About
325
Publications
24,056
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,284
Citations
Publications
Publications (325)
With its near-to-mid-infrared high-contrast imaging capabilities, JWST is ushering us into a golden age of directly imaging Jupiter-like planets. As the two closest cold Jupiters, ε Ind A b and ε Eridani b have sufficiently wide orbits and adequate infrared emissions to be detected by JWST. To detect more Jupiter-like planets for direct imaging, we...
With its near-to-mid-infrared high contrast imaging capabilities, JWST is ushering us into a golden age of directly imaging Jupiter-like planets. As the two closest cold Jupiters, $\varepsilon$ Ind A b and $\varepsilon$ Eridani b have sufficiently wide orbits and adequate infrared emissions to be detected by JWST. To detect more Jupiter-like planet...
Directly imaging temperate rocky planets orbiting nearby, Sun-like stars with a 6 m class IR/O/UV space telescope, recently dubbed the Habitable Worlds Observatory, is a high-priority goal of the Astro2020 Decadal Survey. To prepare for future direct imaging (DI) surveys, the list of potential targets should be thoroughly vetted to maximize efficie...
Directly imaging temperate rocky planets orbiting nearby, Sun-like stars with a 6-m-class IR/O/UV space telescope, recently dubbed the Habitable Worlds Observatory, is a high priority goal of the Astro2020 Decadal Survey. To prepare for future direct imaging surveys, the list of potential targets should be thoroughly vetted to maximize efficiency a...
Based on recently-taken and archival HARPS, FEROS, and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD 33142 (with an improved mass estimate of M1.52 ± 0.03 M ⊙ ), already known to host two planets. We confirm the Jovian-mass planets HD 33142b and c, with periods of P b = 330.0 − 0.4 +...
We analyze 5108 AFGKM stars with at least five high-precision radial velocity points, as well as Gaia and Hipparcos astrometric data, utilizing a novel pipeline developed in previous work. We find 914 radial velocity signals with periods longer than 1000 days. Around these signals, 167 cold giants and 68 other types of companions are identified, th...
We analyze 5108 AFGKM stars with at least five high precision radial velocity points as well as Gaia and Hipparcos astrometric data utilizing a novel pipeline developed in previous work. We find 914 radial velocity signals with periods longer than 1000\,d. Around these signals, 167 cold giants and 68 other types of companions are identified by comb...
Based on recently-taken and archival HARPS, FEROS and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD33142 (with an improved mass estimate of 1.52$\pm$0.03 M$_\odot$), already known to host two planets. We confirm the Jovian mass planets HD33142 b and c with periods of $P_{\rm b}$ = 33...
We present 12 new transit light curves and 16 new out-of-transit radial-velocity measurements for the XO-3 system. By modeling our newly collected measurements together with archival photometric and Doppler velocimetric data, we confirmed the unusual configuration of the XO-3 system, which contains a massive planet ( M P = 11.92 − 0.63 + 0.59 M J )...
We present 12 new transit light curves and 16 new out-of-transit radial velocity measurements for the XO-3 system. By modelling our newly collected measurements together with archival photometric and Doppler velocimetric data, we confirmed the unusual configuration of the XO-3 system, which contains a massive planet ($M_P=11.92^{+0.59}_{-0.63} M_J$...
To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits...
Measuring the obliquity distribution of stars hosting warm Jupiters may help us to understand the formation of close-orbiting gas giants. Few such measurements have been performed due to practical difficulties in scheduling observations of the relatively infrequent and long-duration transits of warm Jupiters. Here, we report a measurement of the Ro...
To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits...
Measuring the obliquity distribution of stars hosting warm Jupiters may help us to understand the formation of close-orbiting gas giants. Few such measurements have been performed due to practical difficulties in scheduling observations of the relatively infrequent and long-duration transits of warm Jupiters. Here, we report a measurement of the Ro...
Analysis of new precision radial velocity (RV) measurements from the Lick Automated Planet Finder and Keck HIRES has yielded the discovery of three new exoplanet candidates orbiting the nearby stars HD 190007 and HD 216520. We also report new velocities from the APF and the Planet Finder Spectrograph and updated orbital fits for the known exoplanet...
Analysis of new precision radial velocity (RV) measurements from the Lick Automated Planet Finder (APF) and Keck HIRES have yielded the discovery of three new exoplanet candidates orbiting two nearby K dwarfs not previously reported to have companions (HD 190007 & HD 216520). We also report new velocities from both the APF and the Planet Finder Spe...
We examine the influence of activity- and telluric-induced radial velocity signals on high resolution spectra taken with an iodine absorption cell. We exclude 2 Angstrom spectral chunks containing active and telluric lines based on the well characterised K1V star Alpha Centauri B and illustrate the method on Epsilon Eridani–an active K2V star with...
