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Abstract—This paper provides an overview of recent
developments in big data in the context of biomedical and health
informatics. It outlines the key characteristics of big data and
how medical and health informatics, translational bioinformat-
ics, sensor informatics, and imaging informatics will benefit from
an integrated approach of piecing together different aspects of
personalized information from a diverse range of data sources,
both structured and unstructured, covering genomics, proteomics,
metabolomics, as well as imaging, clinical diagnosis, and long-term
continuous physiological sensing of an individual. It is expected that
recent advances in big data will expand our knowledge for testing
new hypotheses about disease management from diagnosis to pre-
vention to personalized treatment. The rise of big data, however,
also raises challenges in terms of privacy, security, data ownership,
data stewardship, and governance. This paper discusses some of
the existing activities and future opportunities related to big data
for health, outlining some of the key underlying issues that need to
be tackled.

Index Terms—Big data, bioinformatics, health informatics, med-
ical imaging, medical informatics, precision medicine, sensor
informatics, social health.

I. INTRODUCTION

THE term “big data” has become a buzzword in recent
years, with its usage frequency having doubled each year

in the last few years according to common search engines.
Fig. 1 illustrates the fast increase in the number of publica-
tions referring to “big data,” regardless of disciplines, as well
as those in the healthcare domain. Although the popularity
of big data is recent, the underlying challenges have existed
long before and been actively pursued in health research. Big
data in health are concerned with meaningful datasets that are
too big, too fast, and too complex for healthcare providers to
process and interpret with existing tools. It is driven by contin-
uing effort in making health services more efficient and sustain-
able given the demands of a constantly expanding population
with an inverted age pyramid, as well as the paradigm shift of
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Fig. 1. (a) Cumulative number of publications referring to “big data” indexed
by Google Scholar. (b) Cumulative number of publications per health research
area referring to “big data,” as indexed in IEEE Xplore, ACM Digital library,
PubMed (National Library of Medicine, Bethesda, MD), Web of Science, and
Scopus.

delivering health services toward prevention, early intervention,
and optimal management.

In this paper, several ways of defining big data exist as a
broad term to encapsulate the challenges related to the pro-
cessing of a massive amount of structured and unstructured
data. Clearly, the size (or volume) of data is an important fac-
tor of big data. Indeed, the US healthcare system alone already
reached 150 exabytes (1018) five years ago [1]. Before long,
we will be dealing with zettabyte (1021) and yottabyte (1024)
data for countries with large populations including emerging
economies, such as China and India. This trend is due to the fact
that multiscale data generated from individuals are continuously
increasing, particularly with the new high-throughput sequenc-
ing platforms, real-time imaging, and point of care devices, as
well as wearable computing and mobile health technologies.
They provide genomics, proteomics, metabolomics, as well as
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Fig. 2. Six V’s of big data (value, volume, velocity, variety, veracity, and
variability), which also apply to health data.

long-term continuous physiological features of an individual.
In parallel, environmental factors present yet another set of
variables that can be captured by continuous sensing that are
important to population health.

However, size itself does not qualify big data. Other chal-
lenges include speed, heterogeneity, and variety of data in health.
With the versatility, diversity, and connectivity of data capturing
devices, additional data is generated at increasingly high speed,
and decision support must be made available near real time in
order to keep up with the constant evolution of technologies. In
managing an influenza pandemic, for example, heterogeneous
information from managed and unmanaged (e.g., social media,
air travels) sources can be processed, mined, and turned into
decisive actions to control the outbreak.

In healthcare, data heterogeneity and variety arise as a result
of linking a diverse range of biomedical data sources available.
Sources can be either quantitative (e.g., sensor data, images,
gene arrays, laboratory tests) or qualitative (e.g., free text, de-
mographics). The objectives underlying this data challenge are
to support the basis for observational evidence to answer clinical
questions, which would not otherwise been solved via studies
based on randomized trials alone. In addition, the issue of gen-
eralizing results based on a narrow spectrum of participants may
be solved by taking advantage of the potential of big data for
deploying longitudinal studies.

Volume, Velocity, and Variety are the three Vs in the original
definition of the key characteristics of big data in the research
report published by META Group, Inc. (now Gartner, Inc.) [2].
Since then, other factors have also been considered, including
Variability (consistency of data over time), Veracity (trustwor-
thiness of the data obtained), and Value. These characteristics
are summarized in Fig. 2 along with the key features that each
captures.

Veracity is important for big data as, for example, personal
health records may contain typographical errors, abbreviations,
and cryptic notes. Ambulatory measurements are sometimes
taken within less reliable, uncontrolled environments compared
to clinical data, which are collected by trained practitioners. The
use of spontaneous unmanaged data, such as those from social

media, can lead to wrong predictions as the data context is not
always known. Furthermore, sources are often biased toward
those young, internet savvy, and expressive online.

Last but not the least, real value to both patients and
healthcare systems can only be realized if challenges to ana-
lyze big data can be addressed in a coherent fashion. It should
be noted that many of the underlying principles of big data
have been explored by the research community for years in
other domains. Nevertheless, new theories and approaches are
needed for analyzing big health data. The total projected health
expenditure in the UK for 2016, for example, is £135.1 bil-
lion [3], which will make 18% of total public spending. The
total projected health share of gross domestic product (GDP) in
the United States is expected to reach 19.6% by 2016, yield-
ing a total spending of $4.1 trillion [4]. In these respects,
if used properly, big data can be a valuable resource that
can provide significant insights toward improving contempo-
rary health services and reducing healthcare costs. However, it
also raises major social and legal challenges in terms of pri-
vacy, reidentification, data ownership, data stewardship, and
governance.

In this paper, we will discuss some of the existing activities
and future opportunities related to big data for health. More
specifically, we will discuss its value for Medical and Health
Informatics, Translational Bioinformatics, Sensor Informatics,
and Imaging Informatics.

II. MEDICAL AND HEALTH INFORMATICS

With the ability to deal with large volumes of both
structured and unstructured data from different sources, big
data analytical tools hold the promise to study outcomes of
large-scale population-based longitudinal studies, as well as to
capture trends and propose predictive models for data generated
from electronic medical and health records. A unique oppor-
tunity lies in the integration of traditional medical informatics
with mobile health and social health, addressing both acute and
chronic diseases in a way that we have never seen before.

A. Electronic Health Records (EHRs)

EHRs describing patient treatments and outcomes are rich but
underused information. Traditional health data centres capture
and store an enormous amount of structured data concerning
a wide range of information including diagnostics, laboratory
tests, medication, and ancillary clinical data. For individual pa-
tient reports, the use of natural language processing plays an
essential role for systematic analysis and indexing of the un-
derlying semantic contents. Mining EHRs is a valuable tool for
improving clinical knowledge and supporting clinical research,
for example, in discovering phenotype information [5]. Min-
ing local information included in EHR data has already been
proven to be effective for a wide range of healthcare challenges,
such as disease management support [6], [7], pharmacovigi-
lance [8], building models for predicting health risk assess-
ment [9], [10], enhancing knowledge about survival rates [11],
[12], therapeutic recommendation [11], [13], discovering co-
morbidities, and building support systems for the recruitment of
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Fig. 3. Integration of imaging, modeling, and real-time sensing for the management of disease progression and planning of intervention procedures. This example
of thoracic aortic dissection illustrates how risk stratification and subject-specific haemodynamic modeling substantiated with long-term continuous monitoring
are used to guide the clinical decision process.

patients for new clinical trials [14]. Most of this work focused
on the analysis of very large multidimensional longitudinal pa-
tient data collected over many years. However, most clinical
databases provide low temporal resolution information due to
the difficulty in collecting rich long-term time-series data. To
bridge this gap, current clinical databases can be enhanced by
connecting with mobile health platforms, community centres, or
elderly homes such that other information can be incorporated
into the system to facilitate clinical decision making and address
unanswered clinical questions. One interesting direction will be
to build patient-specific models using data already available in
existing clinical databases, and, then, update the model with data
that can be collected outside the hospitals. In particular, some
chronic diseases are possessed with acute events that are un-
likely to be predictable solely by sporadic measurements made
within the hospitals.

Taking thoracic aortic dissection, a relatively rare disease
(3–4 per 100 000 people per year), as an example, the dis-
ease is typically manifested as a tear in the intimal layer of
the aorta, which can later on develop into either type A (in-
volving both ascending and descending aorta) or type B dis-
section (involving descending aorta only). Type-A patients
would require immediate surgical intervention, whereas for
type B dissection, it is generally considered as a chronic con-
dition requiring careful long-term control of blood pressure
(BP).

Individuals with connective tissue disorders such as Marfan
syndrome (MFS) are often more susceptible to aortic aneurysms
or tears. Large-scale population screening for this rare dis-
ease will, therefore, be useful in identifying people who are
at higher risk of developing aortic dissection. For a tear to de-
velop into type A dissection, while others into type B dissec-
tion, one hypothesis would be that it is due to different flow
patterns generated close to the tear location and across the
aorta. Although an initial model built from imaging can give
good insights into the problem, this does not take into account
progressive hemodynamic variation over time and the impact
of life style and daily activities. By incorporating ambulatory
BP profiles, it is possible to create simulation results as a lon-

gitudinal model spanning over a longer period of time for a
better understanding of disease progression as summarized in
Fig. 3.

B. Social Health

One of the primary tasks of telemedicine involves connecting
patients and doctors beyond the clinic. However, this commu-
nication has been expanded, with the involvement of social
networks, to new levels of social interaction. This new feature
has opened up new possibilities of patient-to-patient communi-
cation regarding health beyond the traditional doctor-to-patient
paradigm. One-fourth of patients with chronic diseases, such
as diabetes, cancer, and heart conditions, are now using social
network to share experiences with other patients with similar
conditions, thereby providing another potential source of big
data [15]. In addition to biological information, geolocation
and social apps provide an additional feature to understand the
behaviors and social demographics of patients, while avoid-
ing resource intensive and expensive studies of large statistical
sampling. This advantage has already been exploited by several
epidemiological studies in areas, such as influenza outbreaks
[16], [17], collective dynamics of smoking [18], and the misuse
of antibiotics [19]. Text messages and posts on online social
networks are also a valuable source of health information, e.g.,
for the better management of mental health. Compared to tra-
ditional methods, such as surveys, fluctuations and regulation
of emotions, thoughts and behaviors analyzed over social net-
work platforms, such as Twitter, offer new opportunities for the
real-time analysis of expressed mood and its context [20]. For
example, when validating against known patterns of variation
in mood, the 2.73 × 109 emotional tweets collected over a 12-
week period in a study reported by Larsen et al. [20] claimed to
find some correlation between emotion tweets and global health
estimates from the World Health Organization on anxiety and
suicide rates.

Social media and internet searches can also be combined
with environmental data, such as air quality data, to predict
the sudden increase of asthma-related emergency visits [21].
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Similar models are anticipated to help other areas of public
health surveillance.

C. Life Style, Environmental Factors, and Public Health

Climatological data, such as heat-stress and cold-related
mortality, present another dimension to predict personal health
[22], [23]. Recent remote sensing technologies and geographic
information systems allow climate data for global land areas to
be interpolated at a spatial resolution of 500 m to 1 km [24],
[25]. Achieving high-resolution measurements are necessary so
as to be able to monitor the real impact of pollution on human
well being in urban environments. In this aim, the dense grid
of wireless sensor networks facilitates the capture of spatiotem-
poral variability in toxic air pollutants [26]. Such technologies
will become increasingly important for connecting epidemic
intelligence with infectious disease surveillance and launching
effective heat response plans [27]–[29]. Similarly, patterns of
social factors influencing unhealthy habits such as smoking can
be studied using the collective dynamics of social networks [18].
As an example of this, Christakis and Fowler found that smok-
ers mostly belonged to the periphery of social networks, and by
the time of quitting, they behaved collectively [18]. In addition,
smokers with high education tended to have a greater influence
on their peers toward smoking behavior, compared to less edu-
cated smokers. As regards psychological states, emotional levels
denoting hostility and stress, expressed in social media such as
Twitter twits, can serve as predictors of heart disease mortality
per geographical area [30].

