Accepted Manuscript

Laser Acupuncture for Treating Musculoskeletal Pain: A Systematic Review with Meta-analysis

Dina Law, Suzanne McDonough, Chris Bleakley, G David Baxter, Steve Tumilty

PII: S2005-2901(14)00114-9

DOI: 10.1016/j.jams.2014.06.015

Reference: JAMS 179

To appear in: Journal of Acupuncture and Meridian Studies

Received Date: 13 January 2014

Revised Date: 18 June 2014

Accepted Date: 25 June 2014

Please cite this article as: Law D, McDonough S, Bleakley C, Baxter GD, Tumilty S, Laser Acupuncture for Treating Musculoskeletal Pain: A Systematic Review with Meta-analysis, *Journal of Acupuncture and Meridian Studies* (2014), doi: 10.1016/j.jams.2014.06.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Laser Acupuncture for Treating Musculoskeletal Pain: A Systematic Review with Meta-analysis

Authors:

Dina Law¹, Suzanne McDonough², Chris Bleakley², G David Baxter¹, Steve Tumilty¹

Affiliations:

¹Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy,

University of Otago, New Zealand

²Centre for Health, Activity and Rehabilitation Technologies, University of Ulster,

Northern Ireland

Corresponding author. Dina Law, Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, PO Box 56, Dunedin 9054, New Zealand

E-Mail: dinalawnp@gmail.com

Abstract

Laser acupuncture has been studied extensively over several decades to establish evidence-based clinical practice. This systematic review aims to evaluate the effects of laser acupuncture on pain and functional outcomes when it is used to treat musculoskeletal disorders and to update existing evidence with data from recent randomized controlled trials (RCTs). A computer-based literature search of the databases MEDLINE, AMED, EMBASE, CINAHL, SPORTSDiscus, Cochrane Library, PubMed, Current Contents Connect, Web of Science, and SCOPUS was used to identify RCTs comparing laser acupuncture to control interventions. A metaanalysis was performed by calculating the standardized mean differences and 95% confidence intervals to evaluate the effect of laser acupuncture on pain and functional outcomes. Included studies were assessed for their methodological quality and appropriateness of laser parameters. Forty-nine RCTs met the inclusion criteria. Twothirds (31/49) of these reported positive effects, were of high methodological quality, and had adequately reported the dosage. Negative or inconclusive studies commonly failed to demonstrate these features. For all diagnostic subgroups, positive effects for both pain and functional outcomes were more consistently seen at longer follow-up times after treatment rather than immediately after treatment. Evidence of moderate quality supports the effectiveness of using laser acupuncture to manage musculoskeletal pain when an appropriate treatment dosage is applied; however, the positive effects are only seen at longer follow-up times after the cessation of treatment, not immediately after.

KEYWORDS

acupuncture therapy;

low-level laser therapy;

pain;

review

1 Introduction

Musculoskeletal disorders represent a significant cost to the healthcare system [1]. A recent report estimated 1.7 billion individuals globally are affected by various kinds of musculoskeletal problems, and highlighted the considerable impact of chronic pain and disabilities upon individuals [2]. Coupled with the increasing risk factors such as obesity, sedentary lifestyles, and aging populations in modern world [3, 4], increasing prevalence of musculoskeletal disorders is foreseeable, exacerbating the healthcare burden.

Recent research confirms that treatments such as physical therapy, acupuncture, and massage remain popular with pain sufferers. A survey conducted in 16 European countries showed that 70% of participants who suffered from musculoskeletal pain sought other forms of treatment apart from medication [5]. Of these, acupuncture is one of the most common types of alternative treatment for patients looking for long-term pain management [6], which provides a relatively safe option with minimal side effects. Growing demand for - and provision of - acupuncture services have been seen

in different countries [5, 7, 8] resulting an interest in, and rapid development of, acupuncture research in order to establish a more solid evidence-based practice [9].

Such research development extends to other forms of acupuncture apart from the traditional needling method. The use of low-level laser to stimulate acupuncture points is suggested to be a safer technique due to its non-invasive nature, and its acceptability for people with needle phobia [10]. Laser acupuncture is considered to be an effective alternative to traditional needling, is useful in patients who are needle phobic or for use at acupuncture points where complicated application of the needle is appropriate [10, 11].

Ever since laser acupuncture studies in the 1970s [12, 13], researchers have focused on the underlying mechanism of laser acupuncture to build the scientific basis for clinical practice. Controversy remains concerning the mechanisms of laser acupuncture, which being free from any mechanical stimulation, do not share similar pain modulation pathways as traditional needling acupuncture [10]. Rather than producing 'needling sensation', the acupuncture point irradiated by the laser needs to receive sufficient energy to elicit the physiological effect at the cellular level, based upon the wider principle of "photobiomodulation" [14-16]. A key point to determine the effectiveness of laser acupuncture is the dosage applied: this issue has been stressed in several recent papers [16, 17]. The development of dosage guidelines for laser acupuncture is confounded by the lack of a clear understanding of the mechanisms underpinning such treatment, as dosage dependency is normally explored during the stage of *in vitro* and animal studies [10]. At present, The World Association for Laser Therapy (WALT) Guidelines for LLLT published in 2010 only

provide recommendations for general laser treatment on different conditions, no specific guidelines have been developed for laser acupuncture [18, 19]. Hence, selection of laser parameters and dosage are often subjective or based on clinical experience. Studies may apply an inappropriate dosage or inadequately report the parameters hence the results of these studies would be difficult to replicate or provide data to formulate a most efficacious dose. [20-22].

More recent evidence supports the physiological effects of laser acupuncture, including anti-inflammatory [23] and anti-nociceptive effects [24]. Such studies highlight the potential effect of laser acupuncture under well-controlled conditions; however, whether or not these results can be extrapolated to the clinical setting remains unclear. It is critically important to understand the relevance of laser irradiation parameters, together with the appropriate selection of acupoints, to the effectiveness of laser acupuncture for musculoskeletal conditions.

Despite the growth of evidence in the field of laser acupuncture, its effectiveness for musculoskeletal condition remains unclear because of inconclusive results from different studies [14, 20, 22]. This expansion may suggest a shift in the evidence base, therefore it is timely to review the results from recent studies to confirm the current evidence base for laser acupuncture. A systematic review with meta-analysis was therefore conducted to update the previous review in this area [17] with the following aims:

- To assess the clinical effectiveness of laser acupuncture for pain and functional outcomes for musculoskeletal conditions;
- To explore the relationship of parameter choice to outcomes;

5

• To establish the level of evidence of the effectiveness of laser acupuncture with an update of current literature.

2 Methods

2.1 Protocol and registration

This systematic review was conducted and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [25]; a preregistered protocol was not used.

2.2 Selection criteria

Studies included for this review had to meet the following criteria.

2.2.1 Types of studies

Randomized controlled trials (RCT) and controlled clinical trials (CCT) published in peer-reviewed journals. Studies published from database inception to 1st March 2013 were included, in order not to miss any records, and to update the findings of our previous systematic review [17] by including more current publications. Due to resource limitations, this review excluded non-English language publications.

2.2.2 Types of participants

Human participants with musculoskeletal diseases or injuries, and presenting with pain were included. Systemic illness and headache were not included. There were no restrictions based on age, gender, or physical activity status.

2.2.3 Types of intervention

Studies evaluating laser acupuncture as the primary intervention were included. Such intervention needed to include active low level laser therapy to Traditional Chinese Medicine acupuncture points, trigger points, or tender points. Studies with a primary intervention using needling, other forms of stimulation on acupuncture points, or applying laser therapy on nonacupuncture points, were not considered. Studies were included which compared laser acupuncture with one of the following as a control intervention: placebo or sham laser, no treatment, or other treatments, such as medication, exercise therapy, or other electrotherapy modalities.

2.2.4 Types of outcome measures

Studies were included which assessed pain or function using at least one of the following as primary outcomes: pain level (visual analogue scale), a global assessment of participants' improvement (subjective improvement, proportion of objective measures improvement, overall improvement), or a functional outcome measure (validated questionnaire or functional scale specific to the presenting condition).

2.2.5 Length of follow-up

There was no restriction applied to the length of follow-up.

2.3 Search strategy

Studies were identified by an electronic search on the following databases: MEDLINE (1946 to 1st March 2013), AMED (1985 to 1st March 2013), EMBASE (1947 to 1st March 2013), CINAHL (1981 to 1st March 2013), SPORTSDiscus (1960 to 1st March 2013), Cochrane Library, PubMed (1950 to 1st March 2013), Current Contents Connect (1998 to 1st March 2013), Web of Science (1900 to 1st March 2013) and SCOPUS (1960 to 1st March 2013). The same search strategy was used in subject-based databases as shown in appendix A. In addition, Google Scholar (1st January 2013 to 1st March 2013), Physiotherapy Evidence Database (PEDro; 1966 to 1 March 2013), and two key journals (*Lasers in Surgery and Medicine*; 2005 to 1st March 2013 and *Photomedicine and Laser Surgery*; 2005 to 1st March 2013) were searched manually to cover recent studies which may have not been included in other databases. Two independent reviewers ran the search independently on 1 March 2013.

2.4 Selection of studies

Two independent reviewers assessed the eligibility of all studies independently by screening the titles and abstracts with the above selection criteria. Full-text articles were retrieved if there was any uncertainty. When there was disagreement between the two reviewers, the study was reassessed using the selection criteria as a basis for consideration for its eligibility until consensus was achieved. Relevant studies were retrieved as full-text articles, either from the databases or study authors, for final assessment of inclusion or exclusion. Reference lists of retrieved articles were checked for any missing relevant articles.

2.5 Assessment of methodological quality

All included studies were assessed for methodological quality using the PEDro scale [26]. Two reviewers performed the assessment independently in a standardized manner; they were not blinded to details of the studies. Disagreements between reviewers were resolved by consensus and a third reviewer was consulted if disagreements persisted. Methodological qualities of the included studies were rated with a total of 10 rated items of the PEDro scale. All included studies were also assessed for their level of risk of bias by two independent reviewers. The risk of bias assessment helps to identify any major methodological flaws from different domains of the included studies [27]. Further subgroup analyses related to bias assessment were planned where appropriate.

2.6 Data extraction

Two independent reviewers extracted data from included studies. Disagreements were resolved by discussion; if no agreement could be reached, a third reviewer was available for cross-referral.

Data were extracted from each included trial on:

- Study population;
- Details of interventions;
- Types of outcome measures;
- Laser acupuncture dosage (including parameters recommended by the World Association for Laser Therapy (WALT) [28] or calculation of missing data if possible).

2.7 Outcome measures

Data from included studies were pooled for further meta-analysis where appropriate. If available, means and standard deviations for outcome measures were extracted or calculated using published relevant data with Review Manager (RevMan) software, version 5.2 [29]. Unpublished data were not sought from authors because of time limitations. Data were categorized and analyzed as follows:

- Pain score using visual analogue scale (VAS) and expressing raw score on a 0 to 10 scale. Change in scores (difference between various time points in a study) were also considered but grouped separately.
- Pressure pain threshold algometric measurement expressed in kg/cm².
- Functional score using validated functional scales, measuring grip strength, or comparing the difference in functional scores before and after the intervention.

2.8 Statistical analysis

Dichotomous outcomes were expressed as relative risks, and continuous outcomes were expressed as standardized mean difference (SMD); both were presented with 95% confident interval (CI) [27]. A negative SMD was defined to indicate favorable effects of laser acupuncture to the control intervention and vice versa. The magnitude of overall effect size was classified as small (0.2 to 0.5), moderate (0.5 to 0.8) and large (>0.8) according the value of SMD using the Cohen's categories [30]. Qualitative analysis was performed if studies failed to provide data to be pooled for analysis. Studies were assessed for heterogeneity using the chi-square test to decide

whether a random or fixed effect model was used; chi-square test with a p value \geq 0.05 indicates a significant heterogeneity [27]. I² value quantifies the degree of heterogeneity from moderate (I² > 30%), substantial (I² > 50%) to considerable (I² > 75%) [27].

2.9 Subgroup and sensitivity analyses

Subgroup analyses were conducted to evaluate the overall effects as follows:

- Diagnosis;
- Control intervention;
- Follow-up period measures taken immediately at the end of the intervention (short-term effect) or from 6 to 26 weeks-post randomization (long-term effect);
- Site of laser acupuncture application acupuncture point, trigger point or tender point.

Sensitivity analyses were conducted for testing the robustness of the pooled effect size. Effects were examined according to risk of bias to ensure analysis was not biased from any study with high methodological flaws.

2.10 Risk of bias across studies

The risk of publication bias was assessed by analyzing the symmetry of the funnel plots generated by RevMan. Lower risk of bias presented with more symmetrical funnel plots while higher risk of bias presented with more asymmetry [31].

2.11 Quality of evidence

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to judge and categorize the quality of evidence for the primary outcomes [32]. This reflects the extent of confidence of the estimated effects by considering the study design and other confounding factors that may affect the judgment. The quality grades used were:

High quality: We are very confident that the true effect lies close to that of the estimate of the effect.

Moderate quality: We are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low quality: Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. *Very low quality*: We have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

3 Results

3.1 Study selection

Figure 1 depicts the process of study selection with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. The search was conducted on 1st March 2013 and retrieved a total of 2093 potential relevant records. After adjusting for duplicates, 1432 records remained. One additional study was retrieved from Google Scholar. A total of 49 studies were eligible and included for current review.

3.2 Study characteristics

Table 1 summarizes the characteristics of all 49 included studies. All studies were RCTs published in English. A total of 2360 participants were involved aged 18 years or above. All trials were conducted in either a primary or secondary healthcare setting. Participants received 3 to 15 treatment sessions over a period of 1 to 12 weeks. Laser acupuncture was performed by physiotherapists or other trained healthcare professions in most of the trials; however half of the studies failed to report this clearly.

