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Abstract—The ever increasing complexity of scientific appli-
cations has led to utilization of new HPC paradigms such as
Graphical Processing Units (GPUs). However, modifying existing
applications to enable them to be executed on GPU could be
challenging. Furthermore, the considerable speedup achieved by
execution of linear algebra operations on GPUs has added a huge
heterogeneity to HPC clusters. In this work, we enabled NPAIRS,
a neuro-imaging application, to be executed on GPU with slight
modifications to its original code. This important feature of our
implementation enables current users of NPAIRS, i.e. non-expert
bio-medical scientists, to get benefit from GPU without having
to apply fundamental changes to their existing application. As
the second part of our research we investigated the efficiency of
several scheduling algorithms for a heterogeneous cluster that
contains GPU nodes. Experimental results show we achieved 7X
speedup for NPAIRS. Moreover, although scheduling does not
play an important role when there is no GPU node in the cluster,
it can highly improve the makespan for a CPU-GPU cluster. We
compared our scheduling results with Torque and MCT, two of
the most commonly used schedulers in current HPC platforms.
Our results show that the Sufferage scheduling can improve the
makespan of Torque and MCT by 47% and 4% respectively.

I. INTRODUCTION

The demand for high performance computing is increasing
everyday. Processing medical images is an example of a CPU-
intensive application. This new class of applications is running
too slow even on today’s multi-core architectures. Although
there is no need for most of such applications to be strictly
real-time, being able to execute them on the order of a few
minutes, instead of hours or days, helps researchers to test and
evaluate their new ideas and algorithms quickly. Moreover,
some degree of interactivity with the application is important
for biomedical researchers using the neuroscience workloads
that we are working with in this paper.

This drastic demand for higher performance has led the
computer industry to incorporate multi-core and many-core
processors in today’s HPC platforms. NVIDIA’s [1] GPUs
and Intel’s Xeon Phi are today’s most common many-core
architectures that are used as co-processors in computationally
intensive applications. On the other hand, the emergence of
General Purpose computing on GPUs (GPGPU) and their
programming languages such as CUDA [2] and OpenCL
[3], along with the integration of GPUs into existing multi-
core machines has made them a viable solution to accelerate
embarrassingly parallel applications. This paradigm has also

added heterogeneity in today’s desktops and laptops as well
as cloud environments targeting HPC workloads.

Scheduling jobs for super computers has been extensively
studied. However, the heterogeneous nature of recent modern
super computers, as well as CPU and GPU clusters, demands
that we revisit the portability and scheduling problem for such
systems. GPUs have shown the ability to provide higher peak
throughput for a wide range of massively parallel applications.
Consequently, compute-intensive applications would prefer to
be scheduled on a GPU-enabled server when running on a
heterogeneous cluster. This may however lead to GPU device
contention and decrease the overall throughput since there
is usually a smaller number of GPUs than CPUs in typical
clusters used in biomedical settings. Therefore, tasks may
finish faster if run on a CPU rather than waiting for a GPU
resource to become available. In such cases, scheduling some
jobs on GPUs while running others on CPUs results in a better
utilization of resources as well as higher peak throughput.

In this paper, we make the following contributions: i) we
proposed a technique for porting and scheduling biomedical
applications to CPU-GPU clusters with minimal application
changes, and ii) we implemented and evaluated scheduling
techniques for heterogeneous clusters to shorten execution
time and optimize resource utilization.

Our design for portability is particularly important for
biomedical applications. Because it allows for separation of
concerns between any source code modifications or extensions
normally performed by biomedical researchers, and any li-
braries used for the purpose of providing platform-dependent
support. This will isolate the biomedical researchers from such
lower-level concerns.

The scheduling algorithms we investigated in this paper
range from relatively simple ones, such as shortest (estimated)
job first, to more sophisticated ones, such as Sufferage schedul-
ing algorithm [4], which tries to optimize the penalty that a
task suffers if it cannot be scheduled on its preferred resource.

As our case study we selected NPAIRS, a biomedical
application for processing functional Magnetic Resonance
Imaging (fMRI) brain images. NPAIRS is used to determine
the correlation between brain images of several patients (sub-
jects) while doing a specific task. It is a good example for
applications which are both data and CPU intensive. Indeed,
NPAIRS performs quite complicated operations (Eigen Value



Fig. 1. An example of detected activation areas when the subjects were
performing a simple reaction time task [7].

Decomposition) on a large set of input data. These operations
are extremely parallelizable and they execute considerably
faster on GPU. In this paper, we provide a method to schedule
the tasks of our NPAIRS application on a heterogeneous CPU-
GPU cluster. However, our scheduling methods are generic and
could be used for other applications as well.