We examine the influence of activity- and telluric-induced radial velocity signals on high resolution spectra taken with an iodine absorption cell. We exclude 2 Angstrom spectral chunks containing active and telluric lines based on the well characterised K1V star Alpha Centauri B and illustrate the method on Epsilon Eridani - an active K2V star wit...
Earth-sized planets in the habitable zones of M dwarfs are good candidates for the study of habitability and detection of biosignatures. To search for these planets, we analyze all available radial velocity data and apply four signal detection criteria to select the optimal candidates. We find 10 strong candidates satisfying these criteria and thre...
Earth-sized planets in the habitable zones of M dwarfs are good candidates for the study of habitability and detection of biosignatures. To search for these planets, we analyze all available radial velocity data and apply four signal detection criteria to select the optimal candidates. We find ten strong candidates satisfying these criteria and thr...
A nearby multiplanet system
Exoplanets can interact gravitationally with other objects orbiting the same star, affecting their evolution and stability. Studying these effects requires locating systems with multiple planets. Monitoring the nearby red dwarf star GJ 887, Jeffers et al. detected periodic radial velocity signals, indicating the presence...
The presence of mean-motion resonances (MMRs) complicates analysis and fitting of planetary systems that are observed through the radial velocity (RV) technique. MMR can allow planets to remain stable in regions of phase space where strong planet–planet interactions would otherwise destabilize the system. These stable orbits can occupy small phase...
The presence of mean motion resonances (MMRs) complicates analysis and fitting of planetary systems observed through the radial velocity (RV) technique. MMR can allow planets to remain stable in regions of phase space where strong planet-planet interactions would otherwise destabilize the system. These stable orbits can occupy small phase space vol...
The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals that can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnard’s S...
The most abundant stars in the Galaxy, M dwarfs, are very commonly hosts to diverse systems of low-mass planets. Their abundancy implies that the general occurrence rate of planets is dominated by their occurrence rate around such M dwarfs. In this article, we combine the M dwarf surveys conducted with the HIRES/Keck, PFS/Magellan, HARPS/ESO, and U...
We present evidence for a new two-planet system around the giant star HD 202696 (=HIP 105056, BD +26 4118). The discovery is based on public HIRES radial velocity (RV) measurements taken at Keck Observatory between 2007 July and 2014 September. We estimate a stellar mass of 1.91 -0.14+0.09 M for HD 202696, which is located close to the base of the...
We present evidence for a new two-planet system around the giant star HD\,202696 (= HIP\,105056, BD\,+26 4118). The discovery is based on public HIRES radial velocity measurements taken at Keck Observatory between July 2007 and September 2014. We estimate a stellar mass of 1.91$^{+0.09}_{-0.14}M_\odot$ for HD\,202696, which is located close to the...
The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals that can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnard's S...
Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs¹, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known2,3 and has an estimated a...
At a distance of 1.8 parsecs, Barnard's star (Gl 699) is a red dwarf with the largest apparent motion of any known stellar object. It is the closest single star to the Sun, second only to the alpha Centauri triple stellar system. Barnard's star is also among the least magnetically active red dwarfs known and has an estimated age older than our Sola...
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; and (2) a long term activity cycle of 4070$\pm$120 days. We examine the short-term photometric signal...
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; and (2) a long term activity cycle of 4070$\pm$120 days. We examine the short-term photometric signal...
Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the complex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is k...
Gliese 876 harbors one of the most dynamically rich and well-studied exoplanetary systems. The nearby M4V dwarf hosts four known planets, the outer three of which are trapped in a Laplace mean-motion resonance. A thorough characterization of the complex resonant perturbations exhibited by the orbiting planets, and the chaotic dynamics therein, is k...
We report the discovery of a radial velocity signal that can be interpreted as a planetary-mass candidate orbiting the K dwarf HD26965, with an orbital period of 42.364$\pm$0.015 days, or alternatively, as the presence of residual, uncorrected rotational activity in the data. Observations include data from HIRES, PFS, CHIRON, and HARPS, where 1,111...
We report the discovery of a radial velocity signal that can be interpreted as a planetary-mass candidate orbiting the K dwarf HD26965, with an orbital period of 42.364$\pm$0.015 days, or alternatively, as the presence of residual, uncorrected rotational activity in the data. Observations include data from HIRES, PFS, CHIRON, and HARPS, where 1,111...
We present a new precision radial velocity dataset that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision radial velocity observations, 56 of which were previously published, and 277 which are new data from Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder...
We present a new precision radial velocity (RV) data set that reveals a multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists of 333 precision RV observations, 56 of which were previously published and 277 of which are new data from the Keck Observatory, Magellan at Las Campanas Observatory, and the Automated Planet Finder a...