Figure 1. PRISMA flow diagram

First author	Year	Diagnosis	п	Interventions	Follow-up
Ferreira LA [33]	2013	Temporomandibular joint	40	Laser acupuncture (20) vs.	Monthly until
		disorder		placebo (20)	intervention
					completed
Kannan P [34]	2012	Myofascial pain	45	Ultrasound (15) vs. laser (15) vs.	End of
				ischemic compression (15)	intervention
Lin ML [35]	2012	Low back pain	60	Laser acupuncture (21) vs.	After each
				placebo (21)	session
Sattayut S [36]	2012	Temporomandibular joint	30	Low energy density laser (10)	After each
		disorder		vs. high energy density laser	session
				(10) vs. placebo (10)	
Skorupska E [37]	2012	Lateral epicondylitis	80	LLLT (40) vs. ultrasound (40)	End of
				(trigger point application vs.	intervention; 12-
				anatomical site application; 20	month
				in each subgroup)	
Lee JH [38]	2011	Myofascial trigger point pain	24	Laser (12) vs. placebo (12)	End of
					intervention
Rayegani SM [39]	2011	Myofascial pain	49	Laser (17) vs. ultrasound (16)	6-week
				vs. placebo laser (16)	
Emanet SK [40]	2010	Lateral epicondylitis	47	Laser acupuncture (24) vs.	End of
				placebo (23)	intervention; 12-
		Y			week after
		\sim			intervention
Glazov G [41]	2010	Low back pain	100	Laser acupuncture (45) vs.	After each
	Ċ			placebo (45)	session; 6-week
					after
					intervention;
					6-month after
X '					intervention
Katsoulis J [42]	2010	Tendomyopathy	11	Laser (7) vs. placebo (4)	3-month after
					intervention
Oz S [43]	2010	Myofascial pain	40	Laser (20) vs. occlusal splint	End of
				(20)	intervention
Zhao L [44]	2010	Knee osteoarthritis	40	Laser on acupuncture point (19)	2-week; 4-week
				vs. Laser on sham point (17)	

Table 1. Characteristics of the included studies*

First author	Year	Diagnosis	п	Interventions	Follow-up
Carrasco TG [45]	2009	Myofascial pain	60	Laser (30) vs. placebo (30) – 3	After 4 sessions;
				parameter groups;10 in each	after 8 Rx;
				group	15-day after
					intervention;
					1-month after
					intervention
Glazov G [46]	2009	Low back pain	100	Laser acupuncture (45) vs.	After each
				placebo (45)	session; 6-week
					after
					intervention;
					6-month after
					intervention
Shen X [47]	2009	Knee osteoarthritis	40	Laser acupuncture (20) vs.	2-week; 4-week
				placebo (20)	
Shirani AM [48]	2009	Myofascial pain	16	Laser acupuncture (8) vs.	After first
				placebo (8)	session; 1-week;
					the day with
					complete pain
			Y		relief
Shen X [49]	2008	Knee osteoarthritis	48	Laser acupuncture (24) vs.	2-week; 4-week
				placebo (24)	
Dundar U [50]	2007	Myofascial pain	64	Laser acupuncture (32) vs.	4-week
				placebo (32)	
Lam L [51]	2007	Lateral epicondylitis	39	Laser acupuncture (21) vs.	After 5 sessions;
				placebo (18)	end of
	~				intervention; 3-
					month after
					intervention
Matsutani LA [52]	2007	Fibromyalgia	20	Laser (10) vs. no laser (10)	End of
, Y					intervention
Mazzetto MO [53]	2007	Temporomandibular joint	48	Laser (24) vs. placebo (24)	After 4 sessions;
		disorder			after 8 sessions;
					30-day after
					intervention

First author	Year	Diagnosis	п	Interventions	Follow-up
Yurtkuran M [54]	2007	Knee osteoarthritis55Laser (27) vs. placebo (25)		2-week; 12- week	
Aigner N [55]	2006	Whiplash injury	50	Laser acupuncture (23) vs.	After each
				placebo (22)	session; end of
					intervention; 8-
					12 months after
					injury
Armagan O [56]	2006	Fibromyalgia	32	LLLT (16) vs. placebo (16)	End of
					intervention; 6-
					month after
					intervention
Chow RT [57]	2006	Chronic neck pain	90	Laser (45) vs. placebo (45)	7-week; 12-
					week
Kiralp MZ [58]	2006	Myofascial pain	43	Laser (23) vs. trigger point	End of
				injection (20)	intervention; 6-
				X '	month after
			$ \rightarrow $		intervention
Altan L [59]	2005	Myofascial pain	53	Laser (23) vs. placebo (25)	2-week; 12-
					week after
					intervention
Tam G [60]	2005	Periarthritis of shoulder	60	Corticosteroid injection (20) vs.	3-week; 6-week;
				LLLT (21) vs. wait-and-see	12-week; 26-
				policy (18)	week; 52-week
Ceylan Y [61]	2004	Myofascial pain	46	Laser (19) vs. placebo (20)	End of
					intervention
Chow RT [62]	2004	Chronic neck pain	20	Laser (10) vs. placebo (10)	7-week; 12-
					week
Gur A [63]	2004	Myofascial pain	60	Laser (30) vs. placebo (30)	2-week; 3-week;
					12-week
Ilbuldu E [64]	2004	Trigger point pain	60	Placebo laser (20) vs. dry	End of
				needling (20) vs. laser (20)	intervention; 6-
					month

First author	Year	Diagnosis	n	Interventions	Follow-up
Al-Shenqiti A [65]	2003	Rotator cuff tendinitis	55	Laser (26) vs. placebo (29)	End of intervention; 3- month
Hakguder A [66]	2003	Myofascial pain	62	Laser (31) vs. no laser (31)	End of intervention; 3- week after intervention
Gur A [67]	2002	Fibromyalgia	40	Laser (20) vs. placebo (20)	End of intervention
Wong W [68]	2001	Carpal tunnel syndrome	12	Laser (12) vs. placebo (12)	End of intervention
Chen SM [69]	1997	Myofascial pain	21	Placebo (5) vs. continuous laser (7) vs. pulsed laser (9)	End of intervention
Conti PCR [70]	1997	Temporomandibular joint disorder	20	Laser (10) vs. placebo (10)	After each session
Laaskso EL [71]	1997	Myofascial trigger point pain	41	Red laser (15) vs. Infrared (IR) laser (16) vs. placebo (10)	Before each session; after each session
Logdberg-Andersson M [72]	1997	Tendinitis & myofascial pain	176	Laser (92) vs. placebo (84)	End of intervention; 4- week after intervention
Papadopoulos ES	1996	Lateral epicondylitis	29	Laser (14) vs. placebo (15)	After 4 sessions; after 6 sessions
Vecchio P [74]	1993	Rotator cuff tendinitis	35	Laser (19) vs. placebo (16)	2-week; 4-week; 8-week
Haker E [75]	1991	Lateral epicondylitis	60	Laser (29) vs. placebo (29)	End of intervention; 3- month; 6-month; 12-month
Haker E [76]	1990	Lateral epicondylitis	49	Laser acupuncture (23) vs. placebo (26)	End of intervention; 3- month; 12- month

First author	Year	Diagnosis	n	Interventions	Follow-up
Ceccherelli F [77]	1989	Myofascial pain	27	Laser (13) vs. placebo (14)	End of
					intervention; 3-
					month after
					intervention
Snyder-Mackler L	1989	Myofascial trigger point pain	24	Laser (13) vs. placebo (11)	Before each
[78]					session; after
					each session
Waylonis GW [79]	1988	Fibromyalgia/ chronic	55	Placebo vs. laser acupuncture	6-week after
		myofascial pain			each round of
					intervention; 60-
					day; 120-day
Lundeberg T [80]	1987	Lateral epicondylitis	57	Placebo (19) vs. GaAs laser (19)	Every two week;
				vs. HeNe laser (19)	end of
					intervention; 3-
					month; 6-month
Snyder-Mackler L	1986	Musculoskeletal trigger point	27	Laser (13) vs. placebo (11)	Before each
[81]		pain			session; after
					each session

*See appendix B for individual study's outcome measures and summarized results.

3.3 Quality assessment of included studies

Appendix C shows the methodological assessment of the included studies using the PEDro scale [26]. Thirty studies (61%) were considered as high methodological quality with a moderate cut-off score of 6 [82]. The most common flaws were inadequate allocation concealment (78%), lack of blinded therapists (63%), and lack of intention-to-treat analysis (71%). Despite the possible bias related to these flaws, other criteria were adequately addressed to minimize the risk of bias. Almost all the studies (94%) performed adequate randomization hence reducing possible selection bias. Most of the studies successfully performed blinding of patients (81%) and assessors (63%). Almost three-quarters (73%), provided adequate follow-up data with less than 15% dropout rate, therefore attrition bias was lowered. Inter-rater agreement was an acceptable level and disagreements were resolved by consensus.

Using the risk of bias assessment tool provided by the Cochrane collaboration [27] to evaluate the included studies showed similar results as the PEDro score (see Figure 2). The risk of selection bias and performance bias were mixed as some of the studies have unclear risks due to insufficient description. Other domains remained low risk in all the included studies, except 20% of the studies exhibited high risk in attrition due to the high dropout rates, or non-description of reasons for withdrawals.

Random sequence generation (selection bias)	
Allocation concealment (selection bias)	
Blinding of participants and personnel (performance bias)	
Blinding of outcome assessment (detection bias)	
Incomplete outcome data (attrition bias)	
Selective reporting (reporting bias)	
Other bias	
	0% 25% 50% 75% 100%
Low risk of bias	High risk of bias

Figure 2. Risk of bias – graphical distribution of the judgments across all included

studies

3.4 Effects of laser acupuncture

Thirty-three studies provided sufficient data to calculate effect sizes for key outcome measures using RevMan, and were included in the meta-analysis. These studies show mixed results as reported by the authors, with two-thirds reporting positive effects favoring laser acupuncture, and one-third reporting inconclusive or no effect.

3.4.1 Pain

All 33 studies assessed pain as one of the primary outcome measures. However, due to the heterogeneous characteristics of studies, results for pain scores where sub-categorized into laser acupuncture versus placebo, or laser acupuncture versus other interventions. To account for possible variation among different studies, the random effects model was used and the pooled effects were expressed as standardized mean difference (SMD).

When compared with the placebo intervention, the overall effect for pain favored laser acupuncture, both at the end of intervention (SMD -0.43; -0.74 to -0.12) and at the follow up period (SMD -0.61; -1.12 to -0.10). The pooled effect sizes of laser acupuncture on pain were considered to be small at short-term, but showed a moderate effect at long-term follow up (see Appendix D). Other studies [40, 41, 44, 47, 48, 50, 54, 57, 61, 62, 74, 80] expressed the pain change scores from baseline and showed a similar effect of pain relief at both short-term (SMD -0.53; -0.95 to -0.10) and long-term follow up (SMD -0.77; -1.25 to -0.29). When compared against other interventions, results of pain scores were mixed. Laser acupuncture failed to show significant favorable

effects on pain scores at any time point compared to the control treatment (SMD -0.23; -1.00 to 0.54; SMD -1.43; -3.84 to 0.98).

Nine studies investigated pain by measuring pressure pain threshold [36, 38, 39, 43, 51, 58, 59, 64, 69]. A positive effect indicates the beneficial effects of laser acupuncture as compared to control interventions. Similarly, compared with a placebo group, results showed a strong positive effect in favor of the experimental group at the end of intervention (SMD 1.02; 0.72 to 1.33) and during the follow up period (SMD 0.91; 0.30 to 1.53). Comparing laser acupuncture to other interventions, no short-term (SMD 0.35; -0.01 to 0.71) or long-term effects (SMD 0.20; -0.26 to 0.66) were found on pressure pain threshold (see Appendix D).

Among the studies measuring pain with VAS scale, subgroup analysis of pain scores was performed for the three most common diagnoses, which included myofascial pain or musculoskeletal trigger points syndrome, lateral epicondylitis, and temporomandibular joint pain (Figure 3). The subgroup differences were not significant at the end of intervention and during the follow up period (p>0.05). The overall effect of pain in the short-term moderately favored laser acupuncture (SMD -0.49; -0.79 to -0.18). Effects calculated from long-term follow-up almost doubled and suggested a strong effect of pain in favor of laser acupuncture (SMD -0.95; -1.55 to -0.35).

3.4.1.1 Myofascial pain/ musculoskeletal trigger points

Among studies investigating the effectiveness of laser acupuncture for myofascial pain or musculoskeletal trigger points, only six out of thirteen

showed favorable effects at the end of intervention [61, 63, 64, 66, 67, 77]. During the follow up period, four out of six studies demonstrated a positive effect in favor laser acupuncture [39, 59, 63, 77]. Those studies showing no significant effect of laser acupuncture were mostly associated with inadequate reporting of laser parameters [34, 45, 50, 52, 58, 69]. The overall effect of laser acupuncture on pain was positive with a moderate effect at short-term (SMD -0.49; -0.83 to -0.16) and a strong effect at long-term (SMD -0.95; -1.68 to -0.23).

3.4.1.2 Lateral epicondylitis

Two studies examined the effect of laser acupuncture on lateral epicondylitis and showed conflicting results [40, 51]. The overall effects did not suggest any favorable result of laser acupuncture at any time point. The study by Emanet et al [40] reported a positive conclusion during the follow up period yet the effect was not significant (SMD -0.42; -1.00 to 0.16). Again, the laser parameters employed in this study were unclear and incomplete, thus it is not possible to estimate whether or not the dosage was appropriate.

3.4.1.3 Temporomandibular joint pain

Two studies [33, 36] compared laser acupuncture with placebo in treating temporomandibular joint pain at the end of intervention. Results were mixed: one was positive [33], and the other one was inconclusive [36]. The latter study involved two laser acupuncture groups with different dosage applied. The group which received higher dosage showed a better effect of laser acupuncture compared with the lower dosage group; however, neither of them

have a significant effect of pain. During the follow up period, only one study

[42] provided data hence outcome effect was not estimated.

A. Pain measured at the end of intervention

Study or Subgroup	Mean	Laser SD	Total	Mean	Placebo SD	Total	Weight	Std.Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
i. Myofascial pa	in/ muscu	loskeletal	trigger p	oint	-				
Kannan 2012	2.66	1.23	15	2.18	0.7058	30	5.1%	0.52 [-0.11, 1.15]	
Carrasco 2009 (1)	6.73	1.65	10	6.75	1.49	10	4.2%	-0.01 [-0.89, 0.86]	+
Carrasco 2009 (2)	6.4	2.32	10	6.8	1.74	10	4.2%	-0.19 [-1.07, 0.69]	
Carrasco 2009 (3)	7.04	1.72	10	5.97	1.6	10	4.2%	0.62 [-0.29, 1.52]	
Dundar 2007	3.2	2.5	32	3.2	2.3	32	5.6%	0.00 [-0.49, 0.49]	
Matsutani 2007	4.7	2.9	10	4.6	2.0	10	4.2%	0.04 [-0.84, 0.92]	
Kiralp 2006	2.18	1.63	23	2.77	1.57	20	5.2%	-0.36 [-0.97, 0.24]	
Altan 2005	4.13	0.58	23	3.92	0.42	25	5.3%	0.41 [-0.16, 0.98]	
Ceylan 2004	34.54	23.5	19	54.96	25.89	20	5.0%	-0.81 [-1.46, -0.15]	
Ilbuldu 2004 (4)	2.05	1.43	20	3.65	2.03	20	5.0%	-0.89 [-1.55, -0.24]	
Gur 2004	3.11	2.29	28	5.79	3.12	26	5.3%	-0.97 [-1.54, -0.40]	
Ilbuldu 2004 (5)	2.05	1.43	20	3.71	2.33	20	5.0%	-0.84 [-1.49, -0.19]	
Hakguder 2003	3.41	2.0	31	5.77	2.0	31	5.4%	-1.17 [-1.71, -0.62]	_ —
Gur 2002	1.27	0.76	20	2.44	0.98	20	4.9%	-1.31 [-2.00, -0.62]	
Chen 1997 (6)	1.94	1.87	9	3.25	1.32	3	2.9%	-0.68 [-2.03, 0.67]	
Chen 1997 (7)	0.83	1.29	7	3.25	1.32	2	1.9%	-1.66 [-3.54, 0.21]	
Ceccherelli 1989	9.46	13.17	13	37.42	16.58	14	4.1%	-1.80 [-2.72, -0.89]	I
Subtotal (95% CI)			300			303	77.7%	-0.49 [-0.83, -0.16]	•
Heterogeneity: Tau ² =	0.34; Chi ²	s = 59.18, c	f = 16 (P)	< 0.00001)	; $I^2 = 73\%$				
Test for overall effect:	Z = 2.87 (P = 0.004)						
ii. Lateral epicor	ndylitis							(
Emanet 2010	1.13	0.94	23	0.83	0.88	24	5.3%	0.32 [-0.25, 0.90]	+
Lam 2007	3.05	1.77	21	5.39	2.12	18	4.9%	-1.18 [-1.87, -0.49]	
Subtotal (95% CI)			44			42	10.2%	-0.42 [-1.89, 1.06]	
Heterogeneity: Tau ² = Test for overall effect:	1.03; Chi ²	P = 10.84, c P = 0.58	f = 1 (P = 1)	0.0010); I	² = 91%				
rest for overall effect.	2 - 0.55 (1 = 0.50)							
ii. Temporoman	dibular jo	int pain							
Ferreira 2013	0.05	0.22	20	2.75	2.71	20	4.9%	-1.38 [-2.07, -0.68]	_
Sattayut 2012 (8)	4.5	2.58	10	5.0	3.38	5	3.6%	-0.17 [-1.24, 0.91]	
Sattayut 2012 (9)	6.1	2.29	10	5.0	3.38	5	3.6%	0.39 [-0.70, 1.47]	
Subtotal (95% CI)			40			30	12.0%	-0.45 [-1.57, 0.67]	
Heterogeneity: Tau ² =	0.74; Chi ²	$^{2} = 8.43, df$	r = 2 (P = 0)	0.01); I ² = 1	76%				
Test for overall effect:	Z = 0.79 (P = 0.43)					1		
Total (95% CI)			384			375	100.0%	-0.49 [-0.79, -0.18]	. ◆
Heterogeneity: Tau2 =	0.37; Chi2	e = 79.89, d	f = 21 (P)	< 0.00001)	; I ² = 74%				-4 -2 0 2 4
Test for overall effect:	Z = 3.12 (P = 0.002)	,					
Test for subgroup diffe	erences: C	hi ² = 0.01,	df = 2 (P = 2)	= 0.99), I ²	= 0%				Favours laser Favours control