II. BRAIN IMAGE PROCESSING

Functional Magnetic Resonance Imaging (fMRI) is a non-
invasive neuroimaging technique commonly used to study
function of human brain by measuring the blood-oxygenation-
level-dependent (BOLD) signal [5], [6]. Simply put, activation
of a region of the brain causes oxygenated blood to flow to that
region. Oxygenated and de-oxygenated blood have different
magnetic properties, which can be captured in fMRI images
[5], [6]. The imaging data gathered by fMRI are analysed to
detect correlations among brain activations in response to a
stimulus, e.g. a particular motor task.

Typically, neuroscientists and physicians start by designing
fMRI experiments to answer different questions they have in
mind, such as trying to determine which part of the brain is
responsible for a specific task. The actual experiment varies
depending on the question being investigated. But, in general,
it involves choosing subjects, a group of patients or healthy
individuals, and choosing the type of stimuli or a task to
be performed by the subjects, e.g. a finger tapping task.
During the experiment, an MRI scanner collects fMRI data
of subjects’ brains while the subjects are given the stimulus
or perform the requested task.

Generally, it is common to collect data from multiple
individuals (subjects) to draw more general conclusion on
the brain’s function with more statistical power and less
noise [6]. After performing the experiment, collected fMRI
data needs to be cleansed by applying different preprocessing
steps such as motion correction, spatial smoothing, detrending
and whitening, and registration to template brains. Finally,
statistical analysis is performed on the preprocessed fMRI data
to detect correlation between regions of the brain and the task
subjects performed during the experiment [6]. Output of the
analysis can be presented as a color coded image of brain.
For example, Figure 1 show the active region of brain when
performing a simple reaction time task [7].

A. NPAIRS

The NPAIRS (Nonparametric, Prediction, Activation, Influ-
ence, Reproducibility, re-Sampling) is a neuroimaging soft-
ware package for analyzing fMRI data [8] [9].

Figure 2 shows the workflow of the NPAIRS application.
The NPAIRS program is based on a split-half resampling
framework that randomly splits the data into two halves. Then,
each half of the data is analyzed individually using a statistical
analysis method. Current implementation of the NPAIRS uses
principal component analysis (PCA) and Canonical Variate
Analysis (CVA) algorithms to do the statistical analysis.
Results of the analysis on the two split datasets are used
to generate prediction accuracy (p) and reproducibility (r)
metrics. Prediction accuracy determines how accurately the
values of experimental design parameters, e.g. performance
measures, can be predicted in an independent test dataset.
Reproducibility determines how reliably the parameters in
the same test dataset can be reproduced [8]. This resampling
loop, which contains process of splitting the data into halves,
analysing each half, and computing the evaluation metrics, is
repeated by default 100 times or until all the possible disjoint
pairs have been tested.

In NPAIRS, in order to control model complexity and re-
duce data dimensionality, principal component analysis (PCA)
is used. PCA determines principal components of the input
dataset. Then, only first Q principal components are used to
produce linear, multivariate discriminant functions for analysis
of the images. The value of Q, i.e. number of selected
principal components, significantly affects prediction accuracy
and reproducibility of the analysis. To study the effect of
number of principal components on the quality of the analysis,
an exhaustive search is performed on this hyperparameter.

On each iteration of this exhaustive search, NPAIRS exe-
cutes the same algorithm with a different value for Q. But,
since NPAIRS is a computationally expensive application,
each iteration of this search, could take hours, depending on
the size of dataset and platform on which NPAIRS is running.
Although NPAIRS is written to be executed on a single node,
it can either run the algorithm for a specific number of Q
or execute it for a set of different values of Q sequentially.
Obviously, this exhaustive search is embarrassingly parallel
because the evaluation of different values of Q are totally
independent. Therefore, it is possible to run several instances
of NPAIRS as a separate process (either on a single node or
multiple nodes). Each instance will then be sequential and
completely independent of all other instances. In this paper,
we first improve the performance of NPAIRS on a single node
with a GPU with minimal change in the source code. Then,
we provide a scheduling framework for parallel execution of
NPAIRS on a heterogeneous cluster.

III. ACCELERATING NPAIRS

The first step towards accelerating NPAIRS is understanding
its execution profile. We instrumented the NPAIRS source
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Fig. 2. Highlevel workflow of the NPAIRS application.

code1 [10].
Based on our instrumentation, we created execution profile

of NPAIRS on a dataset of 25 subjects for different number
of principal components. Figure 3 illustrates proportion of
different parts of NPAIRS (as depicted in Figure 2) on a
machine with two Intel Xeon E5-2650 CPUs.