A mobile phone is an excellent platform to deliver personal
messages to individuals to engage them in behavioral changes to
improve health. Although at present, there is a limited evidence
that mobile messaging-based interventions support preventive
health care for improving health status and health behavior out-
comes [31], a better understanding of how this platform can
be used is an interesting area to explore. For example, type-2
diabetes is generally thought to be preventable by lifestyle mod-
ification; however, successful lifestyle intervention programs
are often labor intensive. It has been shown that mobile phone
messaging can be used as an alternative to deliver motivational
and educational advices for changing population lifestyles [32].

III. TRANSLATIONAL BIOINFORMATICS

Translational bioinformatics, a field that emerged after the
first human genome mapping, focuses on bridging molecular
biology, biostatistics, and statistical genetics with clinical in-
formatics. The field is evolving at a tremendously fast pace,
and many related areas have been proposed. Amongst them,
pharmacogenomics is a branch of genomics concerned with in-
dividuals’ variations to drug response due to genetic differences.
The area is important for designing precision medicine in future.

New discoveries, resulting from the Human Genome Project,
are now frequently applied to develop improved diagnostics,
prognostics, and therapies for complex diseases, which is known
as “translational genomics”. In particular, the sequencing cost
per genome has markedly reduced over the last decade, accord-
ing to the data presented by the National Institutes of Health

Fig. 4. a) Number of research studies sequencing DNA or genomes (source:
PubMed, Web of Science, Scopus, IEEE, ACM). b) Sequencing cost per human-
sized genome (source: National Human Genome Research Institute, NHGRI).
Total volume of genomic data per year reported by completed studies for c)
eukaryotes and d) prokaryotes in 1e2 GB (source: National Center for Biotech-
nology Information).

(NIH) Human Genome Research Institute as shown in Fig. 4.
This further gives rise to new opportunities for personalized
treatment and risk stratification.

On the other hand, research in bioinformatics has broadened
from solely sequencing the genome of an individual to also
measuring epigenomic data (i.e., above the genome), which in-
clude processes that alter gene expression other than changes
of primary DNA sequences, such as DNA methylation and his-
tone modifications. Information technologies for acquiring and
analyzing biological molecules other than the genome, for ex-
ample, transcriptome (the total mRNA in a cell or organism),
proteome (the set of all expressed proteins in a cell, tissue, or
organism), and metabolome (the total quantitative collection
of low molecular weight compounds, metabolites, present in a
cell or organism that participate in metabolic reactions) are also
needed for future advances in the field. To summarize, OMICS
aims at collectively characterizing and quantifying groups of
biological molecules that translate into the structure, function,
and dynamics of an organism. The OMICS profile of each
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Fig. 5. Outline of the “OMICS” approach for studying disease mechanisms. OMICS aims at collectively characterizing and quantifying groups of biological
molecules that translate into the structure, function, and dynamics of an organism. The OMICS profile of each individual, including the genome, transcriptome,
proteome, and metabolome, should be eventually linked up with phenotypes obtained from clinical observations, medical images, and physiological signals.
Different acquisition technologies are required to collect data at each biological level. Interaction within each level and across different levels as well as with the
environment, including nutrition, food, drugs, traditional Chinese medicine, and gut microbiome presents grand challenges in future bioinformatics research.

individual should eventually be linked up with phenotypes ob-
tained from clinical observations, medical images, and physio-
logical signals (see Fig. 5).

A. Pharmacogenomics

A single whole human genome obtained by the
next-generation sequencing (NGS) is typically 3 GB. Depending
on the average depth of coverage, this can vary up to 200 GB,
making it a clear source of big data for health. Nevertheless,
only about 0.1% of the genome is different amongst individu-
als, which accounts for roughly 3 million variants. From a signal
processing point of view, the data can be considered as highly
compressible; however, in practice, compressed genotyping is
not widely adopted at present.

Whole genome sequencing by NGS is important to the study
of complex diseases such as cancer. It has been a long-standing
problem in cancer treatment that drugs often have heterogeneous
treatment responses even for the same type of cancer, and some
drugs only show profound sensitivity in a small number of pa-
tients [33], [34]. Currently, large-scale personal genomics and
pharmacogenomics datasets have been generated to uncover
unique signalling patterns of individual patients and discover
drugs that target these unique patterns. These include cancer
cell line databases of nonspecific cancer cell types [35], [36]
or a specific cancer cell type such as breast cancer [37]. The
Cancer Genome Atlas Project of the NIH has tested the per-
sonal genomic profiles of over 10 000 individuals across over
20 types of cancer [38], and uncovered new cancer subtypes
based on those profiles [39]. Patients with distinct genomics
aberrations are believed to be responsible for the variability of
drug response [40]. Large-scale datasets as such can be used to
enable drug repositioning [41], [42], predict drug combinations
[43], [44], and delineate mechanisms of action [45]. They are

becoming an important component in drug development [46],
[47]. It is, therefore, possible to design precision medicine for
individual patients based on their genomics profiles.

Pharmacogenomics has gone beyond studying individuals’
drug response based on genome characteristics (e.g., copy
number variations and somatic mutations) and now
incorporates additional transcriptomic and metabolic features
such as gene expression, considering factors that influence the
concentration of a drug reaching its targets and factors associ-
ated with the drug targets. Since the gene expression profiles
of cell lines are known to vary considerably in the process of
prolonged culture under different culture conditions and tech-
niques, the use of gene expression from cell lines for predic-
tion of drug response in the patient is currently controversial.
A recent algorithm for predicting in vivo drug response with
the patient’s baseline gene expression profile achieved 60%–
80% predictive accuracy for different cases [48]. Other research
[49], [50] studied drug response using immunodeficient mice
xenografted with human tumors, which have the advantage of
potentially studying both genetic and nongenetic factors that
affect cancer growth and therapy tolerance [51].

Similar pharmacogenomics studies are also important to
vascular diseases. Although antiplatelet agents such as clopi-
dogrel are widely prescribed for diseases such as acute coro-
nary syndrome (ACS), their responses vary greatly from person
to person and approximately 30% of the patients may exhibit
resistance to clopidogrel [52], 53]. Since clopidogrel is acti-
vated by the citocromo P450 (CYP) enzyme system to active
metabolite, CYP2C19 loss-of-function (LOF) allele(s) affects
the responsiveness of clopidogrel, but not the new antiplatelet
agents (prasugrel and ticagrelor). Therefore, it is cost effec-
tive to use the genotype-guided method to screen out carrier of
CYP2C19 LOF allele(s) when using antiplatelets in high-risk
ACS patients [54].
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B. Translational Genomics

Although comprehensive genotyping is still relatively recent,
it has a high potential for genetic stratification in patient screen-
ing, for instance, in the case of factors arising from genotyp-
ing, such as high-risk DNA mutations [55], milk and gluten
intolerance, and muscovisciosis. Genetics combined with phe-
notypic information provided by EHR may help to provide
greater insights into low penetrant alleles [56]. For example, it
is well known that mutations of fibrillin 1 (FBN1) cause MFS.
Nevertheless, the aetiology of the disease leads to marked clin-
ical variability of MFS patients of the same family as well as
different families [57]. Combining genetic tests of FBN1 and a
series of related genes (TGFBR1, TGFBR2, TGFB2, MYH11,
MYLK1, SMAD3, and ACTA2) will help to screen out patients
who are more likely to develop aortic aneurysms that lead to dis-
sections [58]. Further studies on these high-risk patients based
on morphological images of the aorta may provide insight into
the rate of disease development.

Another potential area for translational genomics is to study
the gene networks of different syndromes of the same person in
order to better understand how these syndromes are interrelated.
For example, this has been used to study different genes on chro-
mosome 21 (HSA21) and their role in Down’s Syndrome (DS),
as well as to understand the underlying reason why nearly half
of DS patients exhibit an overprotection against cardiac abnor-
malities related to the connective tissue [59]. One hypothesis is
based on the recent evidence that there is an overall upregulation
of FBN1 in DS (which is normally down regulated in MFS) [59].
The construction of genetic networks will, therefore, provide a
clearer picture of how these syndromes are related. By under-
standing the gene networks of the related syndromes, it may be
possible to provide specific gene therapy for the related diseases.

C. OMICS and Large-Scale Databases

In addition to the Human Genome Project, several large-scale
biological databases launched recently will further facilitate the
study of disease mechanisms and progressions, particularly at
the system level as outlined in Fig. 5. The Research Collabora-
tory for Structural Bioinformatics Protein Data Bank [60], [61]
is a worldwide archive of structural data of biological macro-
molecules, providing access to the 3-D structures of biological
macromolecules, as well as integration with external biological
resources, such as gene and drug databases [62]. ProteomicsDB
[63] is another example, encompassing mass spectrometry of the
human proteome acquired from human tissues, cell lines, and
body fluid to facilitate the identification of organ-specific pro-
teins and translated long intergenic noncoding RNAs, with due
consideration of time-dependent expression patterns of proteins
[63].

Parallel to these developments, the Human Metabolome
Database [64] consists of more than 40 000 annotated metabo-
lites entries in the latest version released in 2013. It provides
both experimental metabolite concentration data and analyses
through mass spectrometry and Nuclear Magnetic Resonance
(NMR) spectrometry [64]. Databases as such are believed to
greatly facilitate the translation of information into knowledge
for transforming clinical practice, particularly for metabolic-

Fig. 6. a) Evolution of the number of patents published in the area of mobile
health (source: European Patent Office); b) evolution of the number of smart-
phones sold per year in million units (source: Gartner); c) evolution of the cost
of Internet-enabled sensors in dollars (source: Business Intelligence Interna-
tional); d) number of mobile health apps published in Google play and iTunes
as of May 2015.

related diseases, such as diabetes and coronary artery diseases
[65]. In fact, metabolomics has emerged as an important re-
search area that does not only include endogenous metabolites
of the human body but also chemical and biochemical molecules
that can interact with the human body [66]. Specifically, on-
going efforts have been placed for fingerprinting metabolites
from food and nutrition products [67], drugs [68], and tradi-
tional Chinese medicine [69], as well as molecules produced
by the gut bacterial microbiota [67], [70]. These will eventually
help us to better understand the interaction between the host,
pathogen and environment.

The availability of the genomic, proteomic, and metabolic
databases allows a better understanding of the development of
complex diseases such as cancer. They also allow the search
of new biomarkers using different pattern mining and cluster-
ing techniques [68]–[71]. The clusters can be either partitional
(hard) or hierarchical (tree-like nested structure). These meth-
ods can be further accelerated by using multicore CPU, GPU,
and field-programmable gate arrays with parallel processing
techniques.

IV. SENSOR INFORMATICS

Advances in sensing hardware have been accelerating in
recent years and this trend shows no signs of slowing down
[72]. According to the analysis in the BI Intelligence report
(Garner) published at the end of 2014, the price of one MEMS
sensor has decreased by half from US$ 1.30 to US$ 0.60 dur-
ing the last decade as shown in Fig. 6. This has partly driven
a paradigm shift of future internet applications toward what
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Fig. 7. Big sensing data in health are all around us, enabled by technologies
ranging from nano- and microelectronics, advanced materials, wearable/mobile
computing, and telecommunication systems as well as remote sensing and ge-
ographic information systems. The inner loop presents technologies for sensor
components, while the middle loop presents devices and systems potentially own
by each individual or household. The outer loop presents sensing technologies
required at the community and public health level.

is termed “the Internet of Things” (IoT). Moreover, enabling
technologies ranging from nano- and microelectronics, ad-
vanced materials, wearable/mobile computing, and telecommu-
nication systems, as well as remote sensing and geographic
information systems have made it possible for sensing health
information to be collected pervasively and unobtrusively [73]
as illustrated in Fig. 7.