The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial velocity method to detect Earth analogues. We analyze radial velocity data of tau Ceti and find robust evidence for wavelength dependent noise. We find this noise can be modeled by a combination of moving average models and "different...
The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial velocity method to detect Earth analogues. We analyze radial velocity data of tau Ceti and find robust evidence for wavelength dependent noise. We find this noise can be modeled by a combination of moving average models and "different...
HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02+/-0.38 MEarth for HD 3167 b, a ho...
HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02+/-0.38 MEarth for HD 3167 b, a ho...
Aims. Our new program with HARPS aims to detect mean motion resonant planetary systems around stars which were previously reported to have a single bona fide planet, often based only on sparse radial velocity data. Methods. Archival and new HARPS radial velocities for the K2V star HD 27894 were combined and fitted with a three-planet self-consisten...
Aims. Our new program with HARPS aims to detect mean motion resonant planetary systems around stars which were previously reported to have a single bona fide planet, often based only on sparse radial velocity data. Methods. Archival and new HARPS radial velocities for the K2V star HD 27894 were combined and fitted with a three-planet self-consisten...
We describe a 20-year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck-I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1,624 stars contained in that survey...
We describe a 20-year survey carried out by the Lick-Carnegie Exoplanet Survey Team (LCES), using precision radial velocities from HIRES on the Keck-I telescope to find and characterize extrasolar planetary systems orbiting nearby F, G, K, and M dwarf stars. We provide here 60,949 precision radial velocities for 1,624 stars contained in that survey...
We present a new precision radial velocity (RV) dataset that reveals multiple planets orbiting the stars in the $\sim$360 AU, G2$+$G2 "twin" binary HD 133131AB. Our 6 years of high-resolution echelle observations from MIKE and 5 years from PFS on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum m...
The doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different nois...
The doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different nois...
Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presen...
Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presen...
We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV)
observations for the solar-type star HD 32963. Our dataset reveals a candidate
planetary signal with a period of 6.49 $\pm$ 0.07 years and a corresponding
minimum mass of 0.7 $\pm$ 0.03 Jupiter masses. Given Jupiter's crucial role in
shaping the evolution of the early Solar...
We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new pla...
We report initial performance results emerging from 600 hours of observations
with the Automated Planet Finder (APF) telescope and Levy Spectrometer located
at UCO/Lick Observatory. We have obtained multiple spectra of 80 G, K and
M-type stars, which comprise 4,954 individual Doppler radial velocity (RV)
measurements with a median internal uncertai...
We present new, high-precision Doppler radial velocity (RV) data sets for the
nearby K3V star HD 219134. The data include 175 velocities obtained with the
HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with
the Levy Spectrograph at the Automated Planet Finder Telescope (APF) at Lick
Observatory. Our observations reveal six...
Stellar activity may induce Doppler variability at the level of a few m/s
which can then be confused by the Doppler signal of an exoplanet orbiting the
star. To first order, linear correlations between radial velocity measurements
and activity indices have been proposed to account for any such correlation.
The likely presence of two super-Earths or...
By July 2014, the Automated Planet Finder (APF) at Lick Observatory on Mount Hamilton will have completed its first year of operation. This facility combines a modern 2.4m computer-controlled telescope with a flexible development environment that enables efficient use of the Levy Spectrometer for high cadence observations. The Levy provides both su...
The Automated Planet Finder (APF) is a dedicated, ground-based precision radial velocity facility located at Lick Observatory, operated by University of California Observatories (UCO), atop Mt. Hamilton in California. The 2.4-m telescope and accompanying high-resolution echelle spectrograph were specifically designed for the purpose of detecting pl...
Exoplanets of a few Earth masses can be now detected around nearby low-mass
stars using Doppler spectroscopy. In this paper, we investigate the radial
velocity variations of Kapteyn's star, which is both a sub-dwarf M-star and the
nearest halo object to the Sun. The observations comprise archival and new
HARPS, HIRES and PFS Doppler measurements. T...
Precision radial velocities from the Automated Planet Finder (APF) and Keck/HIRES reveal an Msin (i) = 18 ± 2 M
⊕ planet orbiting the nearby M3V star GJ 687. This planet has an orbital period P = 38.14 days and a low orbital eccentricity. Our Strömgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60...
We present precision radial velocity (RV) data sets from Keck-HIRES and from Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby, slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 yr suggest the presence of four planets with orbi...
Precision radial velocities from the Automated Planet Finder and Keck/HIRES reveal an M*sin(i) =18 +/- 2 Earth mass planet orbiting the nearby M3V star GJ 687. This planet has an orbital period, P = 38.14 days, and a low orbital eccentricity. Our Stromgren b and y photometry of the host star suggests a stellar rotation signature with a period of P...