Execution profile of NPAIRS reveals the fact that on av-
erage, computation of the PCA algorithm in the resampling
loop accounts for 70% of the total execution time. This
is expected since PCA is the most complex part of the
application. Also, during the execution of NPAIRS, PCA is
executed in the resampling loop 200 times (100 times for each
split). Therefore, we expect that accelerating PCA significantly
reduces NPAIRS execution time.

In NPAIRS, the number of principal components (#PCs)
can be defined as an input to the application. After PCA
function computes eigenvalues and eigenvectors of its input
matrix, the first #PCs eigenvectors with the highest eigenvalues
are selected to be passed to the CVA step (see Figure 2).
Most computationally expensive operations in PCA algorithm
can be translated into basic linear algebra operations, which
are intrinsically parallel. This characteristic makes PCA a
suitable candidate to be executed on GPUs, which consist of a
large number of weak cores that can efficiently execute small
operations in parallel. Thus, to improve the performance of
NPAIRS with minimal change in the source code, we move
the computation of principal component analysis from CPU
to GPU.

A. Implementing PCA on GPU

NPAIRS uses the covariance method to compute principal
components of prepossessed fMRI images [11]. In order to be

1NPAIRS is an open source software package under GNU GPL v2 License.
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Fig. 3. Execution profile of NPAIRS for different number of principal
components on a dataset of 25 subjects. The computations of PCA in the
resampling loop accounts for 70% of total computation time on average.

consistent with the existing implementation, we implemented
PCA algorithm on GPU using the same method. The covari-
ance method for computing principal components works as
follows.

First, the input matrix (M), which contains the prepossessed
fMRI images, is normalized by subtracting average of each
column from the elements of that column, as eq. 1.

∀i, j 0 ≤ i<m, 0 ≤ j<n M̂ij = Mij −
1

m

m∑
i=0

Mij (1)

Then, sum of squares and products (SSP) is computed by
multiplying the transpose of normalized matrix with itself (eq.
2).

SSP = M̂T × M̂ (2)

Next, eigenvalues and eigenvectors of the symmetric SSP
matrix are computed. Finally, the normalized input matrix
is multiplied by a matrix whose columns are eigenvectors
computed in the previous step.

PCscore = M̂ × EigenV ectors(SSP ) (3)

The outputs of PCA which are used in NPAIRS are PCscore,
eigenvalues, and eigenvectors.

There are two main framework for programming on
GPUs, Compute Unified Device Architecture (CUDA) [2] and
OpenCL [3]. The former has been introduced by NVIDIA,
one of the pioneer manufactures of GPUs. The latter is imple-
mented by Khronos group, an industry consortium for creating
open standards for the authoring and acceleration of parallel
computing, graphics, etc. Some studies show that CUDA
shows better performance than OpenCL in many applications
[12]. Moreover, our target GPU is NVIDIA Titan and CUDA
is well suited for NVIDIA GPUs. Additionally CUDA is
more mature in terms of available matrix operation libraries,
e.g. CUBLAS, CUDA). Considering all these advantages we
decided to use CUDA as our framework for programming
on GPUs. Moreover, we used CUDA Basic Linear Algebra
Subroutines (CUBLAS) library [13] for matrix computations
and CULA library [14] for eigenvalue decomposition.



B. Invoking CUDA from Java

Since NPAIRS is implemented in Java and we used CUDA
to implement PCA on GPU, integration of these two pieces
of code could be challenging. Moreover, because developers
and users of NPAIRS application are biomedical researchers,
it is necessary to do the integration with minimal changes
to the NPAIRS original source code. Generally, there are
two methods for interfacing a non-Java code with a Java
application: in-process and inter-process. The former in which
the interfacing is done in a single process has less performance
overhead. However, the latter in which the interfacing is
done in multiple processes is more portable. Java Native
Interface (JNI) and sharing data for example by writing on
disk are the best candidates in terms of minimal changes
for in-process and inter-process communication, respectively.
However, transferring data through writing on disk or ramdisk
is inefficient due to its high I/O overhead. Since the goal is to
improve performance of NPAIRS, in-process communication
is a better choice for integrating PCA code on GPU with the
NPAIRS source code. Java Native Interface (JNI) [15] is the
most commonly used method for in-process communication
in Java. JNI enables a Java application, running in a Java
Virtual Machine (JVM), to call an external library function
implemented in other languages such as C and CUDA. We
used JNI to connect NPAIRS with the PCA implementation
on GPU.

We created a C library from our CUDA implementation
of PCA algorithm. This library contains a function named
PCA_on_GPU to perform PCA on GPU. When an instance
of NPIARS calls PCA_on_GPU function, first, CPU initializes
the GPU. Then, our library transfers the CUDA implementa-
tion of PCA and the input matrix to GPU. Finally, after GPU
compute PCA function, our library retrieves the results from
GPU and passes them to the NPAIRS instance.

