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Abstract 
Although statistical rigor and practical utility have been ad- 
vocated as desirable features of map accuracy assessment 
protocols, specific criteria defining these features have not 
been elucidated. Tbvo criteria are proposed for statistical rigor: 
probability sampling and consistent estimation. Practical 
utility is synonymous with cost, and because cost is directly 
related to quality, decisions regarding practical utility may be 
evaluated in terms of their effect on quality. Four criteria are 
proposed to define quality: the precision of the accuracy 
estimates, the population to which sampling inference is 
justified, the assumptions needed to justify inference, and the 
accuracy of the reference data. The first step in planning a 
statistically rigorous, practical accuracy assessment is to 
construct an efficient, probability-sampling-based strategy 
permitting inference to the full map population. Modifications 
of this strategy to enhance practical utility (i.e., reduce cost 
of the assessment) should be evaluated using the criteria 
defined for quality and statistical rigor. 

Introduction 
Quantifying map accuracy provides important descriptive in- 
formation to assess the utility of a map for a specified applica- 
tion. This article focuses on site-specific, thematic accuracy 
(Janssen and van der Wel, 1994; Stehman and Czaplewski, 
1998; Congalton and Green, 1999) in which accuracy is defined 
by comparing the map attribute and the actual attribute (i.e., ref- 
erence classification) for a sample of pixels, polygons, or other 
areal units such as a 1-hectare plot. Statistical inference is then 
applied to generalize or extrapolate the results from the sample 
to the full map population. Most accuracy assessment objec- 
tives can be addressed by design-based inference (Stehman, 
2000), the inferential framework typically invoked in classical 
sampling theory and methods (Cochran, 1977; Sarndal et al., 
1992, p. 515). Design-based inference is assumed throughout 
the remainder of this article. 

Because budget constraints affect nearly all accuracy as- 
sessment projects, cost becomes a dominant concern in plan- 
ning. What can be done to make the assessment more cost-effec- 
tive, and therefore more practical, while still maintaining 
statistical rigor? The proposed approach is to first construct a 
statistically rigorous, efficient sampling strategy employing 
traditional concepts and methods of scientific sampling. If it is 
then necessary to sacrifice some desirable features of the as- 
sessment protocol to reduce costs, the options include reducing 
precision, restricting the population to which design-based 
inference applies, introducing assumptions, and allowing 
greater error in the reference data. Implementing one of these 
options should be done only with full awareness of its effect on 
the statistical rigor of the assessment. 

A theme of this article is that both statistical rigor and prac- 
tical utility can be evaluated using very specific criteria. These 
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criteria are described, and it is demonstrated how they can be 
applied when planning an accuracy assessment. The first part 
of the article addresses the concepts required to define a statisti- 
cally rigorous assessment. The second part of the article dis- 
cusses the effect on the quality of an accuracy assessment when 
various cost-reduction measures are taken. 

Components of Accuracy Assessment 
Stehman and Czaplewski (1998) list three basic components 
to accuracy assessment: the response design, sampling de- 
sign, and analysis. The response design is the protocol for 
determining the reference classification recorded on each 
sampling unit. Sometimes a single attribute, for example, the 
primary land-cover class, is recorded. Alternatively, the 
response design may specify recording the primary and any 
secondary land-cover classes, a value for each land-cover 
class derived from a linguistic scale (Gopal and Woodcock, 
1994), or the proportion of each land-cover class present in 
the assessment unit. Choosing the spatial unit on which the 
assessment is based is also part of the response design proto- 
col. The spatial unit may be a pixel, block of pixels, land- 
cover polygon, or other areal unit. The criteria defined for 
statistical rigor and practical utility and the basic sampling 
theory and concepts discussed throughout this article apply 
to any of these choices of assessment unit. 

A response design is present in all sampling problems. 
Determining the reference land-cover classification is analo- 
gous, for example, to measuring intelligence, common sense, or 
income when sampling human populations. Each of these 
attributes of a human population must be defined, and scien- 
tists may not agree on a definition or measurement protocol for 
a given attribute. Some human attributes are easier to measure 
than others, just as some land-cover types are more readily 
identified than others. Whether the focus is on attributes of 
humans or landscapes, the response design represents a mea- 
surement problem, not a statistical inference problem. 
Although reference data quality is important to accuracy 
assessment, it is useful to separate measurement issues of the 
response design from the inference issues affecting sampling 
design and analysis. 

