The Zenz formula is particularly valu- 
able at high superficial velocities. 

Fanning Friction Factor Formula 

The two-phase flow friction factor expressions proposed by 
Caetano et al. [1992a] depend on the flow regime: laminar flow 
and turbulent flow, determined through the Reynolds number 
of the mixture. The mixture Reynolds number is given by 

Re -- 
pmWm(di- do) 

with /.l,m, the mixture viscosity, given by 

For laminar flow, the Fanning friction factor in circular pipe, 
flam0, is inversely proportional to the Reynolds number, Re' 

16 

flam0 -- Re 

For a concentric annulus, where K = d old i ,r O, this factor is 

F(K) 
flam -- Re 

with 

16(1 - K 2) 

F(K)= [l-K4 1-K 2 ] 1-K 2 In(l/K) 

In turbulent flow, the Fanning friction factor is defined as the 
solution of the equation 

16 0.45 exp [-(Re-3000)/lOE+06] 

t 
{ (J1610'45exp[-(Re-3000)/lOE+O'6]) 1/2 } = 4 log Re j LF-•-•j - 0.4 

Effect of Annular Dimension on C o and C2 Values 

Here we review all the formulas for the drift flux parameters 
Co and C2 presented in the literature. 

Caetano et al. [1992a] proposed the following relationship 
for ½2 and Vtb: 

C2=0.345 1 + 

[ do] Vtb = 0.345 1 + •// [ gd,] ø's 
Kabir and Hasan [1990] proposed these values' 
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for slug flow 

for churn flow 

do 
Co- 1.18 +0.9 

di 

Co = 1.15 

Vtb •- 0.3 + 0.22 •// #(di- do) 
These formulas were modified by Hasan and Kabir [1992], with 
for slug flow 

Co = 1.2 

for churn flow 

Co = 1.15 

Vtb •- 0.345 + 0.1 •// #d,• 
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