In order to execute PCA on GPU, we need to only add a
few lines in the NPAIRS original source code to: 1) check
availability of GPU 2)setup temporary variables to receive
the results from GPU and store them in the corresponding
variables in NPAIRS 3) call PCA function on GPU . A
snapshot of the NPAIRS source code which supports execution
of PCA on GPU is depicted in figure 4. In this figure,
line 4 to 16 reflects the only necessary modifications in the
original NPAIRS source code. Note that NPAIRS application
consists of more than 100,000 lines of code. Therefore, the
modification of the source code is negligible.

Transferring data between the JVM and the native library
can affect performance of the application. This issues is
escalated in NPAIRS because PCA_on_GPU function in the
native library is executed multiple times (by default 200 times
in the resampling loop). To alleviate the overhead of data
transfer between JVM and native library, we keep the data
in memory space of JVM and only send pointers of those
memory locations to the native library.

1 class PCA {
2 native void PCA_on_GPU(double[] M, long nRows,

long nColc, double[] PC_score, double[]
evec_tmp, double[] eigenvalues);

...
3 computePCA(Matrix M, boolean normalizeBySD) {

...
4 if(isGPUAvailable()) {
5 System.loadLibrary("PCA_GPU_lib");

6 double[] pca_tmp = new double[nRows*nCols];
7 double[] evec_tmp= new double[nCols*nCols];

8 PCA_on_GPU(M,nRows,nCols,pca_tmp,evec_tmp,
eigenvalues);

9 for (int i = 0; i < nRows; i++)
10 for (int j = 0; j < nCols; j++)
11 PCscore.set(i,j, pca_tmp[j*nCols+i]);

12 for (int i = 0; i < nCols; i++)
13 for (int j = 0; j < nCols; j++)
14 eigenvectors.set(i,j,evec_tmp[j*nCols+i]);
15 }
16 else{

... /* Original CPU implemention of PCA */
17 }
18 }

...
19 }

Fig. 4. To enable NPAIRS to compute PCA on a GPU, we need to add
just a few lines to PCA class in NPAIRS source code, which has more than
100,000 lines of code.

C. Experimental Results

In order to evaluate the efficiency of our proposed GPU
implementation, we executed the GPU-assisted NPAIRS on
three different resources, i.e. two CPU nodes Fat (32 cores) ,
Light (16 cores), and one GPU node, described in Section V.
In this experiment we varied number of principal components
from 2 to 500 and evaluated NPAIRS on two datasets with
25 and 31 subjects. Results of this experiments is depicted
in Figure 5. Obviously, the larger data set needs more time
to be processed. In addition, the execution time increases as
the number of principal components increases. This is due
to the nature of NPAIRS application, in which the number
of principal components directly affects size of input for the
CVA, thus affects the execution time of NPAIRS. Also, the
results show that the difference between execution time of
the original NPAIRS running on CPU and the GPU assisted
implementation is larger for the dataset with 31 subjects
compared to the dataset with 25 subjects. This confirms the
suitability of PCA to be executed on GPU. Although larger
data size imposes data movement overhead for GPU, the result
show that the achieved speedup mitigates it.

Execution profile of our proposed GPU implementation of
NPAIRS is depicted in Figure 6. This figures shows that
in our proposed the GPU assisted implementation, the PCA
computation accounts for about 20% of the execution time
of NPAIRS. Where as, when running NPAIRS on a CPU
node, this proportion is close to 70% on average (Figure 3).
It should be noted that execution of PCA as a stand-alone



200 300 400 500

25 Subjects (Fat
Node)

31 Subjects
(GPU Node)

31 Subjects
(Light Node)

31 Subjects (Fat
Node)0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 100 200 300 400 500

Ex
ec

u
ti

o
n

 T
im

e
 (

s)

Number of Principal Components

25 Subjects (Light Node) 31 Subjects (Light Node)

25 Subjects (Fat Node) 31 Subjects (Fat Node)

25 Subjects (GPU Node) 31 Subjects (GPU Node)

Fig. 5. Execution profile of NPAIRS for different numbers of principal
components on two datasets with 25 and 31 subjects for three different nodes:
a GPU node, a Light node, and Fat node.

0%

20%

40%

60%

80%

100%

2 5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

P
e

rc
e

n
ta

ge
 o

f 
Ex

e
cu

ti
o

n
 T

im
e

Number of Principal Components

Aggregating results

Computing evaluation metrics

CVA (resampling loop)

PCA (resampling loop)

Initial PCA

Fig. 6. Execution profile for different numbers of principal components on a
dataset of 25 subjects running on a GPU.

application on a GPU can be up to 12 times faster than
the CPU implementation of PCA. However, since the PCA
computation accounts for about 70% of the execution time of
NPAIRS, using our proposed the GPU assisted implementation
can speed up NPAIRS 3 to 7 times.