(6) Pulsed laser; placebo group data divided; (7) Continuous laser; placebo group data divided;
(8) High energy laser; placebo group data divided; (9) Low energy laser; placebo group data divided

B. Pain measured during the follow-up period (6 to 26 wks)

Study or Subgroup	Mean	Laser SD	Total	Mean	Placebo SD	Total	Weight	Std.Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
i. Myofascial pa	in/ muscu	loskeletal t	rigger poi	int					
Rayegani 2011 (1)	20.5	4.1231	17	30.7	3.2	16	7.8%	-2.69 [-3.66, -1.71]	_ —
Rayegani 2011 (2)	20.5	4.1231	17	40.7	4.0	16	6.4%	-4.85 [-6.27, -3.43]	
Carrasco 2009 (3)	7.14	2.68	10	6.75	2.45	10	8.1%	0.15 [-0.73, 1.02]	_ + _
Carrasco 2009 (4)	5.67	2.99	10	5.4	3.06	10	8.1%	0.09 [-0.79, 0.96]	_ _
Carrasco 2009 (5)	6.91	2.24	10	4.63	2.1	10	7.9%	1.01 [0.06, 1.95]	
Altan 2005	3.17	0.58	23	3.8	0.51	25	8.9%	-1.14 [-1.75, -0.52]	
Gur 2004	4.18	2.65	28	6.29	3.52	26	9.1%	-0.67 [-1.22, -0.12]	
Ilbuldu 2004 (6)	2.12	1.9	20	2.59	2.18	20	8.9%	-0.23 [-0.85, 0.40]	
Ilbuldu 2004 (7)	2.12	1.9	20	2.89	2.63	20	8.9%	-0.33 [-0.95, 0.30]	
Ceccherelli 1989	8.46	10.76	13	35.57	18.28	14	8.1%	-1.74 [-2.64, -0.83]	_
Subtotal (95% CI)			168			167	82.4%	-0.95 [-1.68, -0.23]	•
Heterogeneity: Tau2 =	1.18; Chi2	= 78.58, df	= 9 (P < 0)).00001); I	² = 89%				
Test for overall effect:	Z = 2.58 (P = 0.01)							
ii. Lateral epicon	dylitis								
Emanet 2010	0.29	0.47	23	0.57	0.79	24	9.0%	-0.42 [-1.00, 0.16]	
Lam 2007	1.48	1.36	21	4.28	2.11	18	8.6%	-1.57 [-2.30, -0.84]	
Subtotal (95% CI)			44			42	17.6%	-0.97 [-2.10, 0.15]	-
Heterogeneity: Tau ² =	0.55; Chi2	= 5.87, df =	= 1 (P = 0.)	02); $I^2 = 82$	3%				
Test for overall effect:	Z = 1.70 (P = 0.09)							
ii. Temporomano	dibular joi	int pain							
Katsoulis 2010	3.25	2.248	7	2.65	0.7362	4		Not estimable	
Subtotal (95% CI)			0			0		Not estimable	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Not applie	cable							
Total (95% CI)			212			209	100.0%	-0.95 [-1.55, -0.35]	◆
Heterogeneity: Tau ² =	0.95; Chi ²	= 84.78, df	= 11 (P <	0.00001):	$I^2 = 87\%$. ,	
Test for overall effect:	Z = 3.09 (P = 0.002)	(,,					-4 -2 0 2 4
Test for subgroup diffe	erences: Cl	$hi^2 = 0.00$, d	f = 1 (P =	$(0.97), I^2 =$	0%				Favours laser Favours control
			(* -			.,			

For the study of p interfaces the "5000 μ = 1 (1 ± 0.07), 1 ± 0.07 (1) v subscords (2) v splacebo; (3) Laser dose: 105J/cm²; (4) Laser dose: 25J/cm²; (5) Laser dose: 60J/cm²; (6) vs dry needling; (7) vs placebo

Figure 3. Forest plot comparison of different diagnoses

3.4.2 Functional outcome

Most of the studies assessed functional improvement using a wide range of scales. Each study could involve multiple results from different functional scales; hence an estimated overall effect size across the studies was not possible. Studies were more likely to report positive effects during the follow up period rather than at the end of the intervention. Only two out of eleven studies [51, 63] showed a positive short-term effect on functional, while six out of eight studies [39, 40, 51, 57, 62, 63] resulted positive at long-term (see appendix D).

Two studies [40, 51] investigated lateral epicondylitis, the pooled effect sizes of handgrip strength were strong in favor of laser acupuncture at both time points, but only significant during the follow up period (MD 5.16; 1.14 to 9.19). In regard to the small number of studies analyzed, it is important not to overlook this significant pooled effect (see Appendix D).

Sensitivity analyses were conducted to explore whether or not the main findings above were affected by any studies with high risk of bias in certain domain. We exclude studies separately with high risk of attrition bias, selection bias and performance bias. No significant difference was found after excluding high-risk studies.

3.5 Appropriateness of laser acupuncture treatment

All included studies were analyzed for the appropriateness of laser parameters used. They were grouped separately into those reporting positive effects and those reporting inconclusive or no effects from trial authors, and displayed along with the parameters used in Tables 2 and 3 respectively. It is notable that four studies [52, 59, 74, 80] reported no significant difference between groups; in contrast their calculated effect sizes from RevMan analysis favored laser acupuncture.

Almost 70% of those reporting positive results reported and fulfilled the clinically appropriate dosage suggested by Baxter et al [17]. Their systematic review stated that laser acupuncture should irradiate at a minimum average output power of 10 mW and apply an energy dose of at least 0.5 J per point.

In contrast, studies reporting inconclusive or no effect of laser acupuncture either failed to describe the parameters comprehensively or applied an inappropriate dosage.

Half of these negative studies are deemed of low methodological quality, with PEDro scores less than 6.

Storday	Average output	Power density	Dose	DEDro				
Siuay	mW	mW/cm ²	J	FEDIO				
Studies in	cluded in meta-and	alysis						
Chow RT [62]	300	670	9	10				
Chow RT [57]	300	670	9	10				
Glazov G [41]	10	50	0.2	9				
Yurtkuran M [54]	4	10	0.48	8				
Armagan O [56]	50	75	2	8				
Gur A [63]	11.2	11.2	2	8				
Ceccherelli F [77]	5	?	0.1 or 1	8				
Shen X [47]	36 & 200	?	?	7				
Oz S [43]*	300	1071	3	7				
Lam L [51]	25	208	0.275	7				
Shirani AM [48]	17.3 or 1.76	17.3 or 1.76	7.2	6				
Hakguder A [66]	5	25.5	0.98	6				
Gur A [67]	11.2	11.2	2	6				
Ferreira LA [33]	50	1250	4.5	6				
Sattayut S [36]	60 or 300	333 or 1666	4 or 20	6				
Zhao L [44]	36 & 200	36 & 100	163.2	6				
Rayegani SM [39]*	1100	?	?	6				
Emanet SK [40]	?	?	?	5				
Lin ML [35]	40	50	12	4				
Kannan P [34]*	2.4	2.4	0.074	4				
Ceylan Y [61]	8	40	1.44	3				
Chen SM [69]	15 or 1.5	?	18 or 1.8	2				
Studies not included in meta-analysis								
Al-Shenqiti A [65]	100	800	4	8				
Conti PCR[70]	100	?	4	7				
Tam G [60]*	27	135?	3 to 4	6				
Snyder-Mackler L [78]	0.95	0.95	0.02	6				
Laaskso EL [71]	10 or 25	278 or 893	1 or 5	5				
Snyder-Mackler L [81]	0.95	0.95	0.014	5				
Logdberg-Andersson M [72]	8	8	0.5 to 1	5				
Wong W [68]	30	107	5.4	5				
Mazzetto MO [53]	70	8750	0.72	4				

Table 2. Studies reporting positive effect of laser acupuncture

* Laser acupuncture compared to other interventions ? Insufficient details for calculating the missing parameters

Study	Average output mW	Power density mW/cm ²	Dose J	PEDro						
Studies included in meta-analysis										
Glazov G [46]	10	50	0.2	9						
Vecchio P [74]	30	429	3	9						
Dundar U [50]	58	58	7	9						
Ilbuldu E [64]*	?	?	2	8						
Altan L [59]	?	?	?	7						
Carrasco TG [45]	50 or 60 or 70	?	?	6						
Lundeberg T [80]	1.56 or 0.07	?	0.09 or 0.004	5						
Lee JH [38]	450	6428	27 or 54 or 135	5						
Kiralp MZ [58]*	?	?	?	5						
Matsutani LA [52]	30	?	?	4						
Katsoulis J [42]	40	1000	1.6 to 2.4	2						
Stud	lies not included in	meta-analysis								
Skorupska E [37]*	0 to 400	?	?	8						
Haker E [75]	12	?	0.36	7						
Papadopoulos ES [73]	50	400	3	6						
Haker E [76]	?	?	0.6	5						
Shen X [49]	?	?	?	5						
Waylonis GW [79]	1	?	0.02	4						
Aigner N [55]	5	5	0.08	4						

Table 3. Studies reporting inconclusive or no effect of laser acupuncture

* Laser acupuncture compared to other interventions

? Insufficient details for calculating the missing parameters

3.5.1 Application site

The most common site of application for laser acupuncture was trigger points (39%). Subgrouping to perform another analysis to examine any difference of the effects on pain with different application sites was performed. There was no significant subgroup difference at the end of intervention and during the follow up period (p>0.05). However, only the application at trigger points showed a positive effect in favor of laser acupuncture; this was not seen with application at acupuncture points nor tender points.

(see appendix E).

3.6 Risk of bias across studies

Considering the heterogeneity of the studies, funnel plots were drawn according to different outcome measures. Visual assessment of funnel plots did not show any considerable asymmetry, indicating a comprehensive coverage of publications. Hence the publication and related bias were low in this review.

4 Discussion

This systematic review investigated the clinical effectiveness of laser acupuncture, focusing on the effects on pain and functional outcomes in treating musculoskeletal disorders. The current findings strengthen the evidence from a previous systematic review [17]. The key findings in the current review support the continued use of laser acupuncture for treating musculoskeletal pain. Results from the meta-analysis suggest that the effect of laser acupuncture on pain and functional outcomes tended to be more significant during long-term follow up periods rather than at the end of intervention. These results indicate laser acupuncture may be effective in treating musculoskeletal pain and improving function, where an adequate dosage is used, and that the effects are long lasting, as evidenced by the increase in effect sizes demonstrated in the meta-analysis at 6 to 26 weeks post randomization. It is important to stress that results from the included studies were dependent upon the appropriateness of laser parameters used. Higher methodology quality studies, which also properly reported dosage, showed a more consistent result with a favorable effect of laser acupuncture in terms of both pain and functional outcomes.

To the best of our knowledge, there has been no further evaluation of the latest literature on laser acupuncture since a previous systematic review, Baxter et al [17]. This concluded that laser acupuncture was an effective treatment for myofascial pain with a moderate level of evidence from 18 RCTs that were published before 2005. A massive growth in publications in recent years has resulted in further evidence on the effectiveness of laser acupuncture. Not surprisingly, a large number of clinical trials

were identified from the current literature, most of which were published during the last decade. The total number of eligible studies included in this systematic review was more than twofold that of the last review [17].

4.1 **Primary outcomes**

The majority of studies reported positive findings for the effects of laser acupuncture for both pain and functional outcomes; in contrast, one-third of reviewed studies reported no benefit. Given the heterogeneity of included studies, meta-analyses were performed using subgroups of studies according to their study populations and followup time point. The three most common diagnoses were analyzed separately in order to have a minimum of two studies for each analysis. Sensitivity analyses excluded studies comparing laser acupuncture with other active treatments, as the primary scope of this review was whether or not laser acupuncture is effective, rather than its comparative effectiveness compared to other active treatments.

4.1.1 Myofascial pain/musculoskeletal trigger points

Ten studies showed positive effects of laser acupuncture for myofascial or trigger points pain: four studies [34, 50, 52, 58] had an individual effect size that did not favor the laser group. Coincidently, all of these studies did not include follow up assessments to investigate possible long-term effects. Given the increased effect sizes at follow up as highlighted here, it is possible that these researchers may have overlooked a potential effect in the longer term: another study [59] found positive effects only during the follow-up period, but not at the end of intervention.

4.1.2 Lateral epicondylitis

Emanet et al [40] showed more favorable effects in the short-term than in the long term. However the individual effect size (for pain) from the forest plot crossed zero at long-term time point, indicating a lack of statistical significance. Although the pooled effects with another study [51] did not suggest any favorable effects for lateral epicondylitis using laser acupuncture to reduce pain, results for hand grip assessment yielded some interesting findings. Both studies investigated the effectiveness of laser acupuncture by evaluating pain and functional outcomes, and appeared to be more homogeneous, so mean difference was used as the pooled effect result. Again, the estimated effect size for functional outcome (handgrip) favored laser acupuncture especially during follow-up period. However, it should be stressed that this analysis is based on two studies examining laser acupuncture, and the result may not be generalized to other conditions.

4.1.3 Temporomandibular joint pain

Results of the three studies reviewed were mixed, and only one of these reported outcomes at long-term. At short-term, the effect was inconclusive. No further analysis was done to compare the effects at different time points.

4.2 Increased long term follow-up effects

Findings among the three different diagnoses showed a consistent trend of better painrelieving effects during the follow-up period. Pooled effect sizes were doubled during the follow-up period compared to those at the end of intervention. This phenomenon could account for the conflicting results from some of the negative studies. Without taking into consideration the possibility of delayed or long-lasting effects, their

conclusions of lack of effectiveness may be flawed. Results from our analyses included both short-term and long-term follow up data, and separating these data into similar time points to allow more comparable subgroup analyses.

4.3 Weaknesses of negative studies

A number of shortcomings were observed in those five studies [38, 42, 46, 50, 74] that found no significant benefit of laser acupuncture. One study [74] was found to have a mismatch between the calculated individual effect and the authors' conclusion. The effect size (expressed in standard mean difference) for pain favored laser acupuncture, but Vecchio et al reported no benefit. This apparent error was also highlighted by another systematic review [83] which suggested a flaw in their analysis. In another study on back pain, Glazov and colleagues performed a post hoc analysis [41] on their data which challenged the results of their original study [46]. They suggested that the randomization failed to create comparable groups and resulted in an imbalanced baseline characteristic that responded differently to the intervention. The PEDro quality rating of the study by Katsoulis et al [42] was exceptionally low (2 out of 10 PEDro score) representing a major performance bias. The remaining two studies [38, 50] applied laser acupuncture around the neck and upper trapezius muscles area. The parameters selected in both studies were similar to the other two positive studies [57, 66] targeting neck region, but the authors' conclusions were only based upon results measured at short term. The consequences of these apparent methodological flaws may be an underestimation of the true effect of laser acupuncture from these studies.
4.4 Clinical relevance of laser parameter

Variation in application of the laser acupuncture intervention could very likely account for a certain degree of difference in outcomes. Such clinical heterogeneity is an issue to be considered when evaluating the effectiveness of a therapy. Laser acupuncture has been suggested to be a dosage-dependent modality [16, 21]; these sources suggest that the energy delivered to the target point by laser acupuncture has to reach a threshold in order to produce a desired effect. Thus the dosages taken from the included studies may explain the observed difference in outcomes. Characteristics of the laser beam and the application site of laser would directly affect the actual energy received by the target point [10, 14]. While detailed discussion of the potential mechanisms of laser acupuncture is beyond the scope of this review, the importance of accurate selecting and reporting of parameters is paramount to understand and interpret the results of individual studies.

