About
300
Publications
202,096
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
18,775
Citations
Introduction
My research activities focus on two topics: functional plant morphology, especially with respect to plant water relations, and aluminium accumulation in plants.
By integrating anatomical, physiological, and ecological aspects of plant hydraulic traits, we aim to address the longstanding question of how plants are able to transport water under negative pressure. Special attention is given to the following topics:
(1) Effects of drought stress on water transport,
(2) The morphology and function of bordered pit membranes between water conducting cells,
(3) The location, origin, and functional role of insoluble, amphiphilic lipids in the hydraulic transport system of plants.
Publications
Publications (300)
Safeguarding Earth’s tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We q...
Background and Aims
Ferns are the second largest group of vascular plants and are distributed nearly worldwide. Although ferns have been integrated into some comparative ecological studies focussing on hydathodes, there is a considerable gap in our understanding of the functional anatomy of these secretory tissues that are found on the vein endings...
Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf x...
In previous research, xylem sap of angiosperms has been found to include low concentrations of nanoparticles and polar lipids. A major goal of this study was to test predictions arising from the hypothesis that the nanoparticles consist largely of polar lipids from the original cell content of vessel elements. These predictions included that polar...
One of the most prominent changes in neotropical forests has been the increase in abundance and size of lianas. Studies suggest that lianas have more acquisitive strategies than trees, which could allow them to take advantage of water more effectively when it is available in water-limited forests, but few studies compared across growth form (i.e.,...
Extant conifer species are adapted to a range of climate conditions, which would be reflected in their xylem structure, especially in tracheid characteristics of early-and-latewood. With an anatomical dataset of 79 conifer species native to China, an interspecific study was conducted within a phylogenetic context to find latitudinal patterns in tra...
Simulations of the land surface carbon cycle typically compress functional diversity into a small set of plant functional types (PFT), with parameters defined by the average value of measurements of functional traits. In most earth system models, all wild plant life is represented by between five and 14 PFTs and a typical grid cell (≈100 × 100 km)...
Globally distributed extant conifer species must adapt to various environmental conditions, which would be reflected in their xylem structure, especially in the tracheid characteristics of earlywood and latewood. With an anatomical trait dataset of 78 conifer species growing throughout China, an interspecific study within a phylogenetic context was...
International online meeting on ‘Plant Pneumatics’, Ulm University and the University of Natural Resources and Life Sciences (BOKU), Ulm (Germany) and Vienna (Austria), 22 April and 29 September 2021
• Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long-term measurements.
• We measured xylem embolism resistance and midday xylem water potentials during the...
Despite a long research history, we do not fully understand why plants are able to transport xylem sap under negative pressure without constant failure. Microbubble formation via direct gas entry is assumed to cause hydraulic failure, while the concentration of gas dissolved in xylem sap is traditionally supposed to be constant, following Henry's l...
Xylem embolism resistance varies across species influencing drought tolerance, yet little is known about the determinants of the embolism resistance of an individual conduit. Here we conducted an experiment using the optical vulnerability method to test whether individual conduits have a specific water potential threshold for embolism formation and...
Xylem embolism formation is a key process during drought-induced tree mortality, but its
relationship to wood anatomical properties is debated. While the classical assumption is that larger vessels provoke a higher embolism risk, the evidence is mixed, and recent studies show that differences in embolism resistance are rather driven by pit membran...
Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical sa...
The cover image is based on the Letter Hydraulic prediction of drought‐induced plant dieback and top-kill depends on leaf habit and growth form by Ya‐Jun Chen et al., https://doi.org/10.1111/ele.13856.
Xylem sap of angiosperm species has been found to include low concentrations of polar lipids and nanoparticles, including surfactant-coated nanobubbles. Although the nanoparticles have been suggested to consist of polar lipids, no attempt has been made to determine if nanoparticle and lipid concentrations are related. Here, we examined concentratio...
Premise:
Among the sophisticated trap types in carnivorous plants, the underground eel-traps of corkskrew plants (Genlisea spp., Lentibulariaceae) are probably the least understood in terms of their functional principle. Here, we provide a detailed analysis of structural and hydraulic features of G. hispidula traps, contributing to the ongoing deb...