IV. SCHEDULING ON A HETEROGENEOUS CLUSTER

We show that GPU-assisted implementation of NPAIRS can
speed up execution of NPAIRS 3 to 7 times. However, in a
real-world research cluster, not all nodes are equipped with
a GPU. But, those CPU-only nodes, though are much slower
than GPU nodes, can still contribute in an exhaustive search
on the number of principal components for NPAIRS. This
way, instances of NPAIRS, each of which evaluates a different
value for the number of principal components, can be executed
on a CPU node or a GPU node in parallel. However, since
the performance of NPAIRS on GPU and CPU nodes are
significantly different, to execute NPAIRS on a heterogeneous
cluster, we need to carefully schedule instances of NPAIRS,
each evaluating a different value for the number of principal
components. In this section, we study performance of well-
known scheduling algorithms, which can be used regardless
of the cluster management platform. We show that execution
time of the exhaustive search on the number of principal
components for NPAIRS on a cluster significantly varies for
different scheduling algorithms.

There are several performance metrics to evaluate schedul-
ing algorithms such as latency, throughput, and makespan.
In this application, the goal is to minimize execution time
of multiple instances of NPAIRS, each evaluating a different
number of principal components, running in parallel on a
cluster. This task is achieved when all instances of NPAIRS
successfully finish their execution. It should be noted that
instances of NPAIRS are independent, have no deadline, and
can be executed in parallel on any resource in the cluster.
Considering all these characteristics, we use makespan of the
NPAIRS jobs, i.e. the time taken to execute all instances
of NPAIRS, to evaluate performance of different scheduling
algorithms.

A. Overview of the Scheduling Algorithms

Although finding an optimal schedule with the minimum
makespan is a NP-hard problem, there are two different
approaches to find a near-optimal schedule.

The first approach is using machine learning techniques to
explore the whole solution space, i.e. all possible schedules.
In this approach, the exploration stops when some predefined
constraints about the solution quality are satisfied or the
algorithm execution time exceeds some threshold. Genetic
Algorithms [16], [17] and Bee Colony Optimization [18], [19]
are examples of this approach. Although this approach may
result in a better solution, it is computing intensive and suffers
from poor scalability.

The second option is using greedy algorithms to optimize
a partial solution, iteratively aiming to find a near-optimal
final solution. In this approach, scheduling algorithms have
polynomial execution time and are more scalable than the
machine learning based scheduling algorithms. Moreover, if
implemented efficiently, its results can be competitive with
the results of machine learning techniques. We implemented
and evaluated the following well-known algorithms.

1) Shortest Job First (SJF) and Longest Job First (LJF):
In SJF [20], first, submitted jobs are sorted in ascending order
of their estimated execution time on GPU. Then, the shortest
unscheduled job will be assigned to the fastest available node.
If all nodes of the cluster are busy, the shortest unscheduled
job will wait until a node will be available. LJF [20] is similar
to SJF except that jobs are sorted descendingly based on their
execution time and then will be scheduled with the same order.

2) Min-Min and Max-Min: The Min-Min algorithm [21],
[22] schedules the submitted jobs iteratively. At each iteration,
finish time of all unscheduled jobs on each resource, i.e. node,
are computed using eq. 4.

fjr = ejr + avlr (4)

where fjr and ejr are the finish time and estimated execution
time of the job j on resource r, respectively, and avlr is the
earliest time that resource r becomes available. Then, for each
job the resource with the earliest finish time is chosen as
the selected resource (also known as first min). Finally, the
job with earliest finish time will be scheduled on its selected



resource (also known as second min). The algorithm iterates
until all jobs are scheduled.

The Max-Min algorithm [21], [22] is similar to Min-Min in
its first min step. But, it selects the job with maximum finish
time in its second step.

3) Sufferage: Sufferage algorithm [4], [22] is an extension
of Min-Min. It defines Sufferage of a job as the difference
between the Earliest Finish Time (EFT) of the job and its
Second Earliest Finish Time (SEFT). The goal of this algo-
rithm is to minimize the Sufferage value of all submitted jobs.
This is achieved by prioritizing jobs that are competing on the
same resource. Similar to Min-Min, Sufferage is an iterative
algorithm. But, on the contrary to Min-Min, in which at each
iteration only one job is assigned to one resource, Sufferage
may assign multiple jobs to their preferred resources. The
Sufferage algorithm works as follows.