Unfortunately, the quality of reporting of parameters and dosages varied among the studies included in this review: five studies neither stated the power density nor the irradiated area [40, 58, 59, 64, 75]. This brings into question whether or not an appropriate dosage was applied. Reporting of these parameters is essential as recommended by the WALT guideline [28] so as to determine the appropriateness of the dosage. In addition, unclear reporting of parameters was more commonly seen among studies with negative or inconclusive results (Table 2 and 3).

It is challenging to draw meaningful conclusions concerning an effective dosage window from these studies due to the variation in the application of laser acupuncture, and the wide dosage range employed. This systematic review covered different

musculoskeletal conditions and each condition may have required a distinct parameter and dosage regime for clinical effectiveness. Site of application is a key factor in selection of parameters, given that there may be a specific acupuncture point for different diagnosis. In this review, the point of application was not limited to acupuncture points, but also included trigger and tender point applications, since there exists a wide range of evidence suggesting overlapping with acupuncture points [84-86]. It seems unwise to exclude those studies using trigger points or tender points even though the existence of these specific points is still controversial [85, 87, 88]. A subgroup analysis based on different application site was performed however no obvious difference could be seen between groups. Application on acupuncture points, trigger points, and tender points appeared equally effective.

4.5 Quality of included studies in our review

The number and proportion of trials rated as high methodological quality doubled in this review, compared to a previous review [17]. Over two-thirds of the 49 included RCTs in this review were high quality studies, while the previous review had less than one-third of the studies categorized as high quality. Considering this growing number of higher quality studies in this body of literature, the findings of this systematic review were expected to be more robust.

There was an apparent relationship between levels of methodological quality and reported results. Two thirds of high quality (PEDro \geq 6) studies reported beneficial effects of laser acupuncture, which is similar to the proportion for all included studies. Lower quality studies appeared to show more conflicting results, with equal numbers of studies reporting benefits (n=9) or no benefit (n=9). This methodological

heterogeneity should be considered when assessing the overall pooled effect in the meta-analysis. However, it should be stressed that the sensitivity analyses, excluding those studies with high risk of bias in various domains, failed to show any differences in overall findings that conflicted with the effects estimated.

4.6 Limitation

The limitations of this review include potential bias from the heterogeneity and methodological quality of the included studies. These problems were anticipated in designing the methodology of this review, and as a result different subgroup analyses were initiated to address this limitation. Another limitation of this review is that some of the studies have high risk of bias in some of the domains; however the sensitivity analyses suggested no major effects upon the results. Lastly, even though non-English publications were excluded, the funnel plot assessment did not detect any potential publication bias. Although this kind of visual assessment is considered prone to error [89], it is one of the most common methods adopted for detecting publication bias owing to its simplicity [31]. Given the large number of included studies in this meta-analysis, using funnel plot could be capable to detect possible bias.

4.7 Recommendations

Using the GRADE system [90], the strength of recommendation is not only based on the quality of the evidence, but also other factors which should not outweigh the benefit of the treatment. Using pain and functional outcomes to assess the clinical effectiveness of laser acupuncture, most of the included studies are high quality RCTs

and accounted for high quality of evidence. Yet the quality of evidence was downgraded (-2) due to inconsistency and imprecision of the results for both pain and functional outcome measures [32]. Owing to the possible dose response for painrelieving effects, and a large effect from functional outcome, the quality of evidence was upgraded (+1). As a result, there is a moderate quality of evidence supporting the effectiveness of laser acupuncture for the treatment of pain and functional outcome in musculoskeletal disorders. It suggests a moderate confidence that the estimated effect from meta-analysis is likely to be close to the true effect. Serious adverse events have been seldom reported for laser acupuncture given its non-invasive nature; this is in keeping with reports in all the included studies. Based upon this systematic review, strong recommendation for laser acupuncture can be made for its effectiveness for improving musculoskeletal pain and functional outcomes at 6 to 26 weeks.

5 Conclusion

Overall, the evidence is sufficiently robust to determine the effectiveness of laser acupuncture at long-term for musculoskeletal conditions. Trials reporting negative or inconclusive results, neither provided enough evaluation nor follow-up to the participant to a sufficient time point. These trials did not allow complete evaluation for pain and functional outcomes and their conclusions only based upon results measured at short-term. For these, it highlights the importance of providing a sufficient course of treatment to allow laser acupuncture to work effectively in the clinical situation.

Although the evidence does not allow us to determine an effective dosage window for laser acupuncture, the possible range of applications was largely adjusted and designed to fit specific musculoskeletal conditions. To foster the development of clinical guidelines, future research should carefully define the study population and provide rationale for the parameters chosen. This would not only facilitate pooling of data for meta-analysis, but also more precise analysis for a specific condition or application site. With the improving quality of evidence over time, more robust recommendations for clinical application of laser acupuncture can be anticipated in the future.

6 Reference

 Burden of musculoskeletal diseases at the start of the millennium: report of a WHO scientific group. Geneva: World Health Organization; 2003.

Vos T, Aboyans V, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, et al.
 Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries
 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet.
 2012;380(9859):2163.

 Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646-56.

Brooks PM. The burden of musculoskeletal disease - a global perspective.Clin Rheumatol. 2006;25(6):778-81.

 Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain.
 2006;10(4):287-333.

6. Rickards LD. Therapeutic needling in osteopathic practice: an evidenceinformed perspective. Int J Osteopath Med. 2009;12(1):2-13.

7. Su D, Li L. Trends in the use of complementary and alternative medicine in the United States: 2002-2007. J Health Care Poor Underserved. 2011;22(1):296-310.

8. Xue CC, Zhang AL, Lin V, Da Costa C, Story DF. Complementary and alternative medicine use in Australia: a national population-based survey. J Altern Complement Med. 2007 Jul-Aug;13(6):643-50.

9. Han J-S, Ho Y-S. Global trends and performances of acupuncture research. Neurosci Biobehav Rev. 2011;35(3):680-7.

Whittaker P. Laser acupuncture: past, present, and future. Lasers Med Sci.
 2004;19(2):69-80.

Litscher G. High-tech laser acupuncture is Chinese medicine. Med Acupunct.
 2008;20(4):245-54.

12. Plog FMW. Biophysical application of the laser beam. Lasers Surg Med.1980;1:21.

13. Zhou YC. An advanced clinical trial with laser acupuncture anesthesia for minor operations in the oro-maxillofacial region. Lasers Surg Med. 1984;4(3):297.

14. Chang WD, Wu JH, Yang WJ, Jiang JA. Therapeutic effects of low-level laser on lateral epicondylitis from differential interventions of Chinese-Western medicine: systematic review. Photomed Laser Surg. 2010;28(3):327-36.

 Peplow PV, Chung TY, Baxter GD. Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg.
 2010;28 Suppl 1(S1):S3-S-40.

16. Litscher G, Opitz G. Technical parameters for laser acupuncture to elicit peripheral and central effects: state-of-the-art and short guidelines based on results from the Medical University of Graz, the German academy of acupuncture, and the scientific literature. Evid Based Complement Alternat Med. 2012;2012:697096.

17. Baxter GD, Bleakley C, McDonough S. Clinical effectiveness of laser acupuncture: a systematic review. J Acupunct Meridian Stud. 2008;1(2):65.

WALT. Recommended treatment doses for low level laser therapy - laser class
 3B, 904 nm GaAs lasers. [Internet]: World Association for Laser Therapy; 2010
 [updated 2010 Apr; cited Feb 13, 2013]; Available from: http://waltza.co.za/wp-content/uploads/2012/08/Dose_table_904nm_for_Low_Level_Laser_Therapy_WAL
 T-2010.pdf.

WALT. Recommended treatment doses for low level laser therapy - laser class
 B, 780 - 860nm GaAlAs lasers. [Internet]: World Association for Laser Therapy;
 2010 [updated 2010 Apr; cited 2013 Feb 13]; Available from: http://waltza.co.za/wp-content/uploads/2012/08/Dose_table_780-

860nm_for_Low_Level_Laser_Therapy_WALT-2010.pdf.

20. Chow RT, Johnson MI, Lopes-Martins RAB, Bjordal JM. Efficacy of lowlevel laser therapy in the management of neck pain: a systematic review and metaanalysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374(9705):1897-908.

David Baxter G. Laser acupuncture: effectiveness depends upon dosage.
 Acupunct Med. 2009;27(3):92.

22. Jang H, Lee H. Meta-analysis of pain relief effects by laser irradiation on joint areas. Photomed Laser Surg. 2012;30(8):405-17.

23. Lorenzini L, Giuliani A, Giardino L, Calzà L. Laser acupuncture for acute inflammatory, visceral and neuropathic pain relief: an experimental study in the laboratory rat. Res Vet Sci. 2010;88(1):159-65.

24. Erthal V, da Silva MD, Cidral-Filho FJ, Santos AR, Nohama P. ST36 laser acupuncture reduces pain-related behavior in rats: involvement of the opioidergic and serotonergic systems. Lasers Med Sci. 2013.

25. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):W65-W94.

26. PEDro scale. [Internet]: Physiotherapy Evidence Database; 1999 [updated 1999 June 21; cited 2012 Feb 13]; Available from: http://www.pedro.org.au/wp-content/uploads/PEDro_scale.pdf.

27. Shuster JJ, Green S. Review: Cochrane handbook for systematic reviews for interventions, version 5.1.0. The Cochrane Collaboration; 2011 [updated March 2011]; Available from: http://www.cochrane-handbook.org/.

28. WALT. Consensus agreement on the design and conduct of clinical studies with low level laser therapy and light therapy for musculoskeletal pain and disorders. [Internet]: World Association for Laser Therapy; 2010 [updated 2004 Nov; cited Apr 1, 2013]; Available from: http://waltza.co.za/wp-

content/uploads/2012/08/walt_standard_for_conduct_of_randomized_controlled_trial s.pdf.

29. Review manager (RevMan) [Computer program]. Version 5.2. Copenhagen:The Nordic Cochrane Centre, The Cochrane Collaboration, 2012.

30. Cohen J. Statistical power analysis for the behavioral sciencies: Routledge;1988.

31. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-34.

32. Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. Grade guidelines: 3. rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401-

6.

33. Ferreira LA. Laser acupuncture in patients with temporomandibular dysfunction: a randomized controlled trial. Lasers Med Sci. 2013:1-10.

34. Kannan P. Management of myofascial pain of upper trapezius: a three group comparison study. Glob J Health Sci. [Clinical Trial

Comparative Study]. 2012 Sep;4(5):46-52.

35. Lin ML, Wu HC, Hsieh YH, Su CT, Shih YS, Lin CW, et al. Evaluation of the effect of laser acupuncture and cupping with ryodoraku and visual analog scale on low back pain. Evid Based Complement Alternat Med. 2012;2012.

36. Sattayut S, Bradley P. A study of influence of low intensity laser therapy on painful temporomandibular disorder patients. Laser Ther. 2012;21(3):183-92.

37. Skorupska E, Lisinski P, Samborski W. The effectiveness of the conservative versus myofascial pain physiotherapy in tennis elbow patients: double-blind randomized trial of 80 patients. J Musculoskelet Pain. 2012;20(1):41-50.

38. Lee JH, Han JT. The dose-dependent effect of an 830-nm, 450-mW low-level laser therapy on the myofacial trigger point of the upper trapezius muscle: a randomized, double-blinded, clinical trial. J Phys Ther Sci. 2011;23(6):933-5.

39. Rayegani SM, Bahrami MH, Samadi B, Sedighipour L, Mokhtarirad MR, Eliaspoor D. Comparison of the effects of low energy laser and ultrasound in treatment of shoulder myofascial pain syndrome: a randomized single-blinded clinical trial. Eur J Phys Rehabil Med. [Article]. 2011 Sep;47(3):381-90.

40. Emanet SK, Altan LI, Yurtkuran M. Investigation of the effect of gaas laser therapy on lateral epicondylitis. Photomed Laser Surg. 2010;28(3):397-403.

41. Glazov G. The influence of baseline characteristics on response to a laser acupuncture intervention: an exploratory analysis. Acupunct Med. 2010 Mar;28(1):6-

11.

42. Katsoulis J, Ausfeld-Hafter B, Windecker-Gétaz I, Katsoulis K, Blagojevic N,
Mericske-Stern R. Laser acupuncture for myofascial pain of the masticatory muscles.
A controlled pilot study. Schweiz Monatsschr Zahnmed. 2010;120(3):213-25.

43. Öz S, Gökçen-Röhlig B, Saruhanoglu A, Tuncer EB. Management of myofascial pain: low-level laser therapy versus occlusal splints. J Craniofac Surg. 2010;21(6):1722-8.

44. Zhao L, Shen X, Cheng K, Deng H, Ding G, Tan M, et al. Validating a nonacupoint sham control for laser treatment of knee osteoarthritis. Photomed Laser Surg. 2010 Jun;28(3):351-6.

45. Carrasco TG, Guerisoli LD, Guerisoli DM, Mazzetto MO. Evaluation of low intensity laser therapy in myofascial pain syndrome. Cranio. 2009;27(4):243-7.

46. Glazov G, Schattner P, Lopez D, Shandley K. Laser acupuncture for chronic non-specific low back pain: a controlled clinical trial. Acupunct Med. 2009 Sep;27(3):94-100.

47. Shen X, Zhao L, Ding G, Tan M, Gao J, Wang L, et al. Effect of combined laser acupuncture on knee osteoarthritis: a pilot study. Lasers Med Sci. 2009;24(2):129-36.

48. Shirani AM, Gutknecht N, Taghizadeh M, Mir M. Low-level laser therapy and myofacial pain dysfunction syndrome: a randomized controlled clinical trial. Lasers Med Sci. 2009;24(5):715-20.

49. Shen XY, Ding GH, Wu F, Wang LZ, Zhao L, Wang M, et al. Effects of 650 nm - 10.6 μm combined laser acupuncture-moxibustion on knee osteoarthritis: a randomized, double-blinded and placebo-controlled clinical trial. J Acupunct Tuina Sci. 2008;6(5):315-7.

50. Dundar U, Evcik D, Samli F, Pusak H, Kavuncu V. The effect of gallium arsenide aluminum laser therapy in the management of cervical myofascial pain syndrome: a double blind, placebo-controlled study. Clin Rheumatol. 2007;26(6):930-

4.

51. Lam LKY, Cheing GLY. Effects of 904-nm low-level laser therapy in the management of lateral epicondylitis: a randomized controlled trial. Photomed Laser Surg. 2007;25(2):65-71.

52. Matsutani LA, Marques AP, Ferreira EAG, Assumpção A, Lage LV, Casarotto RA, et al. Effectiveness of muscle stretching exercises with and without laser therapy at tender points for patients with fibromyalgia. Clin Exp Rheumatol. 2007;25(3):410-5.

53. Mazzetto MO, Carrasco TG, Bidinelo EF, Andrade Pizzo RC, Mazzetto RG. Low intensity laser application in temporomandibular disorders: a phase I doubleblind study. Cranio [serial on the Internet]. 2007; (3): Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/304/CN-

00611304/frame.html.