The sampling design is the protocol by which the sample 
elements are selected. Stehman and Czaplewski (1998), Con- 
galton and Green (1999), and Stehman (1999) review options 
for the sampling unit and sampling design. Analysis typically 
focuses on estimating an error matrix (Story and Congalton, 
1986) and various measures summarizing the error matrix. 
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Congalton (1991), Janssen and van der We1 (1994), and Steh- 
man (1997) review common summary measures applied in 
accuracy assessment. 

Proposed Criteria for Statistical Rigor 
The sampling design and analysis components are directly 
linked to statistical inference and therefore motivate the two 
criteria proposed for statistical rigor. A statistically rigorous 
accuracy assessment is one in which the sampling design satis- 
fies probability sampling protocol and the estimates are statisti- 
cally consistent. Both criteria will be described in detail, and 
then a basic result of sampling theory will be presented to show 
how these two criteria are unified within a general framework 
of estimation. 

A probability sampling protocol is one in which the inclu- 
sion probabilities are known for all elements in the sample, 
and the inclusion probabilities are non-zero for all elements of 
the population. The inclusion probability for element u,  
denoted .~r,, is defined as the probability that element u is 
included in the sample ( u  may denote a pixel, polygon, or other 
sampling unit chosen for the assessment). Sarndal et al. (1992, 
Section 2.4) discuss inclusion probabilities and probability 
sampling from a general perspective, and Stehman and 
Czaplewski (1998), Biging et al. (1998), and Stehman (1999) 
discuss probability sampling in the context of accuracy 
assessment. 

Inclusion probabilities affect two key practical elements of 
accuracy assessment: they determine unambiguously (i.e., 
without assumption) the population represented by the sam- 
ple, and they are required for design-based estimation. Popula- 
tion representation derives from the requirement that the .rr,'s 
must be non-zero. The population to which rigorous statistical 
inference applies is then the collection of all elements for 
which n-,, > 0. Elements of the population for which T,, = 0 are 
effectively excluded from being sampled, and design-based 
inference does not extend to those elements. For example, 
restricting sampling to polygon interiors excludes a portion of 
the population from any chance of being sampled, and infer- 
ence would not apply to polygon edges. 

Requiring the ru's to be known for the sample is necessary 
for estimation. A basic theorem of probability sampling (Horvitz 
and Thompson, 1952) is that if T, > 0 for all elements in the 
population, then the Horvitz-Thompson (HT) estimator Zy,l.rr, 

P 

is unbiased for the population total f:y. (Z indicates summation 
- " 

over the sample elements and Z denotes summation over the 
u 

population). The HT estimator is applied frequently in sam- 
pling practice, although usually in more convenient special 
case forms available for the standard sampling designs often 
employed in practice (Sarndal et al., 1992, Secs. 2.8, 3.4.1, 
3.7.2,4.2.1). Typically, in accuracy assessment, y, = 1 if ele- 
ment u is classified correctly, and y, = 0 otherwise. Most accu- 
racy parameters may be formulated as totals, and therefore can 
be estimated by the HT estimator or functions of HT estimators. 

The HT estimator is introduced because it provides insight 
into the conceptual basis of rigorous estimation. Writing the 
estimator as Z wj , ,  where w, = llr, highlights the necessity to 

S 

weight each sample observation to expand its representation to 
account for elements of the population not sampled. Stuart 
(1984) coined the term "apparent frequency" for this weight or 
expansion factor, w,. 

A simple example illustrates the concept. Suppose we 
would like to estimate the total amount of money for a popula- 
tion of N = 100 people. A simple random sample (SRS) of n = 10 
people is selected, and each sampled person reports the 
amount of money, y, , he or she has. To expand the sample data 
to the full population of 100 people, each sampled person must 

represent a certain number of people in the population. For the 
SRS protocol, we would intuitively expect each sampled per- 
son to represent himself or herself plus nine others. Formally, 
because each person has a probability of r, = 1/10 of being 
included in the sample, each sampled person must represent 
w, = 11% = 10 people in the population. A sampled person 
having, say, $2.60, would be assumed to represent w j ,  
= (10)(2.60) = $26 for the population. If we did not select the 
sample using a probability sampling protocol, we cannot oper- 
ate within the design-based estimation framework because the 
probabilistic basis for expanding from the sample observations 
to the population has been lost. 