At the beginning of each iteration, finish time of unsched-
uled jobs on all resources are computed. Then, the unscheduled
jobs are sorted in ascending order of their EFTs on all
resources. Starting with an unscheduled job with the EFT,
job i selects its preferred resource r∗i , i.e. the resource which
finishes the job earlier than any other resource in the cluster. If
the preferred resource of job i has not been assigned to any job
in the current iteration, job i will be scheduled on its preferred
resource. But, if in the current iteration, the preferred resource
of the job i has already been assigned to another job j, then job
i should compete with job j for this resource. Among job i and
job j, the job with greater Sufferage value will be assigned to
resource r∗i . The other job will be put back in the unscheduled
job queue to be scheduled in the next iterations. An iteration
of Sufferage algorithm ends with traversing all unscheduled
jobs as described above. Detail of the Sufferage algorithm is
presented in Algorithm 1.

V. EVALUATION OF SCHEDULING ALGORITHMS

To evaluate the scheduling algorithms introduced in the
previous section, first we create execution profiles of NPAIRS
with different values for the number of principal components.
Then, we use our in-house simulator to evaluate the scheduling
algorithms. Inputs for the simulator are as follows: i) Execu-
tion profiles of NPAIRS application with different values for
the number of principal components on all available resources.
ii) A list of available resources in the cluster. iii) A list of
submitted jobs to the cluster with their input parameters, the
number of principal components for NPAIRS.

The execution profiles for the NPAIRS jobs are obtained by
running individual execution of each job on each node of our
in-house heterogeneous cluster which consists of three types
of resources:

• Fat node: Four Intel Xeon E5-4620 CPUs with 512GB
of memory.

• Light node: Two Intel Xeon E5-2650 CPUs with 32GB
of memory.

• GPU node: One Intel Core i7-3770K CPU with 16GB of
memory, equipped with a Nvidia GeForce GTX TITAN
GPU.

Algorithm 1: Sufferage Algorithm

while there is an unscheduled job do
foreach unscheduled job j do

foreach resource r in cluster do
fr
j← finish time of job j on resource r;

if fr
j < EFT of job j then
Assign j’s EFT to its SEFT;
Assign fr

j to EFT of job j;
r∗j ← r;

else if fr
j < SEFT of job j then

Assign fr
j to SEFT of job j

sufferagej ← SEFT of job j - EFT of job j;

Sort jobs ascendingly based on EFT;
Mark all resources as unassigned;
foreach unscheduled job j do

if r∗j is unassigned then
Schedule job j on its preferred resource r∗j ;
Set status of r∗j to assigned;

else if sufferage of job j is greater than sufferage of
currently scheduled job on r∗j then

Return the job currently scheduled on r∗j to the
unscheduled job queue;
Schedule job j on r∗j ;

In the following experiments, unless otherwise mentioned,
we use a cluster of 3 Fat nodes, 3 Light nodes, and 2 GPU
nodes. We use the same fMRI dataset of 25 subjects for all
experiments. Also, for all experiments, submitted workload to
the cluster is a batch of 99 independent NPAIRS jobs each
with a unique value for the number of principal components
ranging from 2 to 100. We assume all NPAIRS job are part
of an exhaustive search process on the number of principal
components, as described in section II, and are submitted to
the cluster at the same time. All the scheduling algorithms
that we evaluate, schedule the batch of NPAIRS jobs on
their submission. We use makespan of the submitted batch of
NPAIRS jobs to evaluate efficiency of different clusters and
scheduling algorithms.

As a baseline for the scheduling algorithms, we evaluate
a basic First Come First Serve (FCFS) scheduling algorithm.
Since makespan of a schedule produced by FCFS depends
on the arrival order of the jobs and we assume that all jobs
are submitted in a batch at the same time, we repeat FCFS
algorithm 200 times on the same batch of jobs, each time with
a different order. and report average, the best, and the worst
makespan.

In addition, we evaluate two basic scheduling algorithms,
Torque [23] and Minimum Compilation Time (MCT) [24].
Torque schedules all jobs on their fastest resource(s) in the
cluster. MCT algorithm [24], follows a greedy strategy and
assigns each job to a node that can finish the job sooner,
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Fig. 7. Execution time of the batch of NPAIRS jobs with different scheduling
algorithms on a CPU cluster of 3 Fat nodes and 5 Light nodes.
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Fig. 8. Execution time of the batch of NPAIRS jobs with different scheduling
algorithms on a heterogeneous cluster of 3 Fat nodes, 3 Light nodes, and 2
GPU nodes .

considering jobs that have been already scheduled on the
nodes.