54. Yurtkuran M, Konur S, Ozcakir S, Bingol U. Laser acupuncture in knee osteoarthritis: a double-blind, randomized controlled study. Photomed Laser Surg. 2007;25(1):14-20.

55. Aigner N, Fialka C, Radda C, Vecsei V. Adjuvant laser acupuncture in the treatment of whiplash injuries: a prospective, randomized placebo-controlled trial. Wien Klin Wochenschr. 2006 Mar;118(3-4):95-9.

56. Armagan O, Tascioglu F, Ekim A, Oner C. Long-term efficacy of low level
laser therapy in women with fibromyalgia: a placebo-controlled study. J Back
Musculoskelet Rehabil. 2006;19(4):135-40.

57. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain. 2006;124(1-2):201-10.

58. Kiralp MZ, Ari H, Karabekir I, Dursun H. Comparison of low intensity laser therapy and trigger point injection in the management of myofascial pain syndrome. Pain Clinic. 2006;18(1):63-6.

59. Altan L, Bingöl U, Aykaç M, Yurtkuran M. Investigation of the effect of GaAs laser therapy on cervical myofascial pain syndrome. Rheumatol Int [serial on the Internet]. 2005; (1): Available from:

http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/915/CN-00510915/frame.html.

60. Tam G. Effects of LLLT on the periarthritis of the shoulder: a clinical stydy on differents with, corticosteriod injections or a wait-and-see policy. Progress in Biomedical Optics and Imaging - Proceedings of SPIE; 2005; Florence.

61. Ceylan Y, Hizmetli S, Siliğ Y. The effects of infrared laser and medical treatments on pain and serotonin degradation products in patients with myofascial pain syndrome. A controlled trial. Rheumatol Int [serial on the Internet]. 2004; (5): Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/365/CN-00502365/frame.html

http://link.springer.com/article/10.1007%2Fs00296-003-0348-6.

 Chow RT, Barnsley L, Heller GZ, Siddall PJ. A pilot study of low-power laser therapy in the management of chronic neck pain. J Musculoskelet Pain.
 2004;12(2):71-81.

63. Gur A, Sarac AJ, Cevik R, Altindag O, Sarac S. Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial. Lasers Surg Med.

2004;35(3):229-35.

64. Ilbuldu E, Cakmak A, Disci R, Aydin R. Comparison of laser, dry needling, and placebo laser treatments in myofascial pain syndrome. Photomed Laser Surg. 2004;22(4):306-11.

Al-Shenqiti A, Oldham J. The use of low level laser therapy (LLLT) in the treatment of trigger points that are associated with rotator cuff tendonitis. Window on the Laser Medicine World; 2003; Bellingham: SPIE-Int Soc Optical Engineering.
Hakgüder A, Birtane M, Gürcan S, Kokino S, Turan FN. Efficacy of low level laser therapy in myofascial pain syndrome: an algometric and thermographic evaluation. Lasers Surg Med [serial on the Internet]. 2003; (5): Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/820/CN-00469820/frame.html.

67. Gür A, Karakoç M, Nas K, Çevik R, Saraç J, Demir E. Efficacy of low power laser therapy in fibromyalgia: a single-blind, placebo-controlled trial. Lasers Med Sci. 2002;17(1):57-61.

68. Wong W, Xiao S, Ip WY, Guo X, editors. Effects of a laser acupuncture therapy on treating pain. Proceedings of SPIE - The International Society for Optical Engineering; 2001; Florence.

69. Chen SM, Lin CP, Kuan TS, Chen JT, Hong CZ. Cold laser therapy on myofascial trigger points. 8th world congress of the international rehabilitation medicine association. 40128 Bologna: Monduzzi Editore; 1997. p. 605-10.

70. Conti PCR. Low level laser therapy in the treatment of temporomandibular disorders (TMD): a double-blind pilot study. Cranio. 1997;15(2):144-9.

 Laakso EL, Richardson C, Cramond T. Pain scores and side effects in response to low level laser therapy (LLLT) for myofascial trigger points. Laser Ther. 1997;9(2):67-72.

72. Lögdberg-Andersson M, Mützell S, Hazel Å. Low level laser therapy (LLLT) of tendinitis and myofascial pains - a randomized, double-blind, controlled study. Laser Ther. 1997;9(2):79-85.

73. Papadopoulos ES, Smith RW, Cawley MID, Mani R. Low-level laser therapy does not aid the management of tennis elbow. Clin Rehabil. 1996;10(1):9-11.

74. Vecchio P, Cave M, King V, Adebajo AO, Smith M, Hazleman BL. A doubleblind-study of the effectiveness of low-level laser treatment of rotator cuff tendinitis. Br J Rheumatol. [Article]. 1993 Aug;32(8):740-2.

75. Haker EHK, Lundeberg TCM. Lateral epicondylalgia - report of noneffective midlaser treatment. Arch Phys Med Rehabil. [Article]. 1991 Nov;72(12):984-8.

76. Haker E, Lundeberg T. Laser treatment applied to acupuncture points in lateral humeral epicondylalgia. A double-blind study. Pain. 1990;43(2):243-7.

77. Ceccherelli F, Altafini L, Lo Castro G, Avila A, Ambrosio F, Giron GP. Diode
laser in cervical myofascial pain: a double-blind study versus placebo. Clin J Pain.
1989;5(4):301-4.

78. Snyder-Mackler L, Barry AJ, Perkins AI, Soucek MD. Effects of helium-neon laser irradiation on skin resistance and pain in patients with trigger points in the neck or back. Phys Ther. 1989;69(5):336-41.

79. Waylonis GW, Wilke S, O'Toole D, Waylonis DA, Waylonis DB. Chronic myofascial pain: management by low-output helium-neon laser therapy. Arch Phys Med Rehabil. 1988;69(12):1017-20.

80. Lundeberg T, Haker E, Thomas M. Effect of laser versus placebo in tennis elbow. Scand J Rehabil Med. 1987;19(3):135-8.

81. Snyder-Mackler L, Bork C, Bourbon B, Trumbore D. Effect of helium-neon laser on musculoskeletal trigger points. Phys Ther. 1986;66(7):1087-90.

 Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713.

83. Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD. Low
level laser treatment of tendinopathy: a systematic review with meta-analysis.
Photomed Laser Surg. 2010;28(1):3-16.

84. Birch S. Trigger point – acupuncture point correlations revisited. J AlternComplement Med. 2003;9(1):91-103.

85. Ahn AC, Colbert AP, Anderson BJ, Martinsen OG, Hammerschlag R, Cina S, et al. Electrical properties of acupuncture points and meridians: a systematic review.
Bioelectromagnetics. 2008 May;29(4):245-56.

86. Melzack R, Stillwell DM, Fox EJ. Trigger points and acupuncture points for pain: correlations and implications. Pain. 1977;3(1):3-23.

87. Wick F, Wick N, Wick MC. Morphological analysis of human acupuncture points through immunohistochemistry. Am J Phys Med Rehabil. 2007;86(1):7-11.

88. Han J-S. Acupuncture analgesia: areas of consensus and controversy. Pain.2011;152(3):S41-S8.

89. Terrin N, Schmid CH, Lau J. In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. J Clin Epidemiol.
2005;58(9):894-901.

90. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.

Appendices

Appendix A – Search strategy

Phase 1	Phase 2	Phase 3
1. acupunc*.mp.	18. exp pain/	29. exp clinical trial/
2. exp acupuncture/	19. exp "wounds and injuries"/	30. clinical trial.mp.
3. acupoint*.mp.	20. disorder.mp.	31. exp research design/
4. exp acupuncture points/	21. musculoskeletal.mp.	32. research design.mp.
5. exp acupuncture therapy/	22. injur*.mp.	33. random allocation/
6. trigger.mp.	23. pain.mp.	34. random*.mp.
7. exp trigger points/	24. exp musculoskeletal diseases/	35. double-blind method/
8. or/1-7	25. tend*.mp.	36. single-blind method/
9. therap*.mp.	26. backache.mp.	37. blind*.mp.
10. treatment.mp.	27. or/18-26	38. placebo*.mp.
11. or/9,10	28. and/17,27	39. placebos/
12. and/8,11		40. or/29-39
13. exp laser therapy, low-level/		41. human/
14. laser*.mp.		
15. LLLT.mp.		42. and/40,41
16. or/13-15		
17. and/12,16		43. and/28,42

Appendix B – Characteristics of the included studies –

extended table

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Ferreira LA	2013	Temporomandibular	40	Laser	Monthly	Pain – VAS	Both groups showed significant
[33]		joint disorder		acupuncture	until	Pain upon palpation	fewer symptoms after Rx.
				(20) vs.	intervention	– VAS	Laser group showed significant
				placebo (20)	completed	Symptoms evolution	faster reduction in pain
							intensity comparing with
							placebo group.
Kannan P	2012	Myofascial pain	45	Ultrasound	End of	Pain – VAS	All groups showed significant
[34]				(15) vs. laser	intervention	Tenderness upon	improvement after Rx. Laser
				(15) vs.		palpation	group had a significant
				ischemic		Movement of	reduction in pain compared to
				compression		cervical spine	other two groups.
				(15)			
Lin ML [35]	2012	Low back pain	60	Laser	After each	Pain – VAS	Both groups showed significant
				acupuncture	session	Ryodoraku value	less pain after Rx but no
				(21) vs.			between group differences.
				placebo (21)			There was a rebound of
							Ryodoraku value in laser group
							but not in placebo group.
Sattayut S	2012	Temporomandibular	30	Low energy	After each	PPT	There were a greater number of
[36]		joint disorder)	density laser	session	Maximum mouth	patient reported recoveries in
				(10) vs. high		opening	laser groups compared to
				energy density		MPQ	placebo group. Laser groups
				laser (10) vs.		Symptom severity	showed a higher PPT and larger
				placebo (10)		index – VAS	EMG amplitude.
		Y				Jaw kinesiology –	
						EMG	

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Skorupska E	2012	Lateral epicondylitis	80	LLLT (40) vs.	End of	Pain – VAS	All groups showed a significant
[37]				ultrasound (40)	intervention;	Grip strength	less pain after Rx. Ultrasound
				(trigger point	12-month	DASH questionnaire	group using trigger point
				application vs.			application showed a more
				anatomical site			significant improvement in grip
				application; 20			strength comparing to other
				in each			three groups.
				subgroup)			
Lee JH [38]	2011	Myofascial trigger	24	Laser (12) vs.	End of	РРТ	There was a significant higher
		point pain		placebo (12)	intervention		PPT after 5 minutes Rx in laser
							group but not after 1 minute or
							2 minutes Rx.
Rayegani	2011	Myofascial pain	49	Laser (17) vs.	6-week	Pain – VAS	Laser group showed significant
SM [39]				ultrasound (16)		РРТ	less pain and improved NDI
				vs. placebo		Degree of disability	score after Rx comparing to
				laser (16)		– NDI	other two groups.
Emanet SK	2010	Lateral epicondylitis	47	Laser	End of	Pain – VAS	Both groups showed significant
[40]				acupuncture	intervention;	PPT	improvement in all outcome
				(24) vs.	12-week	DASH questionnaire	measures after Rx.
				placebo (23)	after	Grip strength	Improvement retained in laser
					intervention	NHP questionnaire	group at 12-week later.
						PRTEE test	
Glazov G	2010	Low back pain	100	Laser	After each	Change in pain –	After adjustment for covariates,
[41]				acupuncture	session; 6-	VAS	laser group showed significant
				(45) vs.	week after	Disability – ODI	less pain at 6-week follow up
				placebo (45)	intervention;	Patient global	compared with placebo group.
					6-month	assessment	
					after	Depression anxiety	
					intervention	stress scale	
		\mathcal{V}				Subjective well-	
		<i>r</i>				being – PWI-A	
						Level of exercise	
						Medication use	
Katsoulis J	2010	Tendomyopathy	11	Laser (7) vs.	3-month	Pain – VAS	All groups showed a significant
[42]				placebo (4)	after	Pain – verbal scale	less pain after Rx.
					intervention		

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Oz S [43]	2010	Myofascial pain	40	Laser (20) vs.	End of	Pain – VAS	Both groups showed significant
				occlusal splint	intervention	PPT	improvement in all parameter
				(20)		Pain upon palpation/	after Rx but no significant
						mandibular	between two groups.
						movement - verbal	
						scale	
Zhao L [44]	2010	Knee osteoarthritis	40	Laser on	2-week; 4-	Global improvement	Laser group using acupuncture
				acupuncture	week	WOMAC	point showed significant better
				point (19) vs.		Adverse effect	improvement in WOMAC
				Laser on sham		Medication use	score after 2-week Rx
				point (17)			comparing with placebo group.
							No significant difference
							observed after 4-week.
Carrasco TG	2009	Myofascial pain	60	Laser (30) vs.	After 4	Pain – VAS	Both groups showed significant
[45]				placebo (30) –	sessions;		less pain after Rx but no
				3 parameter	after 8 Rx;		significant between two groups.
				groups;10 in	15-day after		
				each group	intervention;		
					1-month		
					after		
				A Y	intervention		
Glazov G	2009	Low back pain	100	Laser	After each	Pain – VAS	Both groups showed significant
[46]				acupuncture	session; 6-	Disability – ODI	less pain and improvement in
		A		(45) vs.	week after	Patient global	ODI score after Rx but no
				placebo (45)	intervention;	assessment	between group differences
					6-month	Depression anxiety	seen.
					after	stress scale	
					intervention	Subjective well-	
						being – PWI-A	
						Level of exercise	
		Y				Medication use	
Shen X [47]	2009	Knee osteoarthritis	40	Laser	2-week; 4-	Global improvement	Laser group using acupuncture
				acupuncture	week	WOMAC	point showed significant better
				(20) vs.		Adverse effect	improvement in WOMAC
				placebo (20)		Medication use	score after 2-week Rx
							compared with placebo group.