Different sampling designs lead to different n ' s  and, con- 
sequently, different weights. In the illustrative example, if the 
population is stratified by gender, and male and female strata 
are sampled with different intensity, the expansion weight for 
sampled males will differ from the expansion weight applied to 
females. This weighting feature applies directly to estimation 
in accuracy assessment. Each sampled pixel, polygon, or other 
areal unit must represent a certain number of these units in the 
population. The sample units do not all need to have the same 
weight, but these weights must be known for each sample unit. 

Consistent Estimation 
The estimation criterion proposed for statistical rigor is consis- 
tent, not unbiased, estimation. Sarndal et al. (1992, Sec. 5.3) 
provide a technical definition of consistency. Heuristically, we 
will not go far wrong in thinking of consistent as synonymous 
with unbiased: the desirable feature is that the sampling distri- 
bution of the estimator should be centered on the target param- 
eter to be estimated. Consistency encompasses situations for 
which an unbiased estimator is problematic, as for example 
when the accuracy parameter is a ratio of two or more totals. 

Two results complete the theory required for rigorous esti- 
mation in accuracy assessment: (1) the HT estimator is consis- 
tent for a population total, and (2) a continuous function of HT 
estimators is consistent for the parameter defined by the cor- 
responding function of the population totals (Sarndal et al., 
1992, Remark 5.3.1). To derive a consistent estimator, we for- 
mulate the accuracy parameter as a function of population 
totals, and then estimate each total using HT estimation. Steh- 
man (1996b) illustrates this technique to derive an estimator of 
kappa for stratified random sampling. Because accuracy 
assessments typically rely on standard sampling designs, it is 
often unnecessary to derive estimators from these basic princi- 
ples. However, this approach to constructing consistent estima- 
tors is a fundamental structure underlying a statistically 
rigorous assessment. 

Assumptions 
The design-based estimation theory applied to accuracy assess- 
ment is remarkably free of assumptions. The consistency and 
unbiased properties of Horvitz-Thompson estimation do not 
require any assumptions concerning the probability distribu- 
tion, independence, or variance of the observations (Horvitz 
and Thompson, 1952; Sarndal et al., 1992). Recognizing when 
assumptions are not necessary is as important as knowing 
when assumptions are required to justify inference. Consider 
the statement: "The concept of randomness is a central issue 
when performing almost any statistical analysis because a ran- 
dom sample i s  one in  which each member of the population has 
an equal and independent chance of being selected" [italics 
added1 (Congalton and Green, 1999, p. 24). Tho unnecessary 
restrictions-equal probability and independence-are 
implied by this statement. Although many of the hypothesis 
testing methods familiar from introductory statistics require 
independence and equal probability, the descriptive analyses 
comprising a majority of accuracy assessment estimation 
objectives do not. The design-based estimation formulas for 
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overall accuracy, user's and producer's accuracies, and the cell 
proportions of the error matrix are unbiased andlor consistent 
without the need for these assumptions. Unnecessarily invok- 
ing the independence restriction remains prevalent in sam- 
pling practice (Gregoire, 1998; Stehman, 2000). Misplaced 
concern over unnecessary assumptions may distract prac- 
titioners from the relevant criteria defining statistical rigor that 
should be the focus in planning an accuracy assess men^ 

Practical lmpllcations of the Statlstlcal Rlgor Criterla 
It is useful to translate the two criteria proposed for statistical 
rigor into practical guidelines. If a standard sampling design 
such as simple random, stratified random, systematic, or clus- 
ter sampling is correctly implemented, the probability sam- 
pling criterion is satisfied. Conversely, the probability 
sampling criterion is violated when the sample units are 
selected by judgment to be "representative," selected because 
of convenient access (e.g., near roads, schools, or on public 
land), or selected because of homogeneity of land cover (e.g., 
polygon interiors). Rigorous design-based sampling inference 
is not possible from such non-probability sampling protocols. 
Harnmond and Verbyla (1996) note the potential optimistic 
bias inherent in restricting sampling to polygon interiors or 
other homogeneous areas of land cover. Paulsen et al. (1998) 
and Peterson et al. (1999) provide numerical documentation of 
the potential impact non-probability sampling may have in 
practice. Thev found that estimates obtained from a non-~roba- 
hility samp160f conveniently accessed lakes corresponaed 
poorly with estimates derived from a probability sample of 
lakes. It would not be surprising to find correspondingly poor 
estimates from non-probability samples employed in accuracy 
assessment. 