In order to ensure a fair comparison between our CPU-GPU
framework for NPAIRS and its original CPU implementation,
we evaluate different scheduling algorithms on a CPU cluster
with 5 Light nodes and 3 Fat nodes. We use the best results
obtained from this cluster to compare with the results of het-
erogeneous CPU-GPU cluster. Figure 7 depicts the makespan
of the NPAIRS batch for all tested scheduling algorithms on
the CPU cluster. The results indicate that in a CPU cluster,
where execution of NPAIRS tasks do not differ significantly
on different nodes, the difference between makespan of tested
scheduling algorithms is less than 0.25%. The only exception
is the Torque scheduling algorithm [23], in which all jobs are
scheduled only on their fastest resources, which are the Light
nodes in this cluster (Figure 5).

As we demonstrated in Section III, NPAIRS application can
get a significant performance boost by utilizing a GPU. To
show the effect of a few GPU nodes on the performance of
the NPAIRS workload, we build a heterogeneous cluster by
replacing two Light nodes in the above-mentioned CPU cluster
with two GPU nodes. In the heterogeneous cluster, since the
execution time of NPAIRS on different nodes significantly
varies, on the contrary to the homogeneous CPU cluster,
makespan of a batch of NPAIRS job depends on the scheduling
algorithm.

The makespan of the batch of NPAIRS jobs in the heteroge-
neous cluster with different scheduling algorithms is illustrated
in Figure 8. The results show that all algorithms, except
Torque, perform better than the average of FCFS algorithm.
This confirms hypothesis about the importance of having a
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Fig. 9. Resource utilization of different scheduling algorithms on a hetero-
geneous cluster of 3 Fat nodes, 3 Light nodes, and 2 GPU nodes.

scheduling algorithm for a homogeneous cluster.
Torque schedules jobs on the fastest resource in the cluster,

the two GPU nodes in this cluster, and does not utilize other
nodes. Therefore, the makespan of Torque is higher than the
other scheduling algorithms.

SJF and LJF have slightly higher makespan (less than 0.5%)
compared to the best FCFS case. Min-Min and Max-min,
which can be considered more intelligent versions of SJF and
LJF, outperform them by 3.5% and 2.5%, respectively. The
difference between performance of Min-Min and Max-Min
is due to their different approaches for incrementally finding
the final scheduling solution. Min-Min, at each iteration,
tries to keep the load of the resource balanced by assigning
a job to a recourse which leads to the minimum possible
increase of current overall finish time. This strategy postpones
allocation of longer jobs and fails to create a schedule of
good quality when few number of very long jobs remain to be
scheduled at the end of algorithm. In this case, all resources,
except those which are running the long remaining jobs, have
approximately same finish time and remain idle while few
resources are busy executing the long jobs. On the other hand,
Max-Min gives higher priority to longer jobs. It fails when a
long job that is scheduled on a powerful resource steals the
opportunity from many shorter jobs. The NPAIRS application
does not contain any job with extremely longer execution time.
For this reason, Min-Min outperforms Max-Min by 1.5%.

Sufferage is an extension on Min-Min algorithm and re-
duces makespan of Min-Min by 3%. This is because all
the NPAIRS jobs have the same preferred resources, GPU
nodes, and Sufferage algorithm assigns GPU nodes to jobs
that get the most advantages of running on them, which are
the jobs that suffer the most from running on other nodes.
Overall, Sufferage results in the minimum makespan among all
evaluated scheduling algorithms. Compared to Torque, FCFS,
and MCT algorithms, Sufferage reduces makespan of the
NPAIRS jobs by 47%, 9%, and 4%, respectively. This is a
considerable improvement which has been achieved with a
very low scheduling overhead.

To have a more complete analysis of the evaluated schedul-
ing algorithms, resource utilization for each types of nodes
in the heterogeneous cluster is presented in Figure 9. As ex-
pected, Sufferage has the most balanced utilization among all
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Fig. 10. Execution time of the batch of NPAIRS jobs on three different
clusters: a CPU cluster of 3 Fat nodes and 5 Light nodes, a GPU cluster of 2
GPU nodes, and a heterogeneous cluster of 3 Fat nodes, 3 Light nodes, and
2 GPU nodes.

algorithms. The least utilized resources when using Sufferage
algorithm are the Fat nodes. The low utilization of Fat nodes in
Sufferage is a key factor in the success of Sufferage algorithm
because efficiency of Fat nodes on executing NPAIRS jobs is
less than the GPU nodes and Light nodes (see Figure 5).

On the contrary to Sufferage, FCFS, SFJ, and LJF result in
the most utilization of FAT nodes, which explains their high
makespan (Figure 8). Although Min-Min and Max-Min try
to increase utilization of the fastest nodes, i.e. GPU nodes,
and decrease the slowest nodes, i.e. Fat nodes, they are not as
successful as Sufferage in utilizing Light nodes more than Fat
nodes.