First author	Year	Diagnosis n	Interventions	Follow-up	Outcome measures	Results
Shirani AM	2009	Myofascial pain 16	Laser	After first	Change in Pain –	Laser group showed significant
[48]			acupuncture	session; 1-	VAS	less pain compared with
			(8) vs. placebo	week;		placebo group.
			(8)	the day with		
				complete		
				pain relief		
Shen X [49]	2008	Knee osteoarthritis 48	Laser	2-week; 4-	Global improvement	Both groups showed significant
			acupuncture	week	WOMAC	improvement in all outcome
			(24) vs.		Adverse effect	measures after Rx but no
			placebo (24)		Medication use	significant between two groups.
Dundar U	2007	Myofascial pain 64	Laser	4-week	Pain at rest/	Both groups showed significant
[50]			acupuncture		movement/ night -	improvement in all outcome
			(32) vs.		VAS	measures after Rx but no
			placebo (32)		Active ROM	significant between two groups.
					Degree of disability	
					– NDI	
Lam L [51]	2007	Lateral epicondylitis 39	Laser	After 5	Pain – VAS	Laser group showed a greater
			acupuncture	sessions;	Maximum grip	improvement from all outcome
			(21) vs.	end of	strength	measures after Rx compared to
			placebo (18)	intervention;	PPT	placebo group.
				3-month	DASH questionnaire	
				after		
				intervention		
Matsutani	2007	Fibromyalgia 20	Laser (10) vs.	End of	Pain – VAS	Both groups showed significant
LA [52]			no laser (10)	intervention	PPT	improvement in all outcome
					Life quality – FIQ	measures after Rx but no
					SF-36	significant between two groups.
Mazzetto	2007	Temporomandibular 48	Laser (24) vs.	After 4	Pain upon palpation	Laser group showed significant
MO [53]	1	joint disorder	placebo (24)	sessions;	– VAS	less pain after Rx comparing
				after 8		with placebo group.
				sessions;		
				30-day after		
				intervention		

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Yurtkuran	2007	Knee osteoarthritis	55	Laser (27) vs.	2-week; 12-	Pain during	Both groups showed significant
M [54]				placebo (25)	week	movement - VAS	improvement in all outcome
						WOMAC	measures after Rx. Laser group
						50-foot walking time	showed a significant decrease
						Knee circumference	in knee circumference after 2-
						NHP questionnaire	week.
						Medial tenderness	
						score	
Aigner N	2006	Whiplash injury	50	Laser	After each	Cervical ROM	No significant difference
[55]				acupuncture	session; end	Subjective	observed at any time point
				(23) vs.	of	symptoms	between two groups.
				placebo (22)	intervention;		
					8-12 months		
					after injury	\sim	
Armagan O	2006	Fibromyalgia	32	LLLT (16) vs.	End of	Global improvement	LLLT group showed significant
[56]				placebo (16)	intervention;	No. of tender point	better in FIQ, global
					6-month	Life quality – FIQ	improvement, total myalgia
					after	Morning stiffness	after Rx and 6-month later. But
					intervention	Total myalgia score	placebo group only showed
							improvement in number of
							tender point and morning
							stiffness.
Chow RT	2006	Chronic neck pain	90	Laser (45) vs.	7-week; 12-	Change in pain –	Laser group showed a greater
[57]				placebo (45)	week	VAS	improvement from most of the
						NPNQ	outcome measures after Rx
						MPQ	compared to placebo group.
						SF-36	
						NPAD	
						Self-assessed	
		X'				improvement	
Kiralp MZ	2006	Myofascial pain	43	Laser (23) vs.	End of	Pain – VAS/ verbal	Both groups showed significant
[58]				trigger point	intervention;	pain scale	improvement in all outcome
				injection (20)	6-month	PPT	measures after Rx but no
					after		significant between two groups.
					intervention		

			AC	CEPTED N	ANUSC:	RIPT	
First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Altan L [59]	2005	Myofascial pain	53	Laser (23) vs.	2-week; 12-	Pain – VAS	Both groups showed significant
				placebo (25)	week after	Trigger point	improvement in all outcome
					intervention	tenderness	measures after Rx but no
						Movement of	significant between two groups.
						cervical spine	
Tam G [60]	2005	Periarthritis of	60	Corticosteroid	3-week; 6-	Pain during the day	Corticosteroid injection group
		shoulder		injection (20)	week; 12-	– VAS	showed better improvement for
				vs. LLLT (21)	week; 26-	General	all outcome measures at week 6
				vs. wait-and-	week; 52-	improvement	compared with the other two
				see policy (18)	week	РРТ	groups. Beyond week 26,
						Shoulder disability	LLLT group showed better
						Shoulder ROM	result than the other two
						Severity of main	groups.
						complaint	
Ceylan Y	2004	Myofascial pain	46	Laser (19) vs.	End of	Pain upon palpation	Laser group showed significant
[61]				placebo (20)	intervention	– VAS	less pain after Rx comparing
					KC	Seretonin level	with placebo group. Higher
							seretonin level was significant
					Y		higher in laser group.
Chow RT	2004	Chronic neck pain	20	Laser (10) vs.	7-week; 12-	Pain – VAS	Laser group showed a greater
[62]				placebo (10)	week	NPNQ	improvement from pain related
						MPQ	outcome measures after Rx
						Self-assessed	comparing to placebo group.
						improvement	No significant difference
							observed from the result of SF-
							36.
Gur A [63]	2004	Myofascial pain	60	Laser (30) vs.	2-week; 3-	Pain at rest/	Laser group showed a greater
				placebo (30)	week; 12-	movement - VAS	improvement from all outcome
	1				week	Number of trigger	measures after Rx. Only SAI
		\mathbf{V}'				point	and VAS score were significant
		7				NPAD	comparing to placebo group.
						Back depression	
						inventory	
						NUD	
						NHP questionnaire	
						Self-assessed	

First author	Year	Diagnosis n	Interventions	Follow-up	Outcome measures	Results
Ilbuldu E	2004	Trigger point pain 60	Placebo laser	End of	Pain – VAS	Laser group showed significant
[64]			(20) vs. dry	intervention;	PPT	improvement in VAS and NHP
			needling (20)	6-month	Cervical ROM	score at end of intervention but
			vs. laser (20)		Analgesic use	not at 6-month.
					NHP questionnaire	
Al-Shenqiti	2003	Rotator cuff 55	Laser (26) vs.	End of	Pain – VAS	Laser group showed a greater
A [65]		tendinitis	placebo (29)	intervention;	PPT	improvement from all outcome
				3-month	ROM	measures after Rx comparing to
					Shoulder pain and	placebo group.
					disability index	
Hakguder A	2003	Myofascial pain 62	Laser (31) vs.	End of	Pain – VAS	Laser group showed significant
[66]			no laser (31)	intervention;	РРТ	less pain after Rx comparing
				3-week after	Thermography	with placebo group. Other
				intervention	\sim	outcome measures were not
						significant but favorable to
						laser group.
Gur A [67]	2002	Fibromyalgia 40	Laser (20) vs.	End of	Pain – VAS	Laser group showed significant
			placebo (20)	intervention	Number of tender	less pain after Rx comparing
				\mathbf{Y}	point	with placebo group. Other
					Skin fold tenderness	outcome measures were not
					Sleep disturbance	significant but favorable to
					Muscle spasm	laser group.
					Fatigue	
Wong W	2001	Carpal tunnel 12	Laser (12) vs.	End of	Pain – VAS	Laser group showed a greater
[68]		syndrome	placebo (12)	intervention	Nerve conduction	improvement from all outcome
					test	measures except pinch test after
					MPQ	one stage of Rx comparing to
					Grip strength	placebo group.
	1				Pinch test	
		X Y			Physical	
		Y			examination	

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Chen SM	1997	Myofascial pain	21	Placebo (5) vs.	End of	Pain – VAS	All groups showed a significant
[69]				continuous	intervention	PPT	less pain after Rx. Both laser
				laser (7) vs.		Cervical ROM	groups showed a more
				pulsed laser (9)			significant improvement in PPT
							and ROM compared to placebo
							group.
Conti PCR	1997	Temporomandibular	20	Laser (10) vs.	After each	Pain – VAS	Laser group showed significant
[70]		joint disorder		placebo (10)	session	Mandibular function	improvement in pain
						– active ROM	(myogeneous subgroup) and
							ROM (arthrogeneous
							subgroup) after Rx.
Laaskso EL	1997	Myofascial trigger	41	Red laser (15)	Before each	Pain – VAS	All groups showed a significant
[71]		point pain		vs. Infrared	session; after		less pain after Rx. Between
				(IR) laser (16)	each session	\sim	group differences were not
				vs. placebo			significant
				(10)			
Logdberg-	1997	Tendinitis &	176	Laser (92) vs.	End of	Pain – VAS	Laser group showed a greater
Andersson		myofascial pain		placebo (84)	intervention;	PPT	improvement from all outcome
M [72]					4-week after		measures after Rx.
					intervention		
Papadopoulo	1996	Lateral epicondylitis	29	Laser (14) vs.	After 4	Pain – VAS	No significant difference
s ES [73]				placebo (15)	sessions;	Marcy wedge pro	observed at any time point
					after 6	exerciser	between two groups.
					sessions		
Vecchio P	1993	Rotator cuff	35	Laser (19) vs.	2-week; 4-	Change in pain at	Both groups showed
[74]		tendinitis		placebo (16)	week; 8-	rest/ movement/	improvement in all outcome
					week	night – VAS	measures after Rx but not
						Scoring of painful	significant between groups.
	7					arc	
		X'				Pain on resisted	
						abduction	
						Shoulder ROM	
						Functional limitation	

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Haker E [75]	1991	Lateral epicondylitis	60	Laser (29) vs.	End of	Pain – NRS	No significant difference
				placebo (29)	intervention;	Physical	observed at any time point
					3-month; 6-	examination -	between groups.
					month; 12-	Palpation/ resisted	
					month	testing/ passive	
						stretching	
						Grip strength	
						Lifting test	
Haker E [76]	1990	Lateral epicondylitis	49	Laser	End of	Pain – NRS	No significant difference
				acupuncture	intervention;	Grip strength	observed at any time point
				(23) vs.	3-month; 12-		between groups.
				placebo (26)	month		
Ceccherelli F	1989	Myofascial pain	27	Laser (13) vs.	End of	Pain – VAS	Laser group showed significant
[77]				placebo (14)	intervention;	MPQ	less pain after Rx and at 3-
					3-month		month comparing with placebo
					after		group.
					intervention		
Snyder-	1989	Myofascial trigger	24	Laser (13) vs.	Before each	Pain – VAS	Laser group showed significant
Mackler L		point pain		placebo (11)	session; after	Skin resistance	less pain and increase in skin
[78]					each session		resistance after Rx.
Waylonis	1988	Fibromyalgia/	55	Placebo vs.	6-week after	MPQ	No significant difference
GW [79]		chronic myofascial		laser	each round	Detailed	observed at any time point
		pain		acupuncture	of	questionnaire –	between groups.
				7	intervention;	medication use/	
					60-day; 120-	effect on work/	
					day	recreational	
					2	performance	
						1	
	1						

First author	Year	Diagnosis	n	Interventions	Follow-up	Outcome measures	Results
Lundeberg T	1987	Lateral epicondylitis	57	Placebo (19)	Every two	Pain – VAS	No significant difference
[80]				vs. GaAs laser	week; end of	Grip strength	observed at any time point
				(19) vs. HeNe	intervention;	Pain on wrist	between groups.
				laser (19)	3-month; 6-	dorsiflexion/ weight/	
					month	load	
						Patient and medical	
						assessment of	
						outcome	
						Nerve conduction	
Snyder-	1986	Musculoskeletal	27	Laser (13) vs.	Before each	Skin resistance	Laser group showed significant
Mackler L		trigger point pain		placebo (11)	session; after		increase in skin resistance after
[81]					each session		Rx.

Abbreviations: DASH – Disability of the arm, shoulder and hand; EMG – Electromyography; FIQ – Fibromyalgia impact questionnaire; MPQ – McGill pain questionnaire; NDI – Neck disability index; NHP – Nottingham health profile; NRS – Numeric rating scale; NPAD – Neck Pain Disability Scale; NPNQ – Northwick Park Neck Pain Questionnaire; ROM – Range of motion; SF-36 – 36-item Short-form health survey; ODI – Oswestry disability index; PPT – Pressure pain threshold; PRTEE – Patient related tennis elbow evaluation; PWI-A – Personal well-being index (adult); VAS – Visual Analogue Scale; WOMAC – Western Ontario and McMaster Universities Arthritis Index

Appendix C - Quality assessment using PEDro scale with

itemized criteria

					PEI	Dro crit	eria*					
First author	(1)	2	3	4	5	6	7	8	9	10	11	Score
Ferreira LA [33]	Y	Y		Y	Y		Y			Y	Y	6
Kannan P [34]	Y	Y						Y		Y	Y	4
Lin ML [35]	Y	Y		Y						Y	Y	4
Sattayut S [36]	Y	Y			Y	Y		Y		Y	Y	6
Skorupska E [37]	Y	Y		Y	Y		Y	Y	Y	Y	Y	8
Lee JH [38]	Y	Y			Y		Y	Y		Y		5
Rayegani SM [39]	Y	Y	Y	Y	Y		Y				Y	6
Emanet SK [40]	Y			Y	Y		Y	Y		Y		5
Glazov G [41]	Y	Y	Y	Y	Y	Y	Y	Y		Y	Y	9
Katsoulis J [42]							Y	Y				2
Oz S [43]	Y	Y	Y		Y		Y	Y		Y	Y	7
Zhao L [44]	Y	Y	Y	Y	Y					Y	Y	6
Carrasco TG [45]	Y	Y			Y	Y	Y			Y	Y	6
Glazov G [46]	Y	Y	Y	Y	Y	Y	Y	Y		Y	Y	9
Shen X [47]	Y	Y	Y	Y	Y		Y			Y	Y	7
Shirani AM [48]	Y	Y		Y	Y		Y			Y	Y	6
Shen X [49]	Y	Y		Y	Y			Y		Y		5
Dundar U [50]	Y	Y	Y	Y	Y		Y	Y	Y	Y	Y	9
Lam L [51]	Y	Y		Y	Y			Y	Y	Y	Y	7
Matsutani LA [52]	Y	Y		Y						Y	Y	4
Mazzetto MO [53]	Y	Y			Y	Y				Y		4
Yurtkuran M [54]	Y	Y	Y	Y	Y		Y	Y		Y	Y	8
Aigner N [55]		Y			Y			Y		Y		4
Armagan O [56]	Y	Y		Y	Y		Y	Y	Y	Y	Y	8
Chow RT [57]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	10
Kiralp MZ [58]	Y	Y		Y				Y		Y	Y	5
Altan L [59]	Y	Y		Y	Y		Y	Y		Y	Y	7
Tam G [60]	Y	Y	Y				Y	Y		Y	Y	6
Ceylan Y [61]	Y	Y								Y	Y	3
Chow RT [62]	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	10

	ACCEPTED MANUSCRIPT											
Gur A [63]	,	Y	Y	Y	Y		Y	Y	Y	Y	Y	8
Ilbuldu E [64]		Y	Y	Y	Y		Y	Y	Y	Y	Y	8
Al-Shenqiti A [65]		Y	Y	Y	Y	Y	Y	Y		Y	Y	8
Hakguder A[66]		Y	Y	Y			Y	Y		Y	Y	6
Gur A [67]		Y	Y	Y	Y			Y	Y		Y	6
Wong W [68]		Y	Y		Y			Y		Y	Y	5
Chen SM [69]		Y	Y					Y				2
Conti PCR [70]		Y	Y	Y	Y		Y	Y	Y	Y		7
Laaskso EL [71]			Y		Y	Y	Y			Y		5
Logdberg-Andersson M [72]		Y			Y	Y	Y	Y		Y		5
Papadopoulos ES [73]		Y	Y		Y	Y		Y	Y	Y		6
Vecchio P [74]		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	9
Haker E [75]		Y	Y	Y	Y	Y	Ŷ					5
Haker E [76]		Y	Y		Y	Y	Y	Y		Y	Y	7
Ceccherelli F [77]		Y	Y	Y	Y	Y		Y	Y	Y	Y	8
Snyder-Mackler L [78]			Y		Y	Y		Y	Y	Y		6
Waylonis GW [79]		Y	Y		Y			Y		Y		4
Lundeberg T [80]	,	Y	Y		Y	Y	Y				Y	5
Snyder-Mackler L [81]	•	Y	Y		Y	Y		Y		Y		5
*PEDro criteria:	4 1	Basel	line com	parability			8	Ade	quate f	ollow-	up	
(1) Eligibility criteria	5 1	Blind	l subjects	5			9	Intention-to-treat analysis				
2 Random allocation	6 1	Blind	l therapis	sts			10	Between-group comparisons				
3 Concealed allocation	7 1		11	Point estimates and variability								

Y – Criteria met; (1) – Eligibility criteria item does not contribute to total score