A. Wearable, Implantable, and Ambient Sensors

As outlined in a recent review article [15], three factors, in
particular, have contributed to the rapid uptake of wearable de-
vices. These include increased data processing power, faster
wireless communications with higher bandwidth, and improved
design of microelectronics and sensor devices [15]. Example
platforms include earlier systems with limited connectivity and
single sensing element developed solely for use in research lab-
oratories to more recent ambient sensors as well as easy-to-wear
wearable/implantable devices equipped with continuous multi-
modal sensing capabilities and support for data fusion deployed
in a wide range of clinical applications [74]–[76]. Furthermore,
parallel developments in miniaturized sensor embodiment, mi-
croelectronics and fabrication processes, and the availability of
wireless power delivery have made miniaturized implantable
sensors increasingly versatile [73].

Implantable sensors address the challenges of both acute and
chronic disease monitoring by providing a means of captur-
ing critical events and continuous streamlining of health infor-
mation. Recent advances in microelectronics and nanotechnol-
ogy have greatly improved the sensitivity of different sensors.
For example, based on metal nanoparticle arrays and single

nanoparticles, the sensitivity of localized surface plasmon reso-
nance optical sensors can be pushed toward the detection limit
of a single molecule [77]. This has enabled the development
of the next generation of high-throughput sequencing technolo-
gies, as well as the detection of biomolecules, such as glucose,
lactate, nitric oxide, and sodium ions [78]. For diabetic patients,
a myriad of new sensors for both wearable and implantable ap-
plications have been developed, which provide continuous mon-
itoring and corresponding response to the time-varying glucose
level, which is well known to be diet dependent [79]–[81].

There is a clear trend of moving from the scenario where
a centralized large computing infrastructure is shared between
multiple users toward one where each individual possesses mul-
tiple smart devices, most of which are sufficiently small to be
wearable or implantable such that the use of these sensing de-
vices will not affect normal daily activities. These sensor sys-
tems have the potential to generate datasets which are currently
beyond our capabilities to easily organize and interpret [82].
Meanwhile, healthcare services delivered via ambient intelli-
gence consisting of ambient sensors and objects interconnected
into an integrated IoT represent a promising and supportive so-
lution for the ageing society. It is important that such systems
should take into account the sensor, service, and system integra-
tion architecture [83]. Such distributed systems require decen-
tralized inference algorithms, which are frequency explored,
either in the framework of parametric models, in which the
statistics of phenomena under observation are assumed to be
known by the system designer, or nonparametric models, when
the underlying data is sparse and prior knowledge is limited
[84], [85].

B. From Sensor Data to Stratified Patient Management

Physiological sensing by these smart devices can be long
term and continuous, imposing new challenges for interpreting
their clinical relevance. For example, the current clinical prac-
tice defines hypertension based on measurements taken during
infrequent hospital visits. Although automated oscillometric BP
measurement devices are now available, studies in these areas
are often limited to taking BP once every hour over a 24-hr
period. With the newly emerging ambulatory devices [75], a
comprehensive BP-related profile of an individual can be made
available. Nevertheless, the interpretation of these data is non-
trivial, since in many situations, they may not be equivalent
to the clinical BP readings that are currently being used by
practitioners [86], [87]. The signals, however, carry underlying
physiological meanings that, if properly processed and man-
aged, can be used as additional information for understanding
uncontrolled hypertension or to enhance the current hyperten-
sion management schemes. In addition to vital sign monitoring,
smart implantable sensors provide a promising technology to
monitor postoperative complications, such as slow tissue heal-
ing and infections. Moreover, smart implants can also have a
reactive role by delivering drugs for chronic pain [88] and act-
ing as brain stimulators for neurological diseases including re-
fractory epilepsy [89] and Parkinson’s disease [90]. This makes
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Fig. 8. Different imaging modalities across the electromagnetic spectrum. They are playing an increasingly important role in early diagnosis, treatment planning,
and deploying direct therapeutic measures.

smart implants not just another resource for data collection but
also an integral part of early intervention.

With increased volume and acquisition speed of data from
both wearable and implantable sources, new automated algo-
rithms are needed to reduce false alarms such that they are suf-
ficiently robust to support large-scale deployment, particularly
for free-living environments [91]. Automatic classifications are
necessary since the dataset sizes are beyond the capability of
manual interpretation within a reasonable time period. New
compression-based measures are, therefore, proposed as high-
quality cloud computing services to reduce the computation
time for the automated classification of different types of car-
diac arrhythmia [92]. In many situations, measurements must
be interpreted together with the context under which the data is
collected. For example, many physiological parameters, such as
BP or episodes of gastroesophageal reflux disease are posture
dependent [93], [94], which can be captured by inertial sensors.
Therefore, multimodal integration and context awareness are
essential to the analysis of pervasive sensing data.

C. Mobile Health

Nowadays, smart phones have become an inseparable
companion for more than 1.75 billion users. The data gener-
ated by the use of smart phones provides highly descriptive and
continuous information anytime and anywhere. The penetration
of smartphones, which has reached over 200% of the total pop-
ulation in some cities such as Hong Kong, makes it logical to
use it as a personal logging device of health information. The
new generation of smartphones has a wide range of health apps
with standardized protocol to connect to sensors provided by
different companies. They can potentially serve as a platform to
centralize health data, from which additional new information
that was previously untraceable by individual sensors can now
be mined. In fact, earlier versions of mobile phones consist of
only simple motion sensors, while newer models are packed
with sophisticated sensors that facilitate the extraction of dif-
ferent types of vital signs, even without the need for external
devices. These sensors, when properly used, can provide valu-
able health information for the management of many long-term

illnesses. For example, the video cameras of mobile phones can
be used to collect heart rate and heart rate variability [95], em-
bedded accelerometers and gyroscopes to track energy expendi-
ture [96]. Furthermore, the pulse transmission time as measured
by time delays between electrocardiographic and photoplethys-
mographic sensors can be used as a surrogate measure for BP
[75], [97]. This information can be calculated from two devices
that connect with a mobile phone independently, one with an
electrocardiographic sensor and the other one with a photo-
plethysmographic sensor. When connected to health providers,
a closer level of interaction in healthcare can be maintained
toward greater personalization and responsiveness [98].

V. IMAGING INFORMATICS

The ever-increasing amount of annotated and real-time
medical imaging data has raised the question of organizing, min-
ing, and knowledge harvesting from large-scale medical imag-
ing datasets. While established imaging modalities are getting
pervasive, new imaging modalities are also emerging. These
modalities are rapidly filling up the entire EM spectrum as
shown in Fig. 8. Many of these imaging techniques are now
geared toward real-time in situ or in vivo applications, mak-
ing multimodality imaging an exciting yet challenging big data
management problem.

Recent developments in imaging are progressing in
multiple frontiers. First, there is relentless effort in making exist-
ing imaging modalities faster, higher resolution, and more versa-
tile. Take cardiovascular magnetic resonance imaging (MRI) as
an example, imaging sequences are no longer limited to morpho-
logical and simple tissue characterization (e.g., via T1, T2/T2∗

relaxation times). Details concerning vessel walls, myocardial
perfusion and diffusion, and complex flow patterns in vivo can
all be captured. When facilitated with new minimally invasive
interventional techniques, novel drugs and other forms of treat-
ment, MRI now serves as a therapeutic and interventional aid,
rather than solely a diagnostic modality. Similar advances can
also be appreciated for ultrasound, computed tomography (CT),
and other imaging modalities. Moreover, extensive efforts in
combining different imaging modalities, not by postprocessing,
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but at the hardware level, e.g., MRI/PET and PET/CT, open up a
range of new opportunities, particularly for oncological imaging
and targeted therapy.

A. Imaging Across Scales

There have been extensive research efforts for developing new
technologies that probe deeper into the biological system, from
tissue (up to micrometer) to the protein level (micronanometer).
In particular, recent advances in stimulated emission depletion
fluorescence microscopy allow the generation of 3-D superreso-
lution images of living biological specimens [99]. It overcomes
the classical optical resolution limit of light microscopy and
pushes the spatial resolution of optical microscope toward the
nanoscale [100]–[102]. This opens up the possibility of imaging
not only the fine morphological structure of many organ systems
(e.g., microfibrils that form blood vessels), but also subcellular
behavior and molecular signaling. The use of quantum dots or
qdots also pushes the boundary of imaging resolution, allowing
the study of intracellular processes at molecular levels (20–
40 nm) [103]. Another class of fluorescent labels is made by
conjugating qdots with biorecognition molecules, which emis-
sion wavelength can be tuned by changing the particle size such
that a single light source can be used for simultaneous excita-
tion of all different-sized dots [104]. These technologies have
already been used for immunofluorescence labeling of tissues,
fixed cells, and membrane proteins, such as cancer markers
[105], the hybridization of chromosomes [106], the labeling of
DNA [107], and contrast-enhanced image-guided resection of
tumors [108].

B. From Morphology to Function

The understanding of many biological processes requires the
identification and representation of structure–function relation-
ships. This expands across different spatial scales, namely pro-
teins, cells, tissues, and organs. For instance, haemodynamic
analysis combined with contractile analysis, substantiated with
myocardial perfusion data, can be used to elucidate the un-
derlying factors associated with cardiac abnormalities. Starting
with modeling, the tissue and scaling up toward a more specific
description of organ behaviors has made it possible to create in-
tegrative models of heart function [109], [110]. These architec-
tural models fuse information such as fibrous-sheet geometrical
models of tissue and membrane currents from ion channels at
the subcellular level [111].

Amongst all organs that have been studied to define their
function from its morphology, the brain is the one that has
received the most attention recently. This is motivated by the
fact that brain structure and function are keys to understand
cognitive processes, hence the need for unveiling neuronal
behavior from the molecular level up to the functioning of
neural circuits. Super-resolution fluorescence microscopy has
been applied to study neural morphology and their subcellular
structures. These techniques may enable to achieve a resolution
as high as 20 nm [112]. Needless to say, the myriad of markers
necessary for each single type of cell and synapse would result
in an enormous database.

Methods, such as functional MRI (fMRI) and functional dif-
fusion tension imaging provide flexible information in the form
of macrostructural, microstructural, and dense connectivity ma-
trices. Improved fMRI sampling methods produce time-series
data of multiple blood oxygenation-level-dependent volumes of
the brain [113]. In addition, there is an increasing trend in mak-
ing neuroimaging multimodal. In some studies, several modal-
ities are used to compensate the benefits and tradeoff of one
another. Furthermore, information from lower cost and rapid
noninvasive methods, such as wearable electroencephalogra-
phy and functional near-infrared spectroscopy allows gathering
brain functional data for examining cortical responses due to
more complex tasks.

An indirect way of inferring functioning consists of a combi-
nation of imaging modalities as well as medical records, demo-
graphics, and lab test results. In order to maximize the informa-
tion contained in these heterogonous sources, linking different
metadata with features extracted from image modalities is key
to characterize the structure, function, and progression of dis-
eases. Solving this challenge presents a unique opportunity for
bridging the semantic gap between images and more effective
prediction, diagnosis, and treatment of diseases. However, this
issue entails many independent yet interrelated tasks, such as
generating, segmenting, and extracting enormous amounts of
quantifiable spatial objects and features (nuclei, tissue regions,
blood vessels, etc.). This requires the implementation of effec-
tive and optimized querying systems [114] in order to reduce
the computational complexity of handling these data. Fig. 9 rep-
resents a schema of what big data means for imaging, as defined
by both structural and functional data.