The probability sampling criterion is also violated when 
the selection protocol is so complex that it is impossible to 
determine the ~ ' s .  Congalton and Green (1999, Chapter 8) pres- 
ent an illustration of this difficulty. In their example, they 
describe several steps taken in the sampling protocol to dimin- 
ish problems arising from access to private property, travel 
costs, and distance to a road. Although randomization is incor- 
porated in this protocol, deriving the rU1s poses a daunting 
challenge. The practical implication is that, if these q,'s cannot 
be specified, the data are unusable for rigorous design-based 
inference. Stehman and Czaplewski (1998) recommend that, if 
the ?r,'s resulting from a selection protocol cannot be deter- 
mined, the protocol should be replaced by an alternative sam- 
pling design for which the q,'s are known. 

Most accuracy assessments will be subject to practical dif- 
ficulties affecting implementation of the design. For example, 
Congalton and Green (1999, p. 94) report that approximately 50 
percent of their randomly selected sample locations could not 
be visited in the field, and Edwards et al. (1998, p. 80) docu- 
ment several practical difficulties of visiting ground locations. 
The remedies to these practical problems must be based on 
sound sampling principles. Ad hoc modifications may prove 
unacceptable because it is often verv difficult to derive v,,'s for 
the fiela-based decision protocols iften implemented. 

- 

Consider the following example in which the sampling 
unit is a mapped polygon and the design is simple random 
sampling (SRS) from a list frame of all map polygons. Rather 
than visit just these sample polygons, it is decided that a con- 
venient way to increase sample size is to instruct field crews to 
sample also the nearest polygon due east of the original sample 
polygon. A similar protocol of going to the nearest accessible 
pixel or polygon (perhaps of the same land-cover class) is 
sometimes recommended to replace denied or difficult-to- 
access sites. The .rr,'s created by this modification are now 
changed and drastically more complicated to derive than the 
q,'s of the original SRS design, which are all equal. In the modi- 
fied protocol, selecting the nearest polygon to the original sam- 

pled polygon creates an unequal probability sampling design 
because polygon size and spatial arrangement determine the 
?r,'s. The ~r,'s increase as a function of polygon area (i.e., larger 
polygons are more likely to be selected), but translating this 
relationship into correct formulation of the vu's will be diffi- 
cult. Further, it may be impractical to obtain the field measure- 
ments required to work out the geometry necessary to compute 
the .rr,'s. The desire to decrease travel costs by visiting poly- 
gons in close proximity is justified. But the purpose of this 
example is to emphasize that it is critical to achieve this practi- 
cal goal while still maintaining the statistical rigor provided by 
probability sampling. In most situations, a sampling technique 
exists to achieve the dual purpose of statistical rigor and practi- 
cal utility. Two-stage cluster sampling would apply to this par- 
ticular situation. 

If the sampling protocol is such that the q ' s  are known, the 
consistency criterion of statistical rigor is readily satisfied in 
practice by incorporating the ru's in the accuracy estimators. 
For equal probability designs such as simple random, system- 
atic, and some forms of cluster sampling, each sample observa- 
tion receives the same weight and estimation formulas 
typically presented for accuracy assessment (Janssen and van 
der Wel, 1994; Congalton and Green, 1999) are appropriate. 
Equal probability sampling designs are called "self-weighting" 
because, by construction of the design, all sampling units have 
the same weight. If the design includes unequal probability 
sampling, for example, stratified sampling with equal alloca- 
tion, then the weights determined by the design must be incor- 
porated in the estimation. To apply sRs estimation formulas to 
an unequal probability sampling design violates the consis- 
tency criterion and will typically result in unacceptable 
estimates. 

Practical Utlltty: Sampling Design and Analysis 
Practical utility is viewed as a function of cost. With few excep- 
tions, any practical problem can be greatly diminished or elim- 
inated if no expense is spared. Unfortunately, the reality of 
accuracy assessment budgets dictates that cost is a crucial, if 
not dominant, planning consideration. To reduce costs, an effi- 
cient sampling strategy should be constructed to achieve the 
best precision possible given the available resources. The next 
subsection discusses elements of an efficient sampling strat- 
egy. If further cost reductions are necessary, even after an effi- 
cient sampling strategy has been chosen, lowering costs by 
reducing quality may be considered. Four general criteria of 
quality are proposed and discussed in later subsections. 