Premise:
Extrafloral nectaries are mainly studied in angiosperms, but have also been reported in 39 fern species. Here we provide a global review of nectaries in ferns, and study their structure, function, and nectar sugar composition in two genera.
Methods:
We searched in the literature and living plant collections of botanical gardens for indi...
Xylem embolism resistance varies across species influencing drought tolerance, yet little is known about the determinants of the embolism resistance of an individual conduit. Here we conducted an experiment using the optical vulnerability method to test whether individual conduits have a specific water potential threshold for embolism formation and...
Background: Globally distributed extant conifer species must adapt to various environmental conditions, which would be reflected in their xylem structure, especially in the tracheid characteristics of earlywood and latewood. A comparative study of conifer species might shed light on how xylem structure responds to environmental conditions. With an...
Key message
Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports t...
Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these...
The Pneumatron device measures gas diffusion kinetics in the xylem of plants. The device provides an easy, low-cost, and powerful tool for research on plant water relations and gas exchange. Here, we describe in detail how to construct and operate this device to estimate embolism resistance of angiosperm xylem, and how to analyse pneumatic data. Si...
Aim
Here we examine the functional profile of regional tree species pools across the latitudinal distribution of Neotropical moist forests, and test trait–climate relationships among local communities. We expected opportunistic strategies (acquisitive traits, small seeds) to be overrepresented in species pools further from the equator, but also in...
The increasing frequency of global change-type droughts has created a need for fast, accurate and widely applicable techniques for estimating xylem embolism resistance to improve forecasts of future forest changes.
We used data from 12 diffuse-porous temperate tree species covering a wide range of xylem safety to compare the pneumatic and flow-cent...
The Pneumatron device presented measures gas diffusion kinetics in the xylem of plants. The device provides an easy, low‐cost, and powerful tool for research on plant water relations. Here, we describe in detail how to construct and operate this device to estimate xylem vulnerability to embolism, and how to analyse pneumatic data. Simple and more e...
The Pneumatic method has been introduced to quantify embolism resistance in plant xylem of various organs. Despite striking similarity in vulnerability curves between the Pneumatic and hydraulic methods, a modeling approach is highly needed to demonstrate that xylem embolism resistance can be accurately quantified based on gas diffusion kinetics.
A...
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolised and sap‐filled conduits. Here, we examine how the proximity to pre‐existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compared xylem embolism resistance between detached leaves and leaves attached to...
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing...
1. Xylem resistance to drought‐induced embolism is an important trait determining plant distribution. In the karst hills of Southwest China, with a relatively small variation in altitude, soil depth and water availability strongly decrease from the foot towards the top, and woody plant species display distinct spatial distribution. 2. For testing t...
Purpose of Review
Defining the mechanisms behind and the leaf economic consequences of the development of sclerophylly in woody plants will allow us to understand its ecological implications, anticipate the potential for adaptation of different tree species to global change, and define new woody plant ideotypes for stress tolerance.
Recent Finding...
Background and Aims
The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental g...
Although transpiration-driven transport of xylem sap is well known to operate under absolute negative pressure, many terrestrial, vascular plants show positive xylem pressure above atmospheric pressure on a seasonal or daily basis, or during early developmental stages. The actual location and mechanisms behind positive xylem pressure remain largely...
Both historical and contemporary environmental conditions determine present biodiversity patterns, but their relative importance is not well understood. One way to disentangle their relative effects is to assess how different dimensions of beta-diversity relate to past climatic changes, i.e., taxonomic, phylogenetic and functional compositional dis...
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolised and sap-filled conduits. Here, we examine how proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compared xylem embolism resistance between detached leaves and leaves attached to bran...
Biodiversity shortfalls are knowledge gaps that may result from uneven sampling through time and space and human interest biases. Gaps in data of functional traits of species may add uncertainty in functional diversity and structure measures and hinder inference on ecosystem functioning and ecosystem services, with negative implications for conserv...