Existing efforts in improving the spatiotemporal constraints
of brain imaging are rocketing the computational resources
needed for neuroimaging studies. RAM memory is an important
resource for neuroimaging analysis. For instance, to perform
subject-, voxel- and trial-level analysis, a significant amount of
fMRI images needs to be loaded into memory. Fig. 10 illus-
trates the evolution of the required amount of RAM reported
by neuroimaging-related studies in pubmed.org. From 2013 on-
ward, there has been a fast increase in the amount of RAM re-
ported (from 8 to 60 GB). If this trend is confirmed, the amount
of memory used in a study could reach values of around 260 GB
by 2020.

C. Research Initiatives to Understand the Human Brain

Another active topic in imaging is to study the functional
connectivity of the human brain, which is fundamental to both
basic and applied neurobiological research [115]. Both, U.S. and
European Union (EU) have launched large-scale Human Brain
projects in recent years with an aim to unravel the organ’s com-
plexity. The NIH-funded Human Connectome Project (HCP),
with a funding scale of 30 million US$, aims at leveraging
the latest advances in DTI to study brain areas in relation to
their functional, structural, and electrophysiological connectiv-
ity [116]. The idea behind the HCP is that neural connectivity is
as unique as the fingerprint to each individual. Genetics, environ-
mental influences, and life experience are factors contributing to
the formation of each individual’s neural circuitry [117]. This is
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Fig. 9. Processing schema of imaging toward big data. Nonfunctional medical imaging is acquired and processed to serve as a model to register organ activity in
the resulting functional imaging. Results from image processing and functional imaging are stored in databases with specific metadata protocols. Large-scale big
data analysis is performed in these databases linking then the features extracted through medical imaging processing and functional imaging.

Fig. 10. Amount of RAM needed and forecasted to be used in neuroimaging
studies.

supported by genome-wide association studies that link genetic
variants with neurological and psychiatric disorders that have
abnormal brain connectivity, e.g., variants at human clusterin
(CLU) on chromosome 8 and complement receptor 1 on chro-
mosome 1 are associated with Alzheimer’s disease [118] as well
as those specific markers associated with schizophrenia [119]
and dementia [120].

Recently, the EU commission is providing €1.1 billion for
the human brain project, which aims to develop a biological
model of the brain that simulates different aspects of the ner-
vous system, including point neuron models, neural circuitry,
and cellular models at different scales. The main idea is to
provide a simulation platform for theoretical neuroscientists to
study how the brain processes information. For this purpose, it
would require simulating all functions, architecture, and chemi-
cal properties for the 86 billion neurons and trillions of synapses
of the human brain as estimated by Azevedo et al. [121]. There-

fore, the aim of the project is both ambitious and controversial.
A panel review disclosed earlier this year, after the project had
been launched for 18 months, urges the project team to adjust
its governance and scientific direction [122]. Specifically, the
report emphasizes that it is overambitious for whole-brain sim-
ulation, and that the project should consider the perspective of
other sciences involved in the study of how the brain works, such
as neuropsychology or neuroimaging. It is hope that the adjusted
aim could complement the U.S. BRAIN initiative [122].

VI. DISCUSSION

According to International Data Corporation, worldwide
spending on information and communication technology will
reach 5 trillion US$ by 2020, and at least 80% of the growth
will be driven by platform technologies, which encompass mo-
bile technology, cloud services, social technologies, and big
data analytics. Table I shows a selection of studies illustrating
the potential of applying big data to health and the considerable
increase in data complexity and heterogeneity in the field.

Applying big data to health is not only important to biolog-
ical and physical sciences, but equivalently important to what
has traditionally been considered as “soft” sciences, such as
behavior and social sciences [123]. It is well known that hu-
man behavior is a significant driver for environmental problems,
such as climate change, air pollution, and medical issues. Nev-
ertheless, there are few studies that actually study these issues
systematically and quantitatively. With the advanced technolo-
gies reviewed in this paper, it is now possible to study human
behavior, including their physical actions, observable emotions,
personality, temperament, and social interaction patterns, all of
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TABLE I
EXAMPLES OF STUDIES ILLUSTRATING THE POTENTIAL OF BIG DATA IN HEALTH

Area Sample Methods Data type Ref

B 2708 subjects Biostatistics Gene expression data [125]
HI (EHR) 2974 patients Machine Learning (NLP) Patient records and laboratory results [126]
HI (EHR) 42 160 control 8,549 patients Statistics Categorical database of patient records [127]
B 876∗ subjects Genomics Gene expression data [128]
S 200∗ patients Machine Learning Wearable sensor and annotation data [129]
HI 3000 animal sample Statistics Veterinary records of health assessment [130]
HI 745 053 patients Machine Learning Preoperative risk data and patient records. [131]
IMG 1414 subjects Network Analysis Resting state of neural fMRI data [132]
IMG EHR 228∗ patients Machine Learning PET scans and patient records [133]
HI (SN and ENV) 465 million records Machine Learning Social network and air quality data. [20]
HI (SN) 686 003 Social network users Machine Learning (NLP) Emotions in users’ news feeds during 20 years [134]

Acronyms: B (Bioinformatics), HI (Health Informatics), S (Sensing), IMG. (Imaging), EHR (Electronics Health Records), ENV (Environmental
data), SN (Social Network), NLP (Natural Language Processing).
∗Although these samples do not make more than 1000 instances, they can be considered large for the particular area of study.

which are conventionally difficult to measure and quantify. This
will further help us to understand the mechanisms of disease de-
velopment, and how these diseases spread and affect one another
at the community level.

Health informatics applications are known to generate
datasets that are complicated to store, untangle, organize, pro-
cess, and, above all, interpret. From a scientific perspective,
studies with a limited cohort of patients and controls can only
serve as a proof-of-concept for future treatments and diagnoses.

Close to 3000 scientific studies indexed in pubmed.org since
2005 state that their conclusions should be “interpreted with
caution” due to issues relative to statistical sampling. Large lon-
gitudinal and multimodal studies are necessary to discover the
causes, risk, and improvement factors of several health diseases,
such as cancer, Parkinson’s, Alzheimer, and arthritis.

It must be emphasized that the interpretation of big data
should be handled with care in all situations. In particular,
proven cases show large discrepancies between the predicted
and actual values. After all, predicting the future is always diffi-
cult. Despite its early success, Google Flu Trend (GFT) in 2013
was predicting more than twice the proportion of doctor visits
for influenza-like illness than that of the Centers for Disease
Control and Prevention [124]. There was a number of attributes
to this problem which should be avoided in future studies in
this area. First, the quality of the data collected should not be
comprised with the quantity of the desired data. In many prob-
lems that researchers are dealing with, the number of parameters
considered in a model may be exemplarily overfitting. Thus, the
trained model was unable to predict future trends in this example
because it put too much focus on the idiosyncrasies of the data
at hand. Moreover, specific datapoints (outliers) may dominate
in the trained model and those may have no predicting values.
For the case of GFT, the nonseasonal 2009 influenza A–H1N1
pandemic was also incorporated in the model, which makes it
partly a flu detector and partly a winter detector. Second, algo-
rithm dynamics can induce errors in the prediction, particularly
for analyzing big data. Often, both the data collected and the
algorithms are changing at different paces. Capturing a specific
instance can, therefore, be difficult due to the enormous amount
of variations.

A. Processing Big Data

A bottleneck in analyzing big data is to obtain fast inference in
real time from large and high-dimensional observations. For in-
stance, high-dimensional spaces may arise from an extensive set
of biomarkers [135], health attributes, and sensor fusion [136].
From a software point of view, processing big data is usually
linked to parallel programming paradigms such as MapReduce
[137]. Several open-source frameworks such as Hadoop have
been considered to store distributed databases in a scalable ar-
chitecture, as a basis for tools (e.g., Cascading, Pig, Hive) that
allow developing applications to process vast amounts of data
on commodity clusters. However, when combined with the con-
tinuous streams of pervasive heath monitoring data, this also
requires capacities for iterative and low-latency computations,
which depends on sophisticated models of data caching and
in-memory computation.

In addition to the processing architecture, machine-learning-
based data analysis also requires specific tuning to learn a
classifier or repressor over large-scale datasets. Dimensional-
ity reduction and feature selection can help us to cope with the
curse of dimensionality. Nevertheless, whether supervised or
unsupervised, these algorithms also require the regular imple-
mentation of a learning process to obtain a mapping or a set
of maximally informative dimensions. Some machine learning
methods, such as deep learning, involve learning several layered
transformations of the data in order to find the best high-level
abstraction for the problem at hand, mimicking the way neuro-
science explains learning [138], [139]. Most machine learning
techniques involve learning a set of model parameters that need
to be found by means of optimization. The complexity of this
learning process typically increases when dealing with big data.
When the number of observations grows to infinity, sample-by-
sample iterative parameter learning methods can be a solution
[140]. Another interesting option for scalable learning is to in-
crementally generate the set of required parameters or update
the model structure as long as new data are being added [141],
[142]. Online methods of variable selection and regularization
are recommended to deactivate spurious variables in order to
ease this scalability to large dimensions during learning [143],
[144].
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B. Data Privacy and Security

The emergence of big data for health raises additional chal-
lenges in relation to privacy, security, data ownership, stew-
ardship, and governance. Personal data, which is regarded as
the “New Oil” of the 21st century as coined during the 2011
World Economic Forum [145], are being generated at a tremen-
dously fast speed due to the launch of many new intelligent
devices, sensors, networks, and software applications. While
these datasets often used to be generated and stored at a cen-
tralized location, today they are often distributed over various
servers and networks. In the healthcare domain, data privacy
is of utmost importance as regulated by laws in countries with
large population. Closely related to the privacy issue is that data
must be linked to the right person to ensure correct diagnosis
and treatment. Therefore, the collected data about an individual
must be uniquely tagged with an identifier. Furthermore, data
security should be ensured at all levels of the healthcare system,
including at the sensor level at which the data is collected [146].

VII. CONCLUSION

Big data can serve to boost the applicability of clinical re-
search studies into real-world scenarios, where population het-
erogeneity is an obstacle. It equally provides the opportunity
to enable effective and precision medicine by performing pa-
tient stratification. This is indeed a key task toward personal-
ized healthcare. A better use of medical resources by means of
personalization can lead to well-managed health services that
can overcome the challenges of a rapidly increasing and aging
population. Thus, advances in big data processing for health in-
formatics, bioinformatics, sensing, and imaging will have a great
impact on future clinical research. Another important factor to
consider is rapid and seamless health data acquisition, which
will contribute to the success of big data in medicine. Specif-
ically, sensing provides a very solid set of solutions to fill this
gap. Frequencies of health data acquisition still involve a slow
and complex process requiring the involvement of special health
personal and laboratories. In this context, faster and unobtrusive
health data can be provided by means of pervasive sensing. The
use of sensors means the capacity of covering large periods of
continuous monitoring without the need for performing spo-
radic screening, which may only represent a narrow picture of
the development of a disease. However, the fact of deploying
continuous sensing over a large population will result in a large
amount of information that requires both on-node data abstrac-
tion and distributed inference. From a population level, one’s
unfortunate past can provide significant insight into forecasting
and preventing the same incident from occurring in others. Last
but not the least, the governmental policy and regulation are
required to ensure privacy during data transmission and storage,
as well as during subsequent data analysis tasks.
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Abstract—This paper provides an overview of recent
developments in big data in the context of biomedical and health
informatics. It outlines the key characteristics of big data and
how medical and health informatics, translational bioinformat-
ics, sensor informatics, and imaging informatics will benefit from
an integrated approach of piecing together different aspects of
personalized information from a diverse range of data sources,
both structured and unstructured, covering genomics, proteomics,
metabolomics, as well as imaging, clinical diagnosis, and long-term
continuous physiological sensing of an individual. It is expected that
recent advances in big data will expand our knowledge for testing
new hypotheses about disease management from diagnosis to pre-
vention to personalized treatment. The rise of big data, however,
also raises challenges in terms of privacy, security, data ownership,
data stewardship, and governance. This paper discusses some of
the existing activities and future opportunities related to big data
for health, outlining some of the key underlying issues that need to
be tackled.