Designing an EWent Sampling Strat* 
The first step in developing a cost-effective accuracy assess- 
ment protocol is to construct an efficient sampling strategy. For 
most practical problems encountered in accuracy assessment, a 
statistically sound sampling procedure exists. Large, spatially 
extensive populations, multiple estimation objectives, and dif- 
ficult to access sampling units are not characteristics unique to 
sampling design for accuracy assessment, but are problems 
which have existed throughout the history of sampling prac- 
tice. A diverse collection of scientifically sound methods has 
been assembled (Hansen et al., 1953; Kish, 1965; Murthy, 1967; 
Raj, 1968; Cochran, 1977; Jessen, 1978; Thompson, 1992; 
Schreuder et al., 1993). Productive advances in accuracy 
assessment may derive from innovative application of these 
traditional sampling methods. Both the sampling design and 
analysis components of a sampling strategy offer options for 
improving cost-effectiveness. The planning goal should be to 
select the sampling strategy that most efficiently uses the bud- 
geted resources. A few examples will be described to illustrate 
how existing methods address common practical problems in 
accuracy assessment. 
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Stratified sampling provides for efficient estimation 
within population subgroups. Frequently, the strata are the 
mapped land-cover classes chosen for the objective of estimat- 
ing user's accuracies. But geographic stratification based on 
ecoregions or spatial regions of special interest is another 
option. Stratification may be used to ensure a minimum sam- 
ple size in each stratum to achieve more precise (i.e., efficient) 
estimates for rarer land-cover types or smaller subregions than 
would be obtained from simple random or systematic sam- 
pling. Stratification may also be employed to reduce sampling 
costs, for example, by stratifying by distance to a road or by ease 
of accessibility (Edwards et al., 1998). Optimal allocation for- 
mulas (Cochran, 1977, Sec. 5.12) can be used to determine the 
most efficient allocation of sampling resources to strata when 
the objective is estimating overall accuracy. Sarndal et al. 
(1992, Sec. 12.7) present formulas for efficiently allocating 
samples among strata for multiple estimation objectives (e.g., 
user's accuracies and overall accuracy). 

Cluster sampling using a county, USGS quadrangle, aerial 
photograph, or another areal unit as the primary sampling unit 
(PSU) is often adopted to reduce travel costs. Cluster sampling 
is also applicable to other situations in which spatial proper- 
ties of the sample affect the practical utility of implementing 
the design. For example, if identifying and contacting land 
owners is expected to increase costs dramatically, using a 
county as a cluster may reduce the cost of identifying property 
ownership as well as decrease travel costs to sample sites. 
Defining counties as clusters creates a design option in which 
having to sample elements in every single county of a state or 
region would not be necessary, thus reducing the number of 
courthouse visits needed to determine ownership. 

A potential disadvantage of cluster sampling is that classi- 
fication errors tend to cluster spatially, so that the information 
per sample unit in cluster sampling may be lower than for other 
designs. This problem is diminished by two-stage cluster sam- 
pling in which a subsample of the elements within a PSU are 
sampled. For example, Edwards et al. (1998) employed USGS 
7.5-minute quadrangles as PSUS, and Zhu et al. (2000) con- 
structed PsUs based on NAPP photography. The spatial restric- 
tion of the sample to within the first-stage PSUS reduces travel 
costs if ground visits are necessary, or reduces the workload for 
obtaining aerial photography or videography to only those 
areas covered by the first-stage sample. Czaplewski (1999) 
describes general multivariate statistical estimators applicable 
to analysis of data obtained from two-stage cluster sampling. 

A variation of cluster sampling-adaptive cluster sam- 
pling (Thompson, 1990)-has been proposed for sampling rare 
land-cover classes (Stehman, 1996c) and for change-detection 
accuracy assessment (Biging et al., 1998). A potential advan- 
tage of adaptive cluster sampling is to increase the sample size 
from rare land-cover classes as identified by the reference 
rather than the mapped classification. It is simple to capture 
rare mapped classes in the sample by stratifying by the known 
mapped land-cover classes, but if these rare classes are poorly 
mapped, we may get few true elements of this rare class in the 
sample. The practical utility of adaptive cluster sampling has 
not been directly confirmed in accuracy assessment applica- 
tions, but it offers a potentially useful, cost-effective option 
meriting consideration. 