We present precision radial velocity (RV) data sets from Keck-HIRES and from
Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer
on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby,
slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 years
suggest the presence of four planets with o...
The Automated Planet Finder (APF) is a facility purpose-built for the
discovery and characterization of extrasolar planets through high-cadence
Doppler velocimetry of the reflex barycentric accelerations of their host
stars. Located atop Mt. Hamilton, the APF facility consists of a 2.4-m
telescope and its Levy spectrometer, an optical echelle spect...
Since low-mass stars have low luminosities, orbits at which liquid water can
exist on Earth-sized planets are relatively close-in, which produces Doppler
signals that are detectable using state-of-the-art Doppler spectroscopy. GJ
667C is already known to be orbited by two super-Earth candidates. We
investigate whether the data supports the presence...
The current precision radial velocities techniques to detect low mass
planets in M dwarf are quickly reviewed. This includes high resolution
spectroscopic observations made both in the optical and in the near
infrared. We discuss that, given the current instrumental performance,
optical RVs are still far ahead over other approaches. However, this
s...
The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The
system lacks massive planets and is therefore a potential candidate for having
additional low-mass planetary companions. We re-derive Doppler measurements
from public HARPS spectra of HD 40307 to confirm the significance of the
reported signals using independent data analysis...
The abilities of radial velocity exoplanet surveys to detect the lowest-mass
extra-solar planets are currently limited by a combination of instrument
precision, lack of data, and "jitter". Jitter is a general term for any unknown
features in the noise, and reflects a lack of detailed knowledge of stellar
physics (asteroseismology, starspots, magnet...
The radial velocities of HD 10700 as observed using the HARPS, HIRES,
and UCLES instruments.
(3 data files).
Systemic Console is a tool for advanced analysis of exoplanetary data.
It comprises a graphical tool for fitting radial velocity and transits
datasets and a library of routines for non-interactive calculations.
Among its features are interactive plotting of RV curves and transits,
combined fitting of RV and transit timing (primary and secondary),
i...
We present an analysis of the significantly expanded HARPS 2011 radial
velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our
analysis reaches substantially different conclusions regarding the evidence for
a Super-Earth-mass planet in the star's Habitable Zone. We were able to
reproduce their reported \chi_{\nu}^2 and RMS v...
Keck/HIRES precision radial velocities of HD 207832 indicate the presence of two Jovian-type planetary companions in Keplerian orbits around this G star. The planets have minimum masses of Msin i = 0.56 M
Jup and 0.73 M
Jup, with orbital periods of ~162 and ~1156 days, and eccentricities of 0.13 and 0.27, respectively. Strömgren b and y photometry...
We report the detection of two new planets from the Anglo-Australian Planet
Search. These planets orbit two stars each previously known to host one planet.
The new planet orbiting HD 142 has a period of 6005\pm427 days, and a minimum
mass of 5.3M_Jup. HD142c is thus a new Jupiter analog: a gas-giant planet with
a long period and low eccentricity (e...
We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the ESO public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares
approach. Combining these new 143 measurements with 41...
We have obtained precision astrometry of the planet host M dwarf GJ 317 in the framework of the Carnegie Astrometric Planet Search project. The new astrometric measurements give a distance determination of 15.3 pc, 65% further than previous estimates. The resulting absolute magnitudes suggest that it is metal-rich and more massive than previously a...
We present new precise HIRES radial velocity (RV) data sets of five nearby stars obtained at Keck Observatory. HD 31253, HD 218566, HD 177830, HD 99492, and HD 74156 are host stars of spectral classes F through K and show RV variations consistent with new or additional planetary companions in Keplerian motion. The orbital parameters of the candidat...
We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotat...
We use three-dimensional simulations to study the atmospheric circulation on
the first Earth-sized exoplanet discovered in the habitable zone of an M star.
We treat Gliese 581g as a scaled-up version of Earth by considering increased
values for the exoplanetary radius and surface gravity, while retaining
terrestrial values for parameters which are...
The Systemic Console is a software package for the fitting of Doppler radial velocity (RV) and transit timing observations arising from arbitrarily complex planetary systems. To illustrate its capabilities, we analyze a new RV dataset and synthetic datasets for the HD128311 planetary system and show that integrated fits that combine radial velociti...
The Ken and Gloria Levy Spectrometer is being constructed at the Instrument Development Laboratory (Technical Facilities) of UCO/ Lick Observatory for use on the 2.4 meter Automated Planet Finder Telescope at Mt. Hamilton. The mechanical design of the instrument has been optimized for precision Doppler measurements. A key component of the design is...