Index Terms—Big data, bioinformatics, health informatics, med-
ical imaging, medical informatics, precision medicine, sensor
informatics, social health.

I. INTRODUCTION

THE term “big data” has become a buzzword in recent
years, with its usage frequency having doubled each year

in the last few years according to common search engines.
Fig. 1 illustrates the fast increase in the number of publica-
tions referring to “big data,” regardless of disciplines, as well
as those in the healthcare domain. Although the popularity
of big data is recent, the underlying challenges have existed
long before and been actively pursued in health research. Big
data in health are concerned with meaningful datasets that are
too big, too fast, and too complex for healthcare providers to
process and interpret with existing tools. It is driven by contin-
uing effort in making health services more efficient and sustain-
able given the demands of a constantly expanding population
with an inverted age pyramid, as well as the paradigm shift of
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Fig. 1. (a) Cumulative number of publications referring to “big data” indexed
by Google Scholar. (b) Cumulative number of publications per health research
area referring to “big data,” as indexed in IEEE Xplore, ACM Digital library,
PubMed (National Library of Medicine, Bethesda, MD), Web of Science, and
Scopus.

delivering health services toward prevention, early intervention,
and optimal management.

In this paper, several ways of defining big data exist as a
broad term to encapsulate the challenges related to the pro-
cessing of a massive amount of structured and unstructured
data. Clearly, the size (or volume) of data is an important fac-
tor of big data. Indeed, the US healthcare system alone already
reached 150 exabytes (1018) five years ago [1]. Before long,
we will be dealing with zettabyte (1021) and yottabyte (1024)
data for countries with large populations including emerging
economies, such as China and India. This trend is due to the fact
that multiscale data generated from individuals are continuously
increasing, particularly with the new high-throughput sequenc-
ing platforms, real-time imaging, and point of care devices, as
well as wearable computing and mobile health technologies.
They provide genomics, proteomics, metabolomics, as well as

2168-2194 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Six V’s of big data (value, volume, velocity, variety, veracity, and
variability), which also apply to health data.

long-term continuous physiological features of an individual.
In parallel, environmental factors present yet another set of
variables that can be captured by continuous sensing that are
important to population health.

However, size itself does not qualify big data. Other chal-
lenges include speed, heterogeneity, and variety of data in health.
With the versatility, diversity, and connectivity of data capturing
devices, additional data is generated at increasingly high speed,
and decision support must be made available near real time in
order to keep up with the constant evolution of technologies. In
managing an influenza pandemic, for example, heterogeneous
information from managed and unmanaged (e.g., social media,
air travels) sources can be processed, mined, and turned into
decisive actions to control the outbreak.

In healthcare, data heterogeneity and variety arise as a result
of linking a diverse range of biomedical data sources available.
Sources can be either quantitative (e.g., sensor data, images,
gene arrays, laboratory tests) or qualitative (e.g., free text, de-
mographics). The objectives underlying this data challenge are
to support the basis for observational evidence to answer clinical
questions, which would not otherwise been solved via studies
based on randomized trials alone. In addition, the issue of gen-
eralizing results based on a narrow spectrum of participants may
be solved by taking advantage of the potential of big data for
deploying longitudinal studies.

Volume, Velocity, and Variety are the three Vs in the original
definition of the key characteristics of big data in the research
report published by META Group, Inc. (now Gartner, Inc.) [2].
Since then, other factors have also been considered, including
Variability (consistency of data over time), Veracity (trustwor-
thiness of the data obtained), and Value. These characteristics
are summarized in Fig. 2 along with the key features that each
captures.

Veracity is important for big data as, for example, personal
health records may contain typographical errors, abbreviations,
and cryptic notes. Ambulatory measurements are sometimes
taken within less reliable, uncontrolled environments compared
to clinical data, which are collected by trained practitioners. The
use of spontaneous unmanaged data, such as those from social

media, can lead to wrong predictions as the data context is not
always known. Furthermore, sources are often biased toward
those young, internet savvy, and expressive online.

Last but not the least, real value to both patients and
healthcare systems can only be realized if challenges to ana-
lyze big data can be addressed in a coherent fashion. It should
be noted that many of the underlying principles of big data
have been explored by the research community for years in
other domains. Nevertheless, new theories and approaches are
needed for analyzing big health data. The total projected health
expenditure in the UK for 2016, for example, is £135.1 bil-
lion [3], which will make 18% of total public spending. The
total projected health share of gross domestic product (GDP) in
the United States is expected to reach 19.6% by 2016, yield-
ing a total spending of $4.1 trillion [4]. In these respects,
if used properly, big data can be a valuable resource that
can provide significant insights toward improving contempo-
rary health services and reducing healthcare costs. However, it
also raises major social and legal challenges in terms of pri-
vacy, reidentification, data ownership, data stewardship, and
governance.

In this paper, we will discuss some of the existing activities
and future opportunities related to big data for health. More
specifically, we will discuss its value for Medical and Health
Informatics, Translational Bioinformatics, Sensor Informatics,
and Imaging Informatics.

II. MEDICAL AND HEALTH INFORMATICS

With the ability to deal with large volumes of both
structured and unstructured data from different sources, big
data analytical tools hold the promise to study outcomes of
large-scale population-based longitudinal studies, as well as to
capture trends and propose predictive models for data generated
from electronic medical and health records. A unique oppor-
tunity lies in the integration of traditional medical informatics
with mobile health and social health, addressing both acute and
chronic diseases in a way that we have never seen before.

A. Electronic Health Records (EHRs)

EHRs describing patient treatments and outcomes are rich but
underused information. Traditional health data centres capture
and store an enormous amount of structured data concerning
a wide range of information including diagnostics, laboratory
tests, medication, and ancillary clinical data. For individual pa-
tient reports, the use of natural language processing plays an
essential role for systematic analysis and indexing of the un-
derlying semantic contents. Mining EHRs is a valuable tool for
improving clinical knowledge and supporting clinical research,
for example, in discovering phenotype information [5]. Min-
ing local information included in EHR data has already been
proven to be effective for a wide range of healthcare challenges,
such as disease management support [6], [7], pharmacovigi-
lance [8], building models for predicting health risk assess-
ment [9], [10], enhancing knowledge about survival rates [11],
[12], therapeutic recommendation [11], [13], discovering co-
morbidities, and building support systems for the recruitment of
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Fig. 3. Integration of imaging, modeling, and real-time sensing for the management of disease progression and planning of intervention procedures. This example
of thoracic aortic dissection illustrates how risk stratification and subject-specific haemodynamic modeling substantiated with long-term continuous monitoring
are used to guide the clinical decision process.

patients for new clinical trials [14]. Most of this work focused
on the analysis of very large multidimensional longitudinal pa-
tient data collected over many years. However, most clinical
databases provide low temporal resolution information due to
the difficulty in collecting rich long-term time-series data. To
bridge this gap, current clinical databases can be enhanced by
connecting with mobile health platforms, community centres, or
elderly homes such that other information can be incorporated
into the system to facilitate clinical decision making and address
unanswered clinical questions. One interesting direction will be
to build patient-specific models using data already available in
existing clinical databases, and, then, update the model with data
that can be collected outside the hospitals. In particular, some
chronic diseases are possessed with acute events that are un-
likely to be predictable solely by sporadic measurements made
within the hospitals.

Taking thoracic aortic dissection, a relatively rare disease
(3–4 per 100 000 people per year), as an example, the dis-
ease is typically manifested as a tear in the intimal layer of
the aorta, which can later on develop into either type A (in-
volving both ascending and descending aorta) or type B dis-
section (involving descending aorta only). Type-A patients
would require immediate surgical intervention, whereas for
type B dissection, it is generally considered as a chronic con-
dition requiring careful long-term control of blood pressure
(BP).

Individuals with connective tissue disorders such as Marfan
syndrome (MFS) are often more susceptible to aortic aneurysms
or tears. Large-scale population screening for this rare dis-
ease will, therefore, be useful in identifying people who are
at higher risk of developing aortic dissection. For a tear to de-
velop into type A dissection, while others into type B dissec-
tion, one hypothesis would be that it is due to different flow
patterns generated close to the tear location and across the
aorta. Although an initial model built from imaging can give
good insights into the problem, this does not take into account
progressive hemodynamic variation over time and the impact
of life style and daily activities. By incorporating ambulatory
BP profiles, it is possible to create simulation results as a lon-

gitudinal model spanning over a longer period of time for a
better understanding of disease progression as summarized in
Fig. 3.

B. Social Health

One of the primary tasks of telemedicine involves connecting
patients and doctors beyond the clinic. However, this commu-
nication has been expanded, with the involvement of social
networks, to new levels of social interaction. This new feature
has opened up new possibilities of patient-to-patient communi-
cation regarding health beyond the traditional doctor-to-patient
paradigm. One-fourth of patients with chronic diseases, such
as diabetes, cancer, and heart conditions, are now using social
network to share experiences with other patients with similar
conditions, thereby providing another potential source of big
data [15]. In addition to biological information, geolocation
and social apps provide an additional feature to understand the
behaviors and social demographics of patients, while avoid-
ing resource intensive and expensive studies of large statistical
sampling. This advantage has already been exploited by several
epidemiological studies in areas, such as influenza outbreaks
[16], [17], collective dynamics of smoking [18], and the misuse
of antibiotics [19]. Text messages and posts on online social
networks are also a valuable source of health information, e.g.,
for the better management of mental health. Compared to tra-
ditional methods, such as surveys, fluctuations and regulation
of emotions, thoughts and behaviors analyzed over social net-
work platforms, such as Twitter, offer new opportunities for the
real-time analysis of expressed mood and its context [20]. For
example, when validating against known patterns of variation
in mood, the 2.73 × 109 emotional tweets collected over a 12-
week period in a study reported by Larsen et al. [20] claimed to
find some correlation between emotion tweets and global health
estimates from the World Health Organization on anxiety and
suicide rates.

Social media and internet searches can also be combined
with environmental data, such as air quality data, to predict
the sudden increase of asthma-related emergency visits [21].
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Similar models are anticipated to help other areas of public
health surveillance.

C. Life Style, Environmental Factors, and Public Health

Climatological data, such as heat-stress and cold-related
mortality, present another dimension to predict personal health
[22], [23]. Recent remote sensing technologies and geographic
information systems allow climate data for global land areas to
be interpolated at a spatial resolution of 500 m to 1 km [24],
[25]. Achieving high-resolution measurements are necessary so
as to be able to monitor the real impact of pollution on human
well being in urban environments. In this aim, the dense grid
of wireless sensor networks facilitates the capture of spatiotem-
poral variability in toxic air pollutants [26]. Such technologies
will become increasingly important for connecting epidemic
intelligence with infectious disease surveillance and launching
effective heat response plans [27]–[29]. Similarly, patterns of
social factors influencing unhealthy habits such as smoking can
be studied using the collective dynamics of social networks [18].
As an example of this, Christakis and Fowler found that smok-
ers mostly belonged to the periphery of social networks, and by
the time of quitting, they behaved collectively [18]. In addition,
smokers with high education tended to have a greater influence
on their peers toward smoking behavior, compared to less edu-
cated smokers. As regards psychological states, emotional levels
denoting hostility and stress, expressed in social media such as
Twitter twits, can serve as predictors of heart disease mortality
per geographical area [30].