Estimator precision can be improved at the analysis stage 
by using poststratified (Card, 1982) and regression estimation 
(Stehman, 1996a; Kalkhan et al., 1998; Czaplewski, 1999). 
These techniques require no additional field visits. Poststrati- 
fication, which incorporates the mapped land-cover propor- 
tions into the estimator, is always an option because these 
mapped proportions are known. Regression estimation 
requires some auxiliary information related to accuracy, such 
as photointerpreted land-cover labels when the reference label 
is based on ground visits. These estimation techniques 
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Figure 1. Sample size required to achieve S E ( ~ )  
= 0.05 for different population sizes. 

increase complexity of the analysis, but usually incur little or 
no additional sampling cost. 

Relatlonshlp between Sample She and Population Slze 
Although classical sampling techniques have historically 
played an important role in providing scientifically defensible 
estimates for large populations (Bellhouse, 1988), the applica- 
bility of "traditional thinking about sampling" to accuracy 
assessment has been questioned because of the large popula- 
tion sizes (e.g., number of pixels) common in remote sensing 
practice (Congalton, 1991, p. 43; Jensen, 1996, p. 249; Con- 
galton and Green, 1999, p. 18). Traditional sampling tech- 
niques do, in fact, apply to these large populations because 
precision is determined by the absolute sample size, n, not the 
size of the sample relative to the population size. Large popula- 
tions do not require larger absolute sample sizes to obtain pre- 
cise estimates, so it is not necessary to sample the same fixed 
percent of a large population as would be required to attain simi- 
lar precision for a smaller population. 

These relationships are illustrated in Figure 1 in which the 
sample size required to achieve a standard errorAof 0.05 for the 
estimated proportion of correct classifications, P, is shown as a 
function of population size, N (population size is plotted on a 
logarithmic scale, loglo (N), so that very large population sizes 
can be accommodated in the figure). Suppose the true accuracy 
is P = 0.5 and the design is SRS. The standard error of the esti- 
mated proportion is then SE (9) = [(I - nlN)P(l - P)ln11'2. If 
the precision objective is to obtain a standard error of 0.05, solv- 
ing for n yields n = Nl(0.01N + I). 

Figure 1 shows that the sample size required to achieve a 
standard error of 0.05 initially increases as a function of N, but 
then reaches a plateau of n = 100 at about N = 10,000. For N 
= m, the required sample size is n = 100, thus identifying the 
upper bound on n. No matter how many pixels or polygons are 
present in the mapped region, a sample size of 100 wilI ensure 
that P can be estimated with a standard error of no greater than 
0.05. 

When the sample size required to achieve a standard error 
of 0.05 is expressed as a percent of the population size, (nl 
N)*100%, the percent of the population that must be sampled 
shri@cs toward 0 as Nincreases (Figure 2). Clearly, to achieve 
SE (P) = 0.05 for larger populations, it is not necessary to sam- 
ple the same fixed percent of the population. Sampling a very 
small percent of a large population can yield precise estimates. 

If planning is based on sampling a fixed percent of the pop- 
ulation, the resulting sample size for a large population will be 
much larger than necessary to achieve the target standard error. 
For example, for N =  20,000 and P = 0.5, a sample size of n 
= 100 would yield the targeted standard error of 0.05. This 
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translates to a 100/20,000 = 0.5 percent sample. Now suppose 
the population size is N = 300,000 and the same sampling 
intensity of 0.5 percent is applied. The resulting sample size is 
1500 and the standard error is 0.013, so that the sample size 
based on the 0.5 percent guideline would be much larger than 
necessary to achieve the precision goal of 0.05. The overly pre- 
cise estimates resulting from the 0.5 percent rule may be an 
inefficient use of limited accuracy assessment resources. A 
sample size of n = 100 yields nearly the same standard error for 
a population of 20,000 pixels (or polygons) as it does for a popu- 
lation of 300,000 pixels (or polygons). 