Although xylem embolism resistance is traditionally considered as static, we hypothesized that in grapevine (Vitis vinifera) leaf xylem becomes more embolism resistant along the growing season. We evaluated xylem architecture, turgor loss point (Ψ TLP), and water potentials leading to 25% of maximal stomatal conductance (g s25) or 50% embolism in t...
Knowledge about the length of xylem vessels is essential to understand water transport in plants because these multicellular units show a 100-fold variation, from less than a centimeter to many meters. However, the available methods to estimate vessel length (VL) distribution are excessively time consuming and do not allow large and in-depth survey...
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing...
Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure-functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined o...
Comparisons among methods are essential to validate plant traits measured across studies. However, a rigorous analysis is a complex task that needs to take into account not only the principle of the method and its correct use, but also inherent intraspecific trait variability, something we feel is not fully considered by Sergent et al. (2020). They...
Climate change increases the occurrence of prolonged drought periods with large implications for forest functioning. Scots pine (Pinus sylvestris L.) is one of the most abundant conifers worldwide and evidence is rising that its resilience to severe drought is limited. However, we know little about its ability to recover from drought-induced emboli...
Knowledge about the length of xylem vessels is essential to understand water transport in plants because these multicellular units show a 100-fold variation, from less than a centimeter to many meters. However, the available methods to estimate vessel length distribution (VLD) are excessively time consuming and do not allow large and in-depth surve...
Hydraulic segmentation at the stem‐leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential...
Trees are of vital importance for ecosystem functioning and services at local to global scales, yet we still lack a detailed overview of the global patterns of tree diversity and the underlying drivers, particularly the imprint of paleoclimate. Here, we present the high-resolution (110 km) worldwide mapping of tree species richness, functional and...
Context
Hydraulic failure and disconnection of distal organs during protracted drought stress is thought to protect large branches or trunks by reducing water loss and restricting the spread of embolism. Hydraulic segmentation and preferential sacrifice of distal organs such as leaves can be driven by two mechanisms: more negative water potentials...
High rates of water loss in young, expanding leaves have previously been attributed to open stomata that only develop a capacity to close once exposed to low humidity and high abscisic acid (ABA) levels. To test this model, we quantified water loss through stomata and cuticle in expanding leaves of Quercus rubra. Stomatal anatomy and density were o...
Lycophytes are the earliest diverging extant lineage of vascular plants, sister to all other vascular plants. Given that most species are adapted to ever-wet environments, it has been hypothesized that lycophytes, and by extension the common ancestor of all vascular plants, have few adaptations to drought.
We investigated the responses to drought...
AimsSince plants are compartmentalised organisms, failure of their hydraulic transport system could differ between organs. We test here whether xylem tissue of stems and roots differ in their drought-induced embolism resistance, and whether intact roots are equally resistant to embolism than root segments.Methods
Embolism resistance of stem and roo...
Biological and technological processes that involve liquids under negative pressure are vulnerable to the formation of cavities. Maximal negative pressures found in plants are around −100 bar, even though cavitation in pure bulk water only occurs at much more negative pressures on the relevant timescales. Here, we investigate the influence of small...
Although trees are key to ecosystem functioning, many forests and tree species across the globe face strong threats. Preserving areas of high biodiversity is a core priority for conservation; however, different dimensions of biodiversity and varied conservation targets make it difficult to respond effectively to this challenge. Here, we (i) identif...
Background:
In trees, secondary metabolites (SMs) are essential for determining the effectiveness of defence systems against fungi and why defences are sometimes breached. Using the CODIT model (Compartmentalisation of Damage/Dysfunction in Trees), we explain defence processes at the cellular level. CODIT is a highly compartmented defence system t...
Aims: Since plants are compartmentalised organisms, failure of their hydraulic transport system could differ between organs. We test here whether xylem tissue of stems and roots differ in their drought-induced embolism resistance, and whether intact roots are equally resistant to embolism than root segments.
Methods: Embolism resistance of stem and...
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific r...
Key message
Intervessel pit membranes in xylem tissue of Acer pseudoplatanus differ in their thickness both within and across plant organs and may undergo considerable shrinkage during dehydration and sample preparation.
Abstract
Intervessel pit membranes have been suggested to account for more than half of the total xylem hydraulic resistance in...