A mobile phone is an excellent platform to deliver personal
messages to individuals to engage them in behavioral changes to
improve health. Although at present, there is a limited evidence
that mobile messaging-based interventions support preventive
health care for improving health status and health behavior out-
comes [31], a better understanding of how this platform can
be used is an interesting area to explore. For example, type-2
diabetes is generally thought to be preventable by lifestyle mod-
ification; however, successful lifestyle intervention programs
are often labor intensive. It has been shown that mobile phone
messaging can be used as an alternative to deliver motivational
and educational advices for changing population lifestyles [32].

III. TRANSLATIONAL BIOINFORMATICS

Translational bioinformatics, a field that emerged after the
first human genome mapping, focuses on bridging molecular
biology, biostatistics, and statistical genetics with clinical in-
formatics. The field is evolving at a tremendously fast pace,
and many related areas have been proposed. Amongst them,
pharmacogenomics is a branch of genomics concerned with in-
dividuals’ variations to drug response due to genetic differences.
The area is important for designing precision medicine in future.

New discoveries, resulting from the Human Genome Project,
are now frequently applied to develop improved diagnostics,
prognostics, and therapies for complex diseases, which is known
as “translational genomics”. In particular, the sequencing cost
per genome has markedly reduced over the last decade, accord-
ing to the data presented by the National Institutes of Health

Fig. 4. a) Number of research studies sequencing DNA or genomes (source:
PubMed, Web of Science, Scopus, IEEE, ACM). b) Sequencing cost per human-
sized genome (source: National Human Genome Research Institute, NHGRI).
Total volume of genomic data per year reported by completed studies for c)
eukaryotes and d) prokaryotes in 1e2 GB (source: National Center for Biotech-
nology Information).

(NIH) Human Genome Research Institute as shown in Fig. 4.
This further gives rise to new opportunities for personalized
treatment and risk stratification.

On the other hand, research in bioinformatics has broadened
from solely sequencing the genome of an individual to also
measuring epigenomic data (i.e., above the genome), which in-
clude processes that alter gene expression other than changes
of primary DNA sequences, such as DNA methylation and his-
tone modifications. Information technologies for acquiring and
analyzing biological molecules other than the genome, for ex-
ample, transcriptome (the total mRNA in a cell or organism),
proteome (the set of all expressed proteins in a cell, tissue, or
organism), and metabolome (the total quantitative collection
of low molecular weight compounds, metabolites, present in a
cell or organism that participate in metabolic reactions) are also
needed for future advances in the field. To summarize, OMICS
aims at collectively characterizing and quantifying groups of
biological molecules that translate into the structure, function,
and dynamics of an organism. The OMICS profile of each
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Fig. 5. Outline of the “OMICS” approach for studying disease mechanisms. OMICS aims at collectively characterizing and quantifying groups of biological
molecules that translate into the structure, function, and dynamics of an organism. The OMICS profile of each individual, including the genome, transcriptome,
proteome, and metabolome, should be eventually linked up with phenotypes obtained from clinical observations, medical images, and physiological signals.
Different acquisition technologies are required to collect data at each biological level. Interaction within each level and across different levels as well as with the
environment, including nutrition, food, drugs, traditional Chinese medicine, and gut microbiome presents grand challenges in future bioinformatics research.

individual should eventually be linked up with phenotypes ob-
tained from clinical observations, medical images, and physio-
logical signals (see Fig. 5).

A. Pharmacogenomics

A single whole human genome obtained by the
next-generation sequencing (NGS) is typically 3 GB. Depending
on the average depth of coverage, this can vary up to 200 GB,
making it a clear source of big data for health. Nevertheless,
only about 0.1% of the genome is different amongst individu-
als, which accounts for roughly 3 million variants. From a signal
processing point of view, the data can be considered as highly
compressible; however, in practice, compressed genotyping is
not widely adopted at present.

Whole genome sequencing by NGS is important to the study
of complex diseases such as cancer. It has been a long-standing
problem in cancer treatment that drugs often have heterogeneous
treatment responses even for the same type of cancer, and some
drugs only show profound sensitivity in a small number of pa-
tients [33], [34]. Currently, large-scale personal genomics and
pharmacogenomics datasets have been generated to uncover
unique signalling patterns of individual patients and discover
drugs that target these unique patterns. These include cancer
cell line databases of nonspecific cancer cell types [35], [36]
or a specific cancer cell type such as breast cancer [37]. The
Cancer Genome Atlas Project of the NIH has tested the per-
sonal genomic profiles of over 10 000 individuals across over
20 types of cancer [38], and uncovered new cancer subtypes
based on those profiles [39]. Patients with distinct genomics
aberrations are believed to be responsible for the variability of
drug response [40]. Large-scale datasets as such can be used to
enable drug repositioning [41], [42], predict drug combinations
[43], [44], and delineate mechanisms of action [45]. They are

becoming an important component in drug development [46],
[47]. It is, therefore, possible to design precision medicine for
individual patients based on their genomics profiles.

Pharmacogenomics has gone beyond studying individuals’
drug response based on genome characteristics (e.g., copy
number variations and somatic mutations) and now
incorporates additional transcriptomic and metabolic features
such as gene expression, considering factors that influence the
concentration of a drug reaching its targets and factors associ-
ated with the drug targets. Since the gene expression profiles
of cell lines are known to vary considerably in the process of
prolonged culture under different culture conditions and tech-
niques, the use of gene expression from cell lines for predic-
tion of drug response in the patient is currently controversial.
A recent algorithm for predicting in vivo drug response with
the patient’s baseline gene expression profile achieved 60%–
80% predictive accuracy for different cases [48]. Other research
[49], [50] studied drug response using immunodeficient mice
xenografted with human tumors, which have the advantage of
potentially studying both genetic and nongenetic factors that
affect cancer growth and therapy tolerance [51].

Similar pharmacogenomics studies are also important to
vascular diseases. Although antiplatelet agents such as clopi-
dogrel are widely prescribed for diseases such as acute coro-
nary syndrome (ACS), their responses vary greatly from person
to person and approximately 30% of the patients may exhibit
resistance to clopidogrel [52], 53]. Since clopidogrel is acti-
vated by the citocromo P450 (CYP) enzyme system to active
metabolite, CYP2C19 loss-of-function (LOF) allele(s) affects
the responsiveness of clopidogrel, but not the new antiplatelet
agents (prasugrel and ticagrelor). Therefore, it is cost effec-
tive to use the genotype-guided method to screen out carrier of
CYP2C19 LOF allele(s) when using antiplatelets in high-risk
ACS patients [54].
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B. Translational Genomics

Although comprehensive genotyping is still relatively recent,
it has a high potential for genetic stratification in patient screen-
ing, for instance, in the case of factors arising from genotyp-
ing, such as high-risk DNA mutations [55], milk and gluten
intolerance, and muscovisciosis. Genetics combined with phe-
notypic information provided by EHR may help to provide
greater insights into low penetrant alleles [56]. For example, it
is well known that mutations of fibrillin 1 (FBN1) cause MFS.
Nevertheless, the aetiology of the disease leads to marked clin-
ical variability of MFS patients of the same family as well as
different families [57]. Combining genetic tests of FBN1 and a
series of related genes (TGFBR1, TGFBR2, TGFB2, MYH11,
MYLK1, SMAD3, and ACTA2) will help to screen out patients
who are more likely to develop aortic aneurysms that lead to dis-
sections [58]. Further studies on these high-risk patients based
on morphological images of the aorta may provide insight into
the rate of disease development.

Another potential area for translational genomics is to study
the gene networks of different syndromes of the same person in
order to better understand how these syndromes are interrelated.
For example, this has been used to study different genes on chro-
mosome 21 (HSA21) and their role in Down’s Syndrome (DS),
as well as to understand the underlying reason why nearly half
of DS patients exhibit an overprotection against cardiac abnor-
malities related to the connective tissue [59]. One hypothesis is
based on the recent evidence that there is an overall upregulation
of FBN1 in DS (which is normally down regulated in MFS) [59].
The construction of genetic networks will, therefore, provide a
clearer picture of how these syndromes are related. By under-
standing the gene networks of the related syndromes, it may be
possible to provide specific gene therapy for the related diseases.

C. OMICS and Large-Scale Databases

In addition to the Human Genome Project, several large-scale
biological databases launched recently will further facilitate the
study of disease mechanisms and progressions, particularly at
the system level as outlined in Fig. 5. The Research Collabora-
tory for Structural Bioinformatics Protein Data Bank [60], [61]
is a worldwide archive of structural data of biological macro-
molecules, providing access to the 3-D structures of biological
macromolecules, as well as integration with external biological
resources, such as gene and drug databases [62]. ProteomicsDB
[63] is another example, encompassing mass spectrometry of the
human proteome acquired from human tissues, cell lines, and
body fluid to facilitate the identification of organ-specific pro-
teins and translated long intergenic noncoding RNAs, with due
consideration of time-dependent expression patterns of proteins
[63].

Parallel to these developments, the Human Metabolome
Database [64] consists of more than 40 000 annotated metabo-
lites entries in the latest version released in 2013. It provides
both experimental metabolite concentration data and analyses
through mass spectrometry and Nuclear Magnetic Resonance
(NMR) spectrometry [64]. Databases as such are believed to
greatly facilitate the translation of information into knowledge
for transforming clinical practice, particularly for metabolic-

Fig. 6. a) Evolution of the number of patents published in the area of mobile
health (source: European Patent Office); b) evolution of the number of smart-
phones sold per year in million units (source: Gartner); c) evolution of the cost
of Internet-enabled sensors in dollars (source: Business Intelligence Interna-
tional); d) number of mobile health apps published in Google play and iTunes
as of May 2015.

related diseases, such as diabetes and coronary artery diseases
[65]. In fact, metabolomics has emerged as an important re-
search area that does not only include endogenous metabolites
of the human body but also chemical and biochemical molecules
that can interact with the human body [66]. Specifically, on-
going efforts have been placed for fingerprinting metabolites
from food and nutrition products [67], drugs [68], and tradi-
tional Chinese medicine [69], as well as molecules produced
by the gut bacterial microbiota [67], [70]. These will eventually
help us to better understand the interaction between the host,
pathogen and environment.

The availability of the genomic, proteomic, and metabolic
databases allows a better understanding of the development of
complex diseases such as cancer. They also allow the search
of new biomarkers using different pattern mining and cluster-
ing techniques [68]–[71]. The clusters can be either partitional
(hard) or hierarchical (tree-like nested structure). These meth-
ods can be further accelerated by using multicore CPU, GPU,
and field-programmable gate arrays with parallel processing
techniques.

IV. SENSOR INFORMATICS

Advances in sensing hardware have been accelerating in
recent years and this trend shows no signs of slowing down
[72]. According to the analysis in the BI Intelligence report
(Garner) published at the end of 2014, the price of one MEMS
sensor has decreased by half from US$ 1.30 to US$ 0.60 dur-
ing the last decade as shown in Fig. 6. This has partly driven
a paradigm shift of future internet applications toward what
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Fig. 7. Big sensing data in health are all around us, enabled by technologies
ranging from nano- and microelectronics, advanced materials, wearable/mobile
computing, and telecommunication systems as well as remote sensing and ge-
ographic information systems. The inner loop presents technologies for sensor
components, while the middle loop presents devices and systems potentially own
by each individual or household. The outer loop presents sensing technologies
required at the community and public health level.

is termed “the Internet of Things” (IoT). Moreover, enabling
technologies ranging from nano- and microelectronics, ad-
vanced materials, wearable/mobile computing, and telecommu-
nication systems, as well as remote sensing and geographic
information systems have made it possible for sensing health
information to be collected pervasively and unobtrusively [73]
as illustrated in Fig. 7.