The relationship between n and Nmight be characterized 
as "smaller populations allow smaller sample sizes to achieve 
a set level of precision, but larger populations do not require 
increasingly larger sample sizes." Cochran (1977, Sec. 2.6) and 
Stuart (1984, Sec. 8) provide additional clarification of this 
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important to recogniie the appropriateness, if not the necessity 
of applying "traditional thinking about sampling" to accuracy 
assessment, despite statements to the contrary. 
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Figure 2. Percent of the population that must be 
sampled to achieve S E ( ~ )  = 0.05 for different pop 
ulation sizes. 

Practical Utility: Cost versus Quality Tradeoffs 
Once the cost savings of an efficient strategy have been 
achieved, we may consider trading quality for further cost 
reductions. The quality criteria or "resources" we have avail- 
able to exchange ?or riduced cost include precision, popula- 
tion re~resentation, assum~tions. and accuracv of the reference 
data. f h e  details ofthese Gadeoffs are describLd in the next 
five subsections. 

Precision 
Smaller sample sizes cost less, and reducing sample size lowers 
precision (assuming the sampling strategy is unchanged). 
Because assessments are typically designed to estimate several 
accuracy measures, some flexibility exists to distribute the loss 
of precision among selected estimates. For example, suppose 
the design employs stratification by mapped land-cover class, 
and the goal is to estimate user's accuracy of each class with a 
standard error of 0.05. Equally reducing the sample size of all 
strata would increase the standard error of all user's accuracy 
estimates. Alternatively, if the land-cover classes differ in 
importance to the mapping objectives, greater sample size 
reductions could be exacted from the less important classes, 
thus preserving better precision for the estimates of the more 
important classes. 

Consider another scenario in which the original objectives 
specify a target standard error for the estimated accuracy of 

each combination of an ecoregion by land-cover category cross- 
classification. Suppose there are five ecoregions and 20 land- 
cover categories, and budget limitations subsequently deter the 
initial ambitious estimation objective because resources are 
not available to achieve the precision goal for each of the 100 
estimates desired. To enhance the practical utility of this assess- 
ment, we could reduce the overall sample size needed by 
applying the precision requirement only to the land-cover 
class estimates aggregated over all ecoregions. This smaller 
overall sample size may then be adequate because only 20 esti- 
mates must meet the precision standard. Given this smaller 
sample, it is still possible to estimate accuracy for any land 
cover by ecoregion cross-classification. But standard errors 
may be high for rare classes in small ecoregions, perhaps so 
high that estimates are not practically meaningful (e.g., esti- 
mated accuracy is 0.55 with a standard error of 0.40). In this 
example, practical utility (in terms of smaller sample size) is 
gained at the expense of poorer precision for selected estimates. 

Population Representation 
Lowering the cost of accuracy assessment by eliminating sites 
distant from roads, on private land, or in otherwise inconve- 
nient to access locations reduces the population to which infer- 
ence applies. In this subsection, it is assumed that a probability 
sample is obtained from the portion of the mapped area not 
excluded by the imposed restrictions. Consequently, rigorous 
design-based inference still applies, but only to that portion of 
the original population for which T, > 0. For example, if prob- 
ability sampling is restricted to public land, design-based infer- 
ence applies only to the area represented by all public land. This 
population representation issue is sometimes framed by defin- 
ing target and sampled populations (Cochran, 1977, p. 5). The 
target population is the population for which inference is 
desired, usually the entire mapped region in accuracy assess- 
ment. The sampled population is that population from which 
we have a probability sample. Statistical inference applies to 
the sampled population. If the sampled and target populations 
differ, generalization to the target population will require 
assumptions (see next subsection). 

When population representation is reduced to save costs, 
it is important to describe the sampled population. Providing a 
map of the area represented by the sampled population or 
reporting the percent of the original population represented by 
the inference (e.g., the percent of area in public ownership) are 
options for describing the sampled population to which the 
inferences apply. Stehman and Czaplewski (1997) provide 
additional recommendations for describing the sampled popu- 
lation when sampling is restricted to a subset of the mapped 
population. 