Appendix D – Forest plots of outcome measures

1. Effects on pain scores

1.1 Laser acupuncture vs placebo

Study or Subgroup		Laser			Placebo			SMD	SMD
study of subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95% CI
1.1.1 Measured at the end	of interve	ention							
Ferreira 2013	0.05	0.22	20	2.75	2.71	20	3.2%	-1.38 [-2.07, -0.68]	
Lin 2012	3.11	1.54	21	3.2	1.84	21	3.4%	-0.05 [-0.66, 0.55]	1
Sattayut 2012 (1)	4.5	2.58	10	5.0	3.38	5	2.5%	-0.17 [-1.24, 0.91]	
Sattayut 2012 (2)	6.1	2.29	10	5.0	3.38	5	2.5%	0.39 [-0.70, 1.47]	
Emanet 2010	1.13	0.94	23	0.83	0.88	24	3.5%	0.32 [-0.25, 0.90]	+-
Glazov 2009	3.55	2.437	43	3.45	2.4669	44	3.7%	0.04 [-0.38, 0.46]	+
Carrasco 2009 (3)	6.73	1.65	10	6.75	1.49	10	2.9%	-0.01 [-0.89, 0.86]	
Carrasco 2009 (4)	7.04	1.72	10	5.97	1.6	10	2.8%	0.62 [-0.29, 1.52]	<u>+-</u>
Carrasco 2009 (5)	6.4	2.32	10	6.8	1.74	10	2.9%	-0.19 [-1.07, 0.69]	
Dundar 2007	3.2	2.5	32	3.2	2.3	32	3.6%	0.00 [-0.49, 0.49]	+
Matsutani 2007	4.7	2.9	10	4.6	2.0	10	2.9%	0.04 [-0.84, 0.92]	
Lam 2007	3.05	1.77	21	5.39	2.12	18	3.3%	-1.18 [-1.87, -0.49]	
Altan 2005	4.13	0.58	23	3.92	0.42	25	3.5%	0.41 [-0.16, 0.98]	-
Ilbuldu 2004	2.05	1.43	20	3.65	2.03	20	3.3%	-0.89 [-1.55, -0.24]	
Ceylan 2004	34.54	23.5	19	54.96	25.89	20	3.3%	-0.81 [-1.46, -0.15]	
Gur 2004	3.11	2.29	28	5.79	3.12	26	3.5%	-0.97 [-1.54, -0.40]	
Gur 2002	1.27	0.76	20	2.44	0.98	20	3.3%	-1.31 [-2.00, -0.62]	
Chen 1997 (6)	1.94	1.87	9	3.25	1.32	3	2.0%	-0.68 [-2.03, 0.67]	
Chen 1997 (7)	0.83	1.29	7	3.25	1.32	2	1.4%	-1.66 [-3.54, 0.21]	
Ceccherelli 1989	9.46	13.17	13	37.42	16.58	14	2.8%	-1.80 [-2.72, -0.89]	
Subtotal (95% CI)			359			339	60.3%	-0.43 [-0.74, -0.12]	•
Heterogeneity: $Tau^2 = 0.3$	3: $Chi^2 = \epsilon$	58.26. df = 1	9(P < 0.0)	$(0001): I^2 =$	- 72%		001070		-
Test for overall effect: Z =	2.71 (P =	0.007)	. (,,	- = / 0				
	2.7 1 (1	0.007							
1.1.2 Measured during the	e follow-u	p period (6	to 26 wee	ks)					
Rayegani 2011	20.5	4.1231	17	40.7	4.0	16	1.9%	-4.85 [-6.27, -3.43]	
Katsoulis 2010	3.25	2.248	7	2.65	0.7362	4	2.2%	0.29 [-0.95, 1.53]	<u> </u>
Emanet 2010	0.29	0.47	23	0.57	0.79	24	3.5%	-0.42 [-1.00, 0.16]	-+
Carrasco 2009 (8)	5.67	2.99	10	5.4	3.06	10	2.9%	0.09 [-0.79, 0.96]	_
Carrasco 2009 (9)	6.91	2.24	10	4.63	2.1	10	2.7%	1.01 [0.06, 1.95]	<u> </u>
Glazov 2009	3.95	2.437	43	4.1	2.6313	44	3.7%	-0.06 [-0.48, 0.36]	+
Carrasco 2009 (10)	7.14	2.68	10	6.75	2.45	10	2.9%	0.15 [-0.73, 1.02]	_ _
Yurtkuran 2007	5.58	2.36	27	4.81	3.49	25	3.5%	0.26 [-0.29, 0.80]	
Lam 2007	1.48	1.36	21	4.28	2.11	18	3.2%	-1.57 [-2.30, -0.84]	<u> </u>
Altan 2005	3.17	0.58	23	3.8	0.51	25	3.4%	-1.14 [-1.75, -0.52]	
Gur 2004	4.18	2.65	28	6.29	3.52	26	3.5%	-0.67 [-1.22, -0.12]	
Ilbuldu 2004	2.12	1.9	20	2.89	2.63	20	3.4%	-0.33 [-0.95, 0.30]	
Ceccherelli 1989	8.46	10.76	13	35.57	18.28	14	2.8%	-1.74 [-2.64, -0.83]	
Subtotal (95% CI)			252			246	39.7%	-0.61 [-1.12, -0.10]	•
Heterogeneity: $Tau^2 = 0.7$	2: Chi ² = 8	32.70. df = 1	2(P < 0.0)	$(0001): I^2 =$	85%				· ·
Test for overall effect: Z =	2.33 (P =	0.02)	(i 510						
Total (95% CI)			611			585	100.0%	-0.49 [-0.76, -0.22]	•
Heterogeneity: $Tau^2 = 0.4$	6; Chi ² = 1	151.41, df =	32 (P < 0.	00001); I ²	= 79%				<u> </u>
Test for swarell offect. 7 -	2 57 (D -	0.00041		· · · ·					-4 -2 0 2 4

Favors laser

Favors control

Test for overall effect: Z = 3.57 (P = 0.0004) Test for subgroup differences: Chi² = 0.36, df = 1 (P = 0.55), l² = 0% (1) High energy laser; placebo group data divided; (2) Low energy laser; placebo group data divided; (3) Laser dose: 105J/cm²; (4) Laser dose: 25J/cm²; (5) Laser dose: 60J/cm²; (6) Pulsed laser; placebo group data divided; (7) Continuous laser; placebo group data divided; (8) Laser dose: 60J/cm²; (9) Laser dose: 25J/cm²; (10) Laser dose: 105J/cm²

1.2 Laser acupuncture vs other control interventions

Study or Subgroup	Moon	Laser	Total	Moon	Placebo	Total	Woight	SMD W Bandom 95%CI	SMD W Random 95% CI
1.2.1 Measured at the en	d of interv	vention	TOTAL	Medii	30	TOTAL	weight	IV, Kanuoni, 937001	
Kannan 2012	2.66	1.23	15	2.18	0.7058	30	20.5%	0.52 [-0.11, 1.15]	+ - -
Kiralp 2006	2.18	1.63	23	2.77	1.57	20	20.7%	-0.36 [-0.97, 0.24]	+
Ilbuldu 2004	2.05	1.43	20	3.71	2.33	20	20.4%	-0.84 [-1.49, -0.19]	
Subtotal (95% CI)	26 Ch:2	0 00 36 7	58	12 700		70	61.6%	-0.23 [-1.00, 0.54]	-
Test for overall effect: 7	= 0 58 (P =	9.00, ar = 4 = 0.56)	2(P = 0.01)	l j; l- = 789	/0				
		,							
1.2.1 Measured during th Rayagani 2011	he follow-1	up period (6 to 26 w	eeks) 30.7	3.2	16	17.8%	-2 69 [-3 66 -1 71]	
Ilbuldu 2004	212	19	20	2 59	2.18	20	20.6%	-0.23 [-0.85 0.40]	
Subtotal (95% CI)			37			36	38.4%	-1.43 [-3.84, 0.98]	
Heterogeneity: Tau ² = 2.	.85; Chi ² =	17.49, df =	1 (P < 0.0	0001); I ² =	94%				
Test for overall effect: Z	= 1.16 (P =	= 0.25)							
Total (95% CI)			95			106	100.0%	-0.66 [-1.51, 0.18]	
Heterogeneity: $Tau^2 = 0$.	.81; Chi ² =	31.42, df =	4 (P < 0.0	00001); I ²	= 87%				
Test for overall effect: Z	= 1.54 (P = ences: Chi	= 0.12) ² = 0.86 df	= 1 (P = 0)	35) $I^2 = 0$	0%				Favors laser Favors control
rest for subgroup unier	ences. cm	- 0.00, ui	- 1 (1 - 0	.55),1 = 0	70				Tavors laser Tavors control

2. Effects on change in pain scores

2.1 Laser acupuncture vs placebo

Study or		Laser	TE (1		Placebo	m (1		SMD	SMD
Subgroup	Mean	SD	Total	Mean	SD	Total	weight	IV, Random, 95%CI	IV, Random, 95% Cl
2.1.1 Measured at the	end of int	ervention	4.0						
Zhao 2010	-49.21	34.19	19	-11.99	47.78	17	6.0%	-0.88 [-1.57, -0.20]	
Emanet 2010	-54.0	36.0	23	-65.0	35.0	24	6.6%	0.30 [-0.27, 0.88]	
Shirani 2009	-5.375	2.6152	8	-1.25	1.2817	8	3.7%	-1.89 [-3.13, -0.66]	
Shen 2009	-49.0	34.0	19	-13.0	62.0	16	6.0%	-0.72 [-1.41, -0.03]	
Dundar 2007	-24.0	20.0	32	-16.0	18.0	32	7.0%	-0.42 [-0.91, 0.08]	
Yurtkuran 2007	-18.0	31.0	27	-25.0	35.0	25	6.8%	0.21 [-0.34, 0.75]	
Ceylan 2004	-27.41	14.41	19	-11.44	13.03	20	6.1%	-1.14 [-1.82, -0.46]	
Vecchio 1993	-3.9	3.0512	19	-2.2	4.0	16	6.1%	-0.47 [-1.15, 0.20]	
Subtotal (95% CI)			166			158	48.4%	-0.53 [-0.95, -0.10]	•
Heterogeneity: Tau ² = 0	0.25; Chi ² =	= 23.43, df =	7 (P = 0.00)	(1); $I^2 = 709$	%				
Test for overall effect:	Z = 2.44 (F	P = 0.01							
2.1.2 Measured during	g the follow	w-up period	(6 to 26 w	eeks)				(
Emanet 2010	-87.0	22.0	23	-76.0	28.0	24	6.6%	-0.43 [-1.01, 0.15]	+
Glazov 2010 (1)	-35.2	45.2463	43	-12.4	45.7694	44	7.3%	-0.50 [-0.92, -0.07]	
Glazov 2010 (2)	-35.0	46.5578	43	-14.8	47.0961	44	7.3%	-0.43 [-0.85, -0.00]	
Yurtkuran 2007	-14.0	37.0	27	-30.0	47.0	25	6.7%	0.37 [-0.17, 0.92]	+
Chow 2006	-2.7	1.9971	45	0.3	1.9971	45	7.1%	-1.49 [-1.96, -1.02]	
Chow 2004	-65.9	34,8483	10	-29.82	33,1723	10	4.8%	-1.02 [-1.96, -0.07]	/
Lundeberg 1987 (3)	-2.6	0.2	19	-2.2	0.2	19	5.6%	-1.96 [-2.75, -1.17]	
Lundeberg 1987 (4)	-2.4	0.2	19	-2.2	0.2	19	6.1%	-0.98 [-1.66, -0.30]	
Subtotal (95% CI)			229		~	230	51.6%	-0.77 [-1.25, -0.29]	•
Heterogeneity: $Tau^2 = 0$	0 38· Chi ² :	= 39 72 df =	7 (P < 0.0)	$(001) \cdot I^2 = 8$	32%	-00	011070	0	
Test for overall effect:	7 - 316 (F	P = 0.002	/ (I < 0.00	,001),1 = 0	5270				
rest for overall effect.	L = 5.10 (1	= 0.002)							
Total (95% CD			395			388	100.0%	-0.65[-0.97 -0.34]	•
Heterogeneity: Tau ² – (0 31 · Chi2 -	- 66 29 df -	15 (P < 0)	00001)· I2 -	77%	500	100.070	-0.05 [-0.57, -0.54]	
Test for overall effect:	7 - 4.04 (E	2 < 0.0001	(1 < 0.0						-4 -2 0 2 4
Test for overall effect:	Z = 4.04 (F	P < 0.0001	15 (1 < 0.0	,1 =	11/0				-4 -2 0 2 4

Lest tor overall effect: Z = 4.04 (P < 0.0001) Test for subgroup differences: Chi² = 0.55, df = 1 (P = 0.46), I² = 0% (1) Pain at baseline imputed for missing value; posthoc analysis; (2) Pain at last assessment imputed for missing value; posthoc analysis (3) Ga-As laser; (4) He-Ne laser Favors laser Favors control

3. Effects on pressure pain threshold

3.1 Laser acupuncture vs placebo

3.2 Laser acupuncture vs other control interventions

		Laser			Placebo			SMD	SMD
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95%CI	IV, Fixed, 95% CI
3.2.1 Measured at the	e end of inte	rvention					0		Í
Oz 2010	28.8917	7.0851	20	28.5467	6.5037	20	21.1%	0.05 [-0.57, 0.67]	
Kiralp 2006	2.766	4.34	23	2.414	4.18	20	22.5%	0.08 [-0.52, 0.68]	
Ilbuldu 2004	3.99	1.22	20	2.51	1.57	20	18.4%	1.03 [0.37, 1.70]	.
Subtotal (95% CI)			63			60	62.0%	0.35 [-0.01, 0.71]	•
Heterogeneity: Chi2 =	5.72, df = 2	(P = 0.06); I	² = 65%						•
Test for overall effect:	Z = 1.91 (P	= 0.06)							
3.2.2 Measured durin	ng the follow	-up period	(6 to 26 w	eeks)					
Rayegani 2011	41.0	32.9848	17	29.0	22.8	16	17.0%	0.41 [-0.28, 1.10]	
Ilbuldu 2004	2.26	0.52	20	2.24	0.73	20	21.1%	0.03 [-0.59, 0.65]	
Subtotal (95% CI)			37	/		36	38.0%	0.20 [-0.26, 0.66]	
Heterogeneity: Chi2 =	0.64, df = 1	(P = 0.42); I	$^{2} = 0\%$						
Test for overall effect:	Z = 0.85 (P	= 0.39)							
Total (95% CI)			100			96	100.0%	0.29 [0.01, 0.58]	
Heterogeneity: Chi ² =	6.63, df = 4	(P = 0.16); I	$^{2} = 40\%$						
Test for overall effect:	Z = 2.03 (P	= 0.04)							2 1 0 -1 -2
Test for subgroup diffe	erences: Chi ²	$^{2} = 0.26$, df =	= 1 (P = 0.6)	51). $I^2 = 0\%$					Favors laser Favors cor