A. Wearable, Implantable, and Ambient Sensors

As outlined in a recent review article [15], three factors, in
particular, have contributed to the rapid uptake of wearable de-
vices. These include increased data processing power, faster
wireless communications with higher bandwidth, and improved
design of microelectronics and sensor devices [15]. Example
platforms include earlier systems with limited connectivity and
single sensing element developed solely for use in research lab-
oratories to more recent ambient sensors as well as easy-to-wear
wearable/implantable devices equipped with continuous multi-
modal sensing capabilities and support for data fusion deployed
in a wide range of clinical applications [74]–[76]. Furthermore,
parallel developments in miniaturized sensor embodiment, mi-
croelectronics and fabrication processes, and the availability of
wireless power delivery have made miniaturized implantable
sensors increasingly versatile [73].

Implantable sensors address the challenges of both acute and
chronic disease monitoring by providing a means of captur-
ing critical events and continuous streamlining of health infor-
mation. Recent advances in microelectronics and nanotechnol-
ogy have greatly improved the sensitivity of different sensors.
For example, based on metal nanoparticle arrays and single

nanoparticles, the sensitivity of localized surface plasmon reso-
nance optical sensors can be pushed toward the detection limit
of a single molecule [77]. This has enabled the development
of the next generation of high-throughput sequencing technolo-
gies, as well as the detection of biomolecules, such as glucose,
lactate, nitric oxide, and sodium ions [78]. For diabetic patients,
a myriad of new sensors for both wearable and implantable ap-
plications have been developed, which provide continuous mon-
itoring and corresponding response to the time-varying glucose
level, which is well known to be diet dependent [79]–[81].

There is a clear trend of moving from the scenario where
a centralized large computing infrastructure is shared between
multiple users toward one where each individual possesses mul-
tiple smart devices, most of which are sufficiently small to be
wearable or implantable such that the use of these sensing de-
vices will not affect normal daily activities. These sensor sys-
tems have the potential to generate datasets which are currently
beyond our capabilities to easily organize and interpret [82].
Meanwhile, healthcare services delivered via ambient intelli-
gence consisting of ambient sensors and objects interconnected
into an integrated IoT represent a promising and supportive so-
lution for the ageing society. It is important that such systems
should take into account the sensor, service, and system integra-
tion architecture [83]. Such distributed systems require decen-
tralized inference algorithms, which are frequency explored,
either in the framework of parametric models, in which the
statistics of phenomena under observation are assumed to be
known by the system designer, or nonparametric models, when
the underlying data is sparse and prior knowledge is limited
[84], [85].

B. From Sensor Data to Stratified Patient Management

Physiological sensing by these smart devices can be long
term and continuous, imposing new challenges for interpreting
their clinical relevance. For example, the current clinical prac-
tice defines hypertension based on measurements taken during
infrequent hospital visits. Although automated oscillometric BP
measurement devices are now available, studies in these areas
are often limited to taking BP once every hour over a 24-hr
period. With the newly emerging ambulatory devices [75], a
comprehensive BP-related profile of an individual can be made
available. Nevertheless, the interpretation of these data is non-
trivial, since in many situations, they may not be equivalent
to the clinical BP readings that are currently being used by
practitioners [86], [87]. The signals, however, carry underlying
physiological meanings that, if properly processed and man-
aged, can be used as additional information for understanding
uncontrolled hypertension or to enhance the current hyperten-
sion management schemes. In addition to vital sign monitoring,
smart implantable sensors provide a promising technology to
monitor postoperative complications, such as slow tissue heal-
ing and infections. Moreover, smart implants can also have a
reactive role by delivering drugs for chronic pain [88] and act-
ing as brain stimulators for neurological diseases including re-
fractory epilepsy [89] and Parkinson’s disease [90]. This makes
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Fig. 8. Different imaging modalities across the electromagnetic spectrum. They are playing an increasingly important role in early diagnosis, treatment planning,
and deploying direct therapeutic measures.

smart implants not just another resource for data collection but
also an integral part of early intervention.

With increased volume and acquisition speed of data from
both wearable and implantable sources, new automated algo-
rithms are needed to reduce false alarms such that they are suf-
ficiently robust to support large-scale deployment, particularly
for free-living environments [91]. Automatic classifications are
necessary since the dataset sizes are beyond the capability of
manual interpretation within a reasonable time period. New
compression-based measures are, therefore, proposed as high-
quality cloud computing services to reduce the computation
time for the automated classification of different types of car-
diac arrhythmia [92]. In many situations, measurements must
be interpreted together with the context under which the data is
collected. For example, many physiological parameters, such as
BP or episodes of gastroesophageal reflux disease are posture
dependent [93], [94], which can be captured by inertial sensors.
Therefore, multimodal integration and context awareness are
essential to the analysis of pervasive sensing data.

C. Mobile Health

Nowadays, smart phones have become an inseparable
companion for more than 1.75 billion users. The data gener-
ated by the use of smart phones provides highly descriptive and
continuous information anytime and anywhere. The penetration
of smartphones, which has reached over 200% of the total pop-
ulation in some cities such as Hong Kong, makes it logical to
use it as a personal logging device of health information. The
new generation of smartphones has a wide range of health apps
with standardized protocol to connect to sensors provided by
different companies. They can potentially serve as a platform to
centralize health data, from which additional new information
that was previously untraceable by individual sensors can now
be mined. In fact, earlier versions of mobile phones consist of
only simple motion sensors, while newer models are packed
with sophisticated sensors that facilitate the extraction of dif-
ferent types of vital signs, even without the need for external
devices. These sensors, when properly used, can provide valu-
able health information for the management of many long-term

illnesses. For example, the video cameras of mobile phones can
be used to collect heart rate and heart rate variability [95], em-
bedded accelerometers and gyroscopes to track energy expendi-
ture [96]. Furthermore, the pulse transmission time as measured
by time delays between electrocardiographic and photoplethys-
mographic sensors can be used as a surrogate measure for BP
[75], [97]. This information can be calculated from two devices
that connect with a mobile phone independently, one with an
electrocardiographic sensor and the other one with a photo-
plethysmographic sensor. When connected to health providers,
a closer level of interaction in healthcare can be maintained
toward greater personalization and responsiveness [98].

V. IMAGING INFORMATICS

The ever-increasing amount of annotated and real-time
medical imaging data has raised the question of organizing, min-
ing, and knowledge harvesting from large-scale medical imag-
ing datasets. While established imaging modalities are getting
pervasive, new imaging modalities are also emerging. These
modalities are rapidly filling up the entire EM spectrum as
shown in Fig. 8. Many of these imaging techniques are now
geared toward real-time in situ or in vivo applications, mak-
ing multimodality imaging an exciting yet challenging big data
management problem.

Recent developments in imaging are progressing in
multiple frontiers. First, there is relentless effort in making exist-
ing imaging modalities faster, higher resolution, and more versa-
tile. Take cardiovascular magnetic resonance imaging (MRI) as
an example, imaging sequences are no longer limited to morpho-
logical and simple tissue characterization (e.g., via T1, T2/T2∗

relaxation times). Details concerning vessel walls, myocardial
perfusion and diffusion, and complex flow patterns in vivo can
all be captured. When facilitated with new minimally invasive
interventional techniques, novel drugs and other forms of treat-
ment, MRI now serves as a therapeutic and interventional aid,
rather than solely a diagnostic modality. Similar advances can
also be appreciated for ultrasound, computed tomography (CT),
and other imaging modalities. Moreover, extensive efforts in
combining different imaging modalities, not by postprocessing,
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but at the hardware level, e.g., MRI/PET and PET/CT, open up a
range of new opportunities, particularly for oncological imaging
and targeted therapy.

A. Imaging Across Scales

There have been extensive research efforts for developing new
technologies that probe deeper into the biological system, from
tissue (up to micrometer) to the protein level (micronanometer).
In particular, recent advances in stimulated emission depletion
fluorescence microscopy allow the generation of 3-D superreso-
lution images of living biological specimens [99]. It overcomes
the classical optical resolution limit of light microscopy and
pushes the spatial resolution of optical microscope toward the
nanoscale [100]–[102]. This opens up the possibility of imaging
not only the fine morphological structure of many organ systems
(e.g., microfibrils that form blood vessels), but also subcellular
behavior and molecular signaling. The use of quantum dots or
qdots also pushes the boundary of imaging resolution, allowing
the study of intracellular processes at molecular levels (20–
40 nm) [103]. Another class of fluorescent labels is made by
conjugating qdots with biorecognition molecules, which emis-
sion wavelength can be tuned by changing the particle size such
that a single light source can be used for simultaneous excita-
tion of all different-sized dots [104]. These technologies have
already been used for immunofluorescence labeling of tissues,
fixed cells, and membrane proteins, such as cancer markers
[105], the hybridization of chromosomes [106], the labeling of
DNA [107], and contrast-enhanced image-guided resection of
tumors [108].

B. From Morphology to Function

The understanding of many biological processes requires the
identification and representation of structure–function relation-
ships. This expands across different spatial scales, namely pro-
teins, cells, tissues, and organs. For instance, haemodynamic
analysis combined with contractile analysis, substantiated with
myocardial perfusion data, can be used to elucidate the un-
derlying factors associated with cardiac abnormalities. Starting
with modeling, the tissue and scaling up toward a more specific
description of organ behaviors has made it possible to create in-
tegrative models of heart function [109], [110]. These architec-
tural models fuse information such as fibrous-sheet geometrical
models of tissue and membrane currents from ion channels at
the subcellular level [111].

Amongst all organs that have been studied to define their
function from its morphology, the brain is the one that has
received the most attention recently. This is motivated by the
fact that brain structure and function are keys to understand
cognitive processes, hence the need for unveiling neuronal
behavior from the molecular level up to the functioning of
neural circuits. Super-resolution fluorescence microscopy has
been applied to study neural morphology and their subcellular
structures. These techniques may enable to achieve a resolution
as high as 20 nm [112]. Needless to say, the myriad of markers
necessary for each single type of cell and synapse would result
in an enormous database.

Methods, such as functional MRI (fMRI) and functional dif-
fusion tension imaging provide flexible information in the form
of macrostructural, microstructural, and dense connectivity ma-
trices. Improved fMRI sampling methods produce time-series
data of multiple blood oxygenation-level-dependent volumes of
the brain [113]. In addition, there is an increasing trend in mak-
ing neuroimaging multimodal. In some studies, several modal-
ities are used to compensate the benefits and tradeoff of one
another. Furthermore, information from lower cost and rapid
noninvasive methods, such as wearable electroencephalogra-
phy and functional near-infrared spectroscopy allows gathering
brain functional data for examining cortical responses due to
more complex tasks.

An indirect way of inferring functioning consists of a combi-
nation of imaging modalities as well as medical records, demo-
graphics, and lab test results. In order to maximize the informa-
tion contained in these heterogonous sources, linking different
metadata with features extracted from image modalities is key
to characterize the structure, function, and progression of dis-
eases. Solving this challenge presents a unique opportunity for
bridging the semantic gap between images and more effective
prediction, diagnosis, and treatment of diseases. However, this
issue entails many independent yet interrelated tasks, such as
generating, segmenting, and extracting enormous amounts of
quantifiable spatial objects and features (nuclei, tissue regions,
blood vessels, etc.). This requires the implementation of effec-
tive and optimized querying systems [114] in order to reduce
the computational complexity of handling these data. Fig. 9 rep-
resents a schema of what big data means for imaging, as defined
by both structural and functional data.