To show that in the presence of powerful GPU nodes, we
can still benefit from available CPU nodes, we compared the
performance of a CPU-only cluster of 8 nodes, a GPU-only
cluster of 2 nodes, and a heterogeneous cluster of 6 CPU
nodes and 2 GPU nodes (Figure 10). The shortest makespan
for the CPU cluster belongs to one single execution of FCFS
algorithm, which is less than 1% shorter than the makespan
produced by Sufferage algorithm. The shortest makespan
for the heterogeneous cluster is produced by the sufferage
algorithm. Also, to show that in presence of powerful GPU
nodes, we can still benefit from available CPU nodes, we
provide make span of a cluster of 2 GPU nodes (Figure 10).
The results support our approach, which is utilizing a few
powerful GPU nodes with already available CPU nodes in a
heterogeneous cluster.

VI. RELATED WORK

Since the advent of GPGPU, several researches have been
performed to efficiently use the computational power of GPUs
for scientific applications. Using GPU’s computational power
in medical image processing has been widely investigated
[25]–[27] such as BROCCOLI [25] which is an OpenCL im-
plementation of an fMRI analysis software package. However,
the method we presented in this paper benefits from GPUs
while applying minimal changes to the existing CPU code of
the fMRI application.

GPUs have also been widely used in a wide range of other
scientific applications [28]–[30]. Authors in [28] have imple-
mented a numerical weather prediction algorithm on a GPU
and integrated it into a weather forecasting application. They

achieved 7x speedup for the GPU version of the algorithm,
Whereas they got only 2x speedup after integrating it into
the whole application. However, we got 14x speedup for the
PCA and 7x speedup when integrating it into NPAIRS. This
implies that our implementation is as efficient that even with
the presence of data transfer cost, we still have a reasonable
speedup.

In [31], a chemistry application has been scheduled on a
HPC platform. However, the benefit of using GPU is not
investigated in this work since porting to GPU requires a
fundamental upgrade to that application. On the other hand,
our suggested method applies minimal changes to NPAIRS
with the benefit of achieving almost 7x speedup.

There are multiple works on studying job scheduling for
heterogeneous clusters. StarPU [32] is a scheduling frame-
work for heterogeneous multi-core architectures. Several basic
strategies has been implemented in StarPU. However, its main
target is to provide the load balancing among all available
resources. Authors in [33], have extended Hadoop to perform
the task scheduling for GPU-based heterogeneous clusters.
Their main goal is to minimize the execution time. However,
Hadoop framework is not appropriate for small jobs with
execution times of less than a minute. Therefore, in cases
where jobs are being executed too fast on a GPU, it is not
reasonable to use Hadoop due to its significant overhead. Ravi
et al. [24] schedule a set of well-known applications on a
cluster of CPU-GPU nodes. They have developed a set of
simple scheduling schemes. They test their method both for
single-node and multi-node applications. Likewise, the whole
scheduling schema is for independent jobs. Torque [23] is
a resource manager which is being widely used to manage
heterogeneous clusters. The scheduling strategy of Torque is
based on OpenPBS and it is fairly simple. The idea is that
the user will specify the job that needs to be executed. Once
a resource is selected for a job, Torque does not consider
the possibility of running that job on another resource type.
Considering the fact that user will always ask for the fastest
resource to execute the job, this schema will impose a high
load imbalance to the system.

VII. CONCLUSION

The computational power of GPU has recently been used to
accelerate scientific applications. Neuroimaging applications
mostly consist of complex linear algebra operations which are
intrinsically parallel. Thus, they are one of the best candidates
to be accelerated by GPUs. In this paper, we efficiently ported
NPAIRS, a neuroimaging application, to GPU. This is done
by adding only a few lines of code to the original NPAIRS
code. This minimal change of the code is so important from
the view point of NPAIRS’ non-expert users and developers,
i.e. bio-medical scientists. Because they do not have to suffer
from any fundamental change in the application.

As the second part of our research, we investigated the effi-
ciency of different scheduling algorithms for running NPAIRS
on a heterogeneous cluster. Experimental results show that



when running NPAIRS original code on a homogeneous clus-
ter of CPU nodes, the scheduler does not have a considerable
impact on overall execution time. However, by replacing a
quarter of CPU nodes with GPU nodes and utilizing the
Sufferage scheduling algorithm, we improved the application
performance by 44%. We also compared our results with
Torque’s basic scheduler and MCT, two of the commonly used
schedulers in current HPC platforms. The Sufferage algorithm
improves Torque and MCT by 47% and 4% respectively.

Our results show that by applying minimal changes to
the original code and adding a few GPUs, each costs only
25% of a CPU node, significant performance improvement is
achieved.
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