Test for subgroup differences: $Chi^2 = 0.26$, df = 1 (P = 0.61), I² = 0%

4. Effects on functional scores

4.1 Hand grip

4.2 Scale expressed in raw score

		Laser		Placebo				SMD	SMD		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95% CI		
4.2.1 Measured at the end o	f intervent	ion									
Emanet 2010 DASH	30.16	16.4	23	37.96	11.27	24	4.9%	-0.55 [-1.13, 0.04]			
Emanet 2010 NHP	113.03	92.63	23	167.4	92.63	24	4.9%	-0.58 [-1.16, 0.01]			
Emanet 2010 PRTEE	42.53	16.66	23	49.89	11.27	24	4.9%	-0.51 [-1.09, 0.07]			
Glazov 2009 ODI	25.0	11.8652	38	22.3	12.1945	40	5.8%	0.22 [-0.22, 0.67]	+•		
Lam 2007 DASH	23.41	15.05	21	37.26	20.45	18	4.4%	-0.76 [-1.42, -0.11]			
Matsutani 2007 FIQ	5.6	1.5	10	4.1	2.4	10	3.2%	0.72 [-0.19, 1.63]			
Dundar 2007 NDI	18.8	10.9	32	23.7	12.9	32	5.4%	-0.41 [-0.90, 0.09]			
Yurtkuran 2007 NHP	7.26	5.58	27	6.31	5.76	25	5.1%	0.17 [-0.38, 0.71]	_ 		
Matsutani 2007 SF-36	59.3	17.9	10	64.7	18.9	10	3.3%	-0.28 [-1.16, 0.60]			
Armagan 2006 FIQ	58.5	10.3	16	63.63	9.59	16	4.2%	-0.50 [-1.21, 0.20]			
Gur 2004 NHP	41.48	26.19	30	69.61	27.92	30	5.1%	-1.03 [-1.57, -0.49]	<u> </u>		
Subtotal (95% CI)			253			253	51.1%	-0.34 [-0.63, -0.06]	•		
Heterogeneity: Tau ² = 0.13; Chi ² = 24.13, df = 10 (P = 0.007); I ² = 59%											
Test for overall effect: $Z = 2.2$	37 (P = 0.0)	2)			1						
4.2.2 Management during the f	follow up r	wind (6 to '	6 wooke)								
Rayagani 2011 NDL(1)	13 0	16 4924	17	37.8	36.0	16	4 1%	-0.87[-1.590.15]	_		
Rayogani 2011 NDI (1)	13.0	16.4024	17	27.6	24.0	16	4.170	0.70 [1.40 0.01]			
Emanet 2010 DASH	18.00	12.74	23	30.5	12.94	24	4.270	-0.95 [-1.56 -0.34]			
Emanet 2010 DASH	26.84	14.06	23	40.77	12.74	24	4.7%	1 00 [1 61 0 20]			
Emanet 2010 NHP	20.04	81.17	23	127.0	105.13	24	4.770	-0.53 [-1.11, 0.06]			
Glazov 2009 PWI-A	64.2	18 1355	40	71.1	17 9705	42	5.8%	-0.38 [-0.82, 0.06]			
Glazov 2009 ODI	27.1	12 1695	38	22.4	12 1945	40	5.8%	0.38 [-0.07 0.83]			
Yurtkuran 2007 NHP	7.58	5.41	27	6 4 4	6.27	25	5.1%	0.19[-0.35_0.74]			
Lam 2007 DASH	15 79	11 59	21	31 58	17.98	18	4 3%	-1.04 [-1.72 -0.37]			
Gur 2004 NHP	56.41	29.18	30	72.48	24.66	30	5 3%	-0.59[-1.10]-0.07]			
Subtotal (95% CI)	50.41	27.10	259	72.40	24.00	259	48 9%	-0.51 [-0.84 -0.19]			
Heterogeneity: $Tau^2 = 0.19$	$r_{\rm hi^2} - 29.42$	df = 9 (P -	0.0006)	2 - 69%		207	40.970	-0.21 [-0.04, -0.17]	-		
Test for overall effect: $Z = 3.0$	09 (P = 0.0)	02)	0.0000),	- 07/0							
Total (95% CI)			512			512	100.0%	-0.42 [-0.63, -0.21]	•		
Heterogeneity: Tau ² = 0.15; C	Chi ² = 54.15	5, df = 20 (P	< 0.0001);	$I^2 = 63\%$							
Test for overall effect: $Z = 3.9$	94 (P < 0.0	001)							Favors laser Favors control		

Test for overall effect: Z=3.94~(P<0.0001)Test for subgroup differences: Chi²=0.61, df = 1 (P=0.43), l²=0% (1) vs placebo; (2) vs ultrasound

4.3 Scale expressed in change in score

Study or Subgroup	Mean	Laser SD	Total	Mean	Placebo SD	Total	Weight	SMD IV, Random, 95%CI	SMD IV, Random, 95% CI
4.3.1 Measured at the end o	f interventi	ion							
Zhao 2010 WOMAC	26.16	11.73	19	13.93	49.27	17	8.2%	0.34 [-0.32, 1.00]	
Shen 2009 WOMAC	25.0	32.0	19	4.0	65.0	16	8.0%	0.41 [-0.26, 1.09]	— —
Yurtkuran 2007 WOMAC	5.0	24.0	27	13.0	11.0	25	9.7%	-0.42 [-0.97, 0.13]	
Subtotal (95% CI)			65			58	26.0%	0.08 [-0.47, 0.63]	-
Heterogeneity: Tau ² = 0.13; C	Chi ² = 4.63,	df = 2 (P = 0.	10); $I^2 = 57$	%					
Test for overall effect: $Z = 0$.	30 (P = 0.76)	6)							
4.3.2 Measured during the f	follow-up p	eriod (6 to 26	weeks)						
Yurtkuran 2007 WOMAC	8.0	19.0	27	2.0	23.0	25	9.8%	0.28 [-0.27, 0.83]	
Chow 2006 SF-36 MCS	2.4	8.987	45	5.4	10.9841	45	11.9%	-0.30 [-0.71, 0.12]	
Chow 2006 NPO	3.5	5.3256	45	0.6	3.9942	45	11.8%	0.61 [0.19, 1.03]	
Chow 2006 NPAD	15.2	17.3083	45	3.1	14.9784	45	11.7%	0.74 [0.31, 1.17]	
Chow 2006 SF-36 PCS	3.2	8.6542	45	1.3	8.6542	45	11.9%	0.22 [-0.20, 0.63]	
Chow 2004 NPQ	0.12	0.1138	10	0.0070	0.0791	10	5.2%	1.10 [0.15, 2.06]	
Chow 2004 SF-36 PCS	4.0	8.2219	10	1.71	3.7947	10	5.8%	0.34 [-0.54, 1.23]	
Chow 2004 SF-36 MCS	1.71	3.7947	10	0.0	6.0083	10	5.8%	0.33 [-0.56, 1.21]	
Subtotal (95% CI)			237			235	74.0%	0.37 [0.07, 0.67]	•
Heterogeneity: Tau ² = 0.10; C	$Chi^2 = 16.80$	df = 7 (P = 0)	$(0.02); I^2 = 53$	8%					
Test for overall effect: $Z = 2$.	39 (P = 0.02)	2)							
Total (95% CI)			302			293	100.0%	0.29 [0.03, 0.56]	~
Heterogeneity: Tau ² = 0.11; G	Chi ² = 23.51	, df = 10 (P =	0.009); I ² =	57%					· · · · · · · · · · · · · · · · · · ·
Test for overall effect: $Z = 2$.	19 (P = 0.03)	3)							2 1 0 -1 -2
Test for subgroup differences	s: $Chi^2 = 0.7$	'9, df = 1 (P =	$(0.37), I^2 = 0$)%					Favors laser Favors control

Appendix E – Forest plots of subgroup analysis of different

application site of laser acupuncture

1. Pain measured at the end of intervention

		Laser			Placebo			SMD	SMD
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95% CI
1.1 Acupuncture point									
Ferreira 2013	0.05	0.22	20	2.75	2.71	20	4.4%	-1.38 [-2.07, -0.68]	_ —
Lin 2012	3.11	1.54	21	3.2	1.84	21	4.7%	-0.05 [-0.66, 0.55]	
Glazov 2009	3.55	2.437	43	3.45	2.4669	44	5.3%	0.04 [-0.38, 0.46]	+
Ceccherelli 1989	9.46	13.17	13	37.42	16.58	14	3.7%	-1.80 [-2.72, -0.89]	
Subtotal (95% CI)			97			99	18.1%	-0.74 [-1.59, 0.11]	
Heterogeneity: $Tau^2 = 0.6$	54; Chi ² =	22.01, df =	= 3 (P < 0.)	0001; I ² =	86%				
Test for overall effect: Z	= 1.70 (P	= 0.09)							
1.2 T-1									
Carrasco 2009 (1)	64	2 32	10	68	1 74	10	3.8%	-0 19 [-1 07 0 69]	
Carrasco 2009 (1)	6.73	1.65	10	6.75	1.74	10	3.8%	-0.01 [-0.89, 0.86]	
Carrasco 2009 (2)	7.04	1.05	10	5.97	1.47	10	3.7%	0.62 [-0.29, 1.52]	
Dundar 2007	3.2	2.5	32	32	2.3	32	5.1%	0.02 [0.29, 1.32]	
Kiraln 2006	2.18	1.63	23	2 77	1.57	20	4 7%	-0.36[-0.97, 0.24]	
Altan 2005	4 13	0.58	23	3.92	0.42	25	4.8%	0.41 [-0.16, 0.98]	+
Gur 2004	3 11	2.29	28	5 79	3.12	26	4.9%	-0.97 [-1.54 -0.40]	<u> </u>
Cevlan 2004	34 54	23.5	19	54 96	25.89	20	4 5%	-0.81 [-1.46, -0.15]	
Ilbuldu 2004 (4)	2.05	1 43	20	3 65	2.03	20	4 5%	-0.89 [-1.55 -0.24]	
Ilbuldu 2004 (5)	2.05	1 43	20	3 71	2.33	20	4.6%	-0.84 [-1.49 -0.19]	
Hakguder 2003	3.41	2.0	31	5 77	2.0	31	4.9%	-1 17 [-1 71 -0 62]	
Chen 1997 (6)	1 94	1.87	9	3 25	1.32	3	2.5%	-0.68[-2.03_0.67]	
Chen 1997 (7)	0.83	1.29	7	3 25	1.32	2	1.6%	-1 66 [-3 54 0 21]	
Subtotal (95% CI)			242			229	53.5%	-0.46 [-0.80, -0.12]	•
Heterogeneity: $Tau^2 = 0.2$	23: Chi ² =	34.64. df =	= 12 (P = 0)	0.0005): I ²	= 65%		0010 /0	0110[0100, 0112]	
Test for overall effect: Z	= 2.67 (P	= 0.008)	(,,-					
LS Tender point	6.1	2.20	10	5.0	2 20	-	2.20/	0.20 [0.70 1.47]	
Sattayut 2012 (6)	0.1	2.29	10	5.0	2.20	2	3.2%	0.39 [-0.70, 1.47]	
Sallayut 2012 (9)	4.5	2.30	10	2.10	3.38	20	5.2%	-0.17 [-1.24, 0.91]	+
Kannan 2012	2.00	1.25	13	2.18	0.7058	30	4.0%	0.32 [-0.11, 1.13]	+
Lam 2007	2.05	1.77	25	5.20	0.88	19	4.0%	1 18 [1 87 0 40]	
Lani 2007 Motouton: 2007	5.05	2.0	21	3.39	2.12	10	4.4%	-1.18 [-1.87, -0.49]	
Cur 2002	4.7	2.9	20	4.0	2.0	20	5.6%	1 21 [2 00 0 62]	
Gur 2002	1.27	0.76	20	2.44	0.98	20	4.4%	-1.31 [-2.00, -0.62]	
Subtotal (95% CI)	50. CL 2	27.22.46	109	0001) 12	700/	112	28.4%	-0.21 [-0.83, 0.40]	
Test for overall effect: 7	= 0.68 (P)	21.55, dI = - 0.40)	= 0 (P = 0.)	$(0001); 1^{2} =$	/070				
rest for overall effect: Z	– 0.08 (P	- 0.49)							
Total (95% CI)			448	, 7		440	100.0%	-0.43 [-0.71, -0.16]	▼
Heterogeneity: Tau ² = 0.3	33; Chi ² =	86.13, df =	= 23 (P < 0)	0.00001); I ²	² = 73%			-	-4 -2 0 2 4
Test for overall effect: Z	= 3.07 (P	= 0.002)							Favors laser Favors control

Heterogeneity: Tau² = 0.33; Ch² = 86.13, df = 23 (P < 0.00001); I² = 73% Test for overall effect: Z = 3.07 (P = 0.002) Test for subgroup differences: Chi² = 1.00, df = 2 (P = 0.61), P = 0% (1) Laser dose: 60J/cm²; (2) Laser dose: 105J/cm²; (3) Laser dose: 25J/cm²; (4) vs placebo; (5) vs dry needling; (6) Pulsed laser; placebo group data divided; (7) Continuous laser; placebo group data divided; (8) Low energy laser; placebo group data divided; (9) High energy laser; placebo group data divided
2. Pain measured during the follow-up period (6 to 26 weeks)

	Laser			Placebo			SMD		SMD
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, IV, Random, 95% CI 95%CI	
2.1 Acupuncture point									
Katsoulis 2010	3.25	2.248	7	2.65	0.7362	4	5.4%	0.29 [-0.95, 1.53]	
Glazov 2009	3.95	2.437	43	4.1	2.6313	44	7.6%	-0.06 [-0.48, 0.36]	-
Yurtkuran 2007	5.58	2.36	27	4.81	3.49	25	7.4%	0.26 [-0.29, 0.80]	
Ceccherelli 1989	8.46	10.76	13	35.57	18.28	14	6.4%	-1.74 [-2.64, -0.83]	_ -
Subtotal (95% CI)			90			87	26.7%	-0.29 [-1.05, 0.47]	
Heterogeneity: Tau ² = 0.	.45; Chi ² =	14.55, df =	3 (P = 0.0)	$(02); I^2 = 7$	9%				
Test for overall effect: Z	L = 0.74 (P)	= 0.46)							
2.2 Trigger point									
Rayegani 2011 (1)	20.5	4.1231	17	30.7	3.2	16	6.2%	-2.69 [-3.66, -1.71]	
Rayegani 2011 (2)	20.5	4.1231	17	40.7	4.0	16	4.9%	-4.85 [-6.27, -3.43]	
Carrasco 2009 (3)	7.14	2.68	10	6.75	2.45	10	6.5%	0.15 [-0.73, 1.02]	_ _
Carrasco 2009 (4)	6.91	2.24	10	4.63	2.1	10	6.3%	1.01 [0.06, 1.95]	
Carrasco 2009 (5)	5.67	2.99	10	5.4	3.06	10	6.5%	0.09 [-0.79, 0.96]	
Altan 2005	3.17	0.58	23	3.8	0.51	25	7.2%	-1.14 [-1.75, -0.52]	
Gur 2004	4.18	2.65	28	6.29	3.52	26	7.4%	-0.67 [-1.22, -0.12]	
Ilbuldu 2004 (6)	2.12	1.9	20	2.59	2.18	20	7.2%	-0.23 [-0.85, 0.40]	
Ilbuldu 2004 (7)	2.12	1.9	20	2.89	2.63	20	7.2%	-0.33 [-0.95, 0.30]	
Subtotal (95% CI)			155			153	59.1%	-0.87 [-1.64, -0.10]	•
Heterogeneity: Tau ² = 1.	.21; Chi ² =	73.34, df =	8 (P < 0.0)	0001); I ² =	89%				
Test for overall effect: Z	L = 2.21 (P)	= 0.03)							
2.3 Tender point									
Emanet 2010	0.29	0.47	23	0.57	0.79	24	7.3%	-0.42 [-1.00, 0.16]	
Lam 2007	1.48	1.36	21	4.28	2.11	18	6.9%	-1.57 [-2.30, -0.84]	
Subtotal (95% CI)			44			42	14.2%	-0.97 [-2.10, 0.15]	
Heterogeneity: Tau ² = 0. Test for overall effect: Z	.55; Chi ² = L = 1.70 (P	5.87, df = 1 = 0.09)	(P = 0.02)	.); I ² = 83%					
T-4-1 (050/ CD)		,	200			202	100.00/	0.71 [1.21 0.22]	
10tal (95% CI)			289			282	100.0%	-0./1 [-1.21, -0.22]	▼
Heterogeneity: Tau ² = 0.80; Chi ² = 103.25, df = 14 (P < 0.00001); I ² = 86%									
Test for overall effect: $Z = 2.82$ (P = 0.005) Favors laser Favors control									
Test for subgroup differences: Chi ² = 1.49, df = 2 (P = 0.47), l ² = 0%									

The tot subgroup differences. Cliff = 1.47, di = 2 (r = 0.47), r = 0.70(1) vs ultrasound; (2) vs placebo; (3) Laser dose: $105J/cm^2$; (4) Laser dose: $25J/cm^2$; (5) Laser dose: $60J/cm^2$; (6) vs dry needling; (7) vs placebo;

.