Existing efforts in improving the spatiotemporal constraints
of brain imaging are rocketing the computational resources
needed for neuroimaging studies. RAM memory is an important
resource for neuroimaging analysis. For instance, to perform
subject-, voxel- and trial-level analysis, a significant amount of
fMRI images needs to be loaded into memory. Fig. 10 illus-
trates the evolution of the required amount of RAM reported
by neuroimaging-related studies in pubmed.org. From 2013 on-
ward, there has been a fast increase in the amount of RAM re-
ported (from 8 to 60 GB). If this trend is confirmed, the amount
of memory used in a study could reach values of around 260 GB
by 2020.

C. Research Initiatives to Understand the Human Brain

Another active topic in imaging is to study the functional
connectivity of the human brain, which is fundamental to both
basic and applied neurobiological research [115]. Both, U.S. and
European Union (EU) have launched large-scale Human Brain
projects in recent years with an aim to unravel the organ’s com-
plexity. The NIH-funded Human Connectome Project (HCP),
with a funding scale of 30 million US$, aims at leveraging
the latest advances in DTI to study brain areas in relation to
their functional, structural, and electrophysiological connectiv-
ity [116]. The idea behind the HCP is that neural connectivity is
as unique as the fingerprint to each individual. Genetics, environ-
mental influences, and life experience are factors contributing to
the formation of each individual’s neural circuitry [117]. This is
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Fig. 9. Processing schema of imaging toward big data. Nonfunctional medical imaging is acquired and processed to serve as a model to register organ activity in
the resulting functional imaging. Results from image processing and functional imaging are stored in databases with specific metadata protocols. Large-scale big
data analysis is performed in these databases linking then the features extracted through medical imaging processing and functional imaging.

Fig. 10. Amount of RAM needed and forecasted to be used in neuroimaging
studies.

supported by genome-wide association studies that link genetic
variants with neurological and psychiatric disorders that have
abnormal brain connectivity, e.g., variants at human clusterin
(CLU) on chromosome 8 and complement receptor 1 on chro-
mosome 1 are associated with Alzheimer’s disease [118] as well
as those specific markers associated with schizophrenia [119]
and dementia [120].

Recently, the EU commission is providing €1.1 billion for
the human brain project, which aims to develop a biological
model of the brain that simulates different aspects of the ner-
vous system, including point neuron models, neural circuitry,
and cellular models at different scales. The main idea is to
provide a simulation platform for theoretical neuroscientists to
study how the brain processes information. For this purpose, it
would require simulating all functions, architecture, and chemi-
cal properties for the 86 billion neurons and trillions of synapses
of the human brain as estimated by Azevedo et al. [121]. There-

fore, the aim of the project is both ambitious and controversial.
A panel review disclosed earlier this year, after the project had
been launched for 18 months, urges the project team to adjust
its governance and scientific direction [122]. Specifically, the
report emphasizes that it is overambitious for whole-brain sim-
ulation, and that the project should consider the perspective of
other sciences involved in the study of how the brain works, such
as neuropsychology or neuroimaging. It is hope that the adjusted
aim could complement the U.S. BRAIN initiative [122].

VI. DISCUSSION

According to International Data Corporation, worldwide
spending on information and communication technology will
reach 5 trillion US$ by 2020, and at least 80% of the growth
will be driven by platform technologies, which encompass mo-
bile technology, cloud services, social technologies, and big
data analytics. Table I shows a selection of studies illustrating
the potential of applying big data to health and the considerable
increase in data complexity and heterogeneity in the field.

Applying big data to health is not only important to biolog-
ical and physical sciences, but equivalently important to what
has traditionally been considered as “soft” sciences, such as
behavior and social sciences [123]. It is well known that hu-
man behavior is a significant driver for environmental problems,
such as climate change, air pollution, and medical issues. Nev-
ertheless, there are few studies that actually study these issues
systematically and quantitatively. With the advanced technolo-
gies reviewed in this paper, it is now possible to study human
behavior, including their physical actions, observable emotions,
personality, temperament, and social interaction patterns, all of
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TABLE I
EXAMPLES OF STUDIES ILLUSTRATING THE POTENTIAL OF BIG DATA IN HEALTH

Area Sample Methods Data type Ref

B 2708 subjects Biostatistics Gene expression data [125]
HI (EHR) 2974 patients Machine Learning (NLP) Patient records and laboratory results [126]
HI (EHR) 42 160 control 8,549 patients Statistics Categorical database of patient records [127]
B 876∗ subjects Genomics Gene expression data [128]
S 200∗ patients Machine Learning Wearable sensor and annotation data [129]
HI 3000 animal sample Statistics Veterinary records of health assessment [130]
HI 745 053 patients Machine Learning Preoperative risk data and patient records. [131]
IMG 1414 subjects Network Analysis Resting state of neural fMRI data [132]
IMG EHR 228∗ patients Machine Learning PET scans and patient records [133]
HI (SN and ENV) 465 million records Machine Learning Social network and air quality data. [20]
HI (SN) 686 003 Social network users Machine Learning (NLP) Emotions in users’ news feeds during 20 years [134]

Acronyms: B (Bioinformatics), HI (Health Informatics), S (Sensing), IMG. (Imaging), EHR (Electronics Health Records), ENV (Environmental
data), SN (Social Network), NLP (Natural Language Processing).
∗Although these samples do not make more than 1000 instances, they can be considered large for the particular area of study.

which are conventionally difficult to measure and quantify. This
will further help us to understand the mechanisms of disease de-
velopment, and how these diseases spread and affect one another
at the community level.

Health informatics applications are known to generate
datasets that are complicated to store, untangle, organize, pro-
cess, and, above all, interpret. From a scientific perspective,
studies with a limited cohort of patients and controls can only
serve as a proof-of-concept for future treatments and diagnoses.

Close to 3000 scientific studies indexed in pubmed.org since
2005 state that their conclusions should be “interpreted with
caution” due to issues relative to statistical sampling. Large lon-
gitudinal and multimodal studies are necessary to discover the
causes, risk, and improvement factors of several health diseases,
such as cancer, Parkinson’s, Alzheimer, and arthritis.

It must be emphasized that the interpretation of big data
should be handled with care in all situations. In particular,
proven cases show large discrepancies between the predicted
and actual values. After all, predicting the future is always diffi-
cult. Despite its early success, Google Flu Trend (GFT) in 2013
was predicting more than twice the proportion of doctor visits
for influenza-like illness than that of the Centers for Disease
Control and Prevention [124]. There was a number of attributes
to this problem which should be avoided in future studies in
this area. First, the quality of the data collected should not be
comprised with the quantity of the desired data. In many prob-
lems that researchers are dealing with, the number of parameters
considered in a model may be exemplarily overfitting. Thus, the
trained model was unable to predict future trends in this example
because it put too much focus on the idiosyncrasies of the data
at hand. Moreover, specific datapoints (outliers) may dominate
in the trained model and those may have no predicting values.
For the case of GFT, the nonseasonal 2009 influenza A–H1N1
pandemic was also incorporated in the model, which makes it
partly a flu detector and partly a winter detector. Second, algo-
rithm dynamics can induce errors in the prediction, particularly
for analyzing big data. Often, both the data collected and the
algorithms are changing at different paces. Capturing a specific
instance can, therefore, be difficult due to the enormous amount
of variations.

A. Processing Big Data

A bottleneck in analyzing big data is to obtain fast inference in
real time from large and high-dimensional observations. For in-
stance, high-dimensional spaces may arise from an extensive set
of biomarkers [135], health attributes, and sensor fusion [136].
From a software point of view, processing big data is usually
linked to parallel programming paradigms such as MapReduce
[137]. Several open-source frameworks such as Hadoop have
been considered to store distributed databases in a scalable ar-
chitecture, as a basis for tools (e.g., Cascading, Pig, Hive) that
allow developing applications to process vast amounts of data
on commodity clusters. However, when combined with the con-
tinuous streams of pervasive heath monitoring data, this also
requires capacities for iterative and low-latency computations,
which depends on sophisticated models of data caching and
in-memory computation.

In addition to the processing architecture, machine-learning-
based data analysis also requires specific tuning to learn a
classifier or repressor over large-scale datasets. Dimensional-
ity reduction and feature selection can help us to cope with the
curse of dimensionality. Nevertheless, whether supervised or
unsupervised, these algorithms also require the regular imple-
mentation of a learning process to obtain a mapping or a set
of maximally informative dimensions. Some machine learning
methods, such as deep learning, involve learning several layered
transformations of the data in order to find the best high-level
abstraction for the problem at hand, mimicking the way neuro-
science explains learning [138], [139]. Most machine learning
techniques involve learning a set of model parameters that need
to be found by means of optimization. The complexity of this
learning process typically increases when dealing with big data.
When the number of observations grows to infinity, sample-by-
sample iterative parameter learning methods can be a solution
[140]. Another interesting option for scalable learning is to in-
crementally generate the set of required parameters or update
the model structure as long as new data are being added [141],
[142]. Online methods of variable selection and regularization
are recommended to deactivate spurious variables in order to
ease this scalability to large dimensions during learning [143],
[144].



IE
EE

Pr
oo

f

12 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 00, 2015

B. Data Privacy and Security

The emergence of big data for health raises additional chal-
lenges in relation to privacy, security, data ownership, stew-
ardship, and governance. Personal data, which is regarded as
the “New Oil” of the 21st century as coined during the 2011
World Economic Forum [145], are being generated at a tremen-
dously fast speed due to the launch of many new intelligent
devices, sensors, networks, and software applications. While
these datasets often used to be generated and stored at a cen-
tralized location, today they are often distributed over various
servers and networks. In the healthcare domain, data privacy
is of utmost importance as regulated by laws in countries with
large population. Closely related to the privacy issue is that data
must be linked to the right person to ensure correct diagnosis
and treatment. Therefore, the collected data about an individual
must be uniquely tagged with an identifier. Furthermore, data
security should be ensured at all levels of the healthcare system,
including at the sensor level at which the data is collected [146].

VII. CONCLUSION

Big data can serve to boost the applicability of clinical re-
search studies into real-world scenarios, where population het-
erogeneity is an obstacle. It equally provides the opportunity
to enable effective and precision medicine by performing pa-
tient stratification. This is indeed a key task toward personal-
ized healthcare. A better use of medical resources by means of
personalization can lead to well-managed health services that
can overcome the challenges of a rapidly increasing and aging
population. Thus, advances in big data processing for health in-
formatics, bioinformatics, sensing, and imaging will have a great
impact on future clinical research. Another important factor to
consider is rapid and seamless health data acquisition, which
will contribute to the success of big data in medicine. Specif-
ically, sensing provides a very solid set of solutions to fill this
gap. Frequencies of health data acquisition still involve a slow
and complex process requiring the involvement of special health
personal and laboratories. In this context, faster and unobtrusive
health data can be provided by means of pervasive sensing. The
use of sensors means the capacity of covering large periods of
continuous monitoring without the need for performing spo-
radic screening, which may only represent a narrow picture of
the development of a disease. However, the fact of deploying
continuous sensing over a large population will result in a large
amount of information that requires both on-node data abstrac-
tion and distributed inference. From a population level, one’s
unfortunate past can provide significant insight into forecasting
and preventing the same incident from occurring in others. Last
but not the least, the governmental policy and regulation are
required to ensure privacy during data transmission and storage,
as well as during subsequent data analysis tasks.
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