Assumptions 
Another option to reduce costs is to replace the protocols of 
probability sampling and consistent estimation by assump- 
tions. Consider again the situation in which sampling is 
restricted to a reduced population. In the previous subsection, 
inference was correspondingly restricted to the reduced (sam- 
pled) population. Now suppose inference to the full target pop- 
ulation is desired. A simple assumption to invoke is that 
accuracy of the reduced population is representative of accu- 
racy of the full population (e.g., classification accuracy for inac- 
cessible areas is similar to classification accuracy for 
accessible areas). Support for such an assumption may be 
argued on the basis that similarity of the sampled and target 
populations translates into similarity of classification accuracy. 
Comparisons of the target and sampled populations might be 
based on mapped land-cover area, soils, geology, physiography, 
ecoregions, or any other theme available in a GIS, or also on 
averages or distributions for physical variables such as eleva- 
tion, precipitation, or temperature. Even if these characteris- 
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tics are similar between the sampled and target populations, 
the possibility remains that classification accuracy still differs 
between the two populations because of differences not cap- 
tured by the variables used in the comparison (e.g., land man- 
agement history and productivity). 

Different assumptions are required when the q ' s  are 
unknown. One option is to assume values for the unknown n;'s 
and then to proceed to estimate accuracy parameters on the 
basis of these assumed %'s. A common example of this 
approach is to analyze the sample data as if the design had been 
SRS. This is the analysis implemented by Congalton and Green 
(1999, Chapter 8) for the data resulting from the complex selec- 
tion protocol described in their example. The actual, but 
unknown, q,'s generated by the complex protocol are replaced 
by those appropriate for SRS (i.e., probability sampling proto- 
col is replaced by an assumption of SRS). Inference derived from 
this implicitly assumed model of the ?r,'s is not well supported 
because the complex data collection protocol undoubtedly 
results in unequal n's. Rather than weight all sample units 
equally, the analysis should incorporate different weights for 
different sampling units. Consequently, the analysis based on 
SRS formulas violates the consistency criterion. 

Modeling .rr,'s has an analogy in line transect sampling for 
estimating animal population abundance (Burnham et al., 
1980). A model is constructed to represent detectability of the 
animals selected in the sample, and estimation is based on the 
detectability model rather than on the actual, but unknown, 
~ ' s .  These wildlife applications focus on mobile animal popu- 
lations for which probability sampling designs are often 
impractical. Because accuracy assessment problems are much 
more amenable to probability sampling, modeling n ' s  should 
not be adopted as standard practice in accuracy assessment. 

Implementing a sampling protocol for which the ?.r,'s are 
unknown creates inferential risks. If the probability sampling 
criterion is not satisfied, then it is difficult to specify unambigu- 
ously the population to which inference applies. Inference 
becomes entirely dependent on assumptions and, as such, will 
be very difficult to defend in a confrontational setting. 

Quality of Refe~nce Data 
A final option for reducing costs is to decrease reference data 
quality. For example, suppose ground visited reference data 
are replaced by less expensive photointerpreted reference data. 
For some classification schemes and in some environments, 
this may result in little or no deterioration of reference data 
quality. However, in those situations in which ground visits are 
deemed more accurate, a decision must be made on whether 
lower quality photointerpreted reference data represent an 
acceptable compromise. Ground visit sampling costs could be 
reduced by taking fewer measurements or by investing less 
effort in precise spatial location of the sample points. Replacing 
actual measurements of tree diameter, canopy cover, ground 
cover, or species composition, for example, by visual approxi- 
mations is another cost-cutting measure. Simply employing 
less well-trained photointerpreters or field technicians reduces 
cost and, unfortunately, reference data quality. 

Cost reductions in the response design require intense 
scrutiny because poor quality reference data diminish the 
quality of the accuracy assessment. Crist and Deitner (1998) 
describe some of the practical difficulties and cost considera- 
tions affecting the quality of reference data. Congalton and 
Green (1999, Chapter 4) provide an excellent detailed discus- 
sion of potential sources of error in reference data, and recom- 
mend that these errors should be quantified. Husak et al. 
(1999) suggest an interesting approach to quantify the effect of 
spatial registration error in the reference data. Statistical tech- 
niques for incorporating measurement error (e.g., assigning an 
incorrect reference label) into data analysis exist (Cochran, 
1977, Chapter 13; Sarndal et al., 1992, Chapter 16), but these 

methods have rarely been applied to accuracy assessment 
problems. Analyses incorporating measurement error typically 
require a statistical model. Therefore, the criteria proposed for 
rigorous design-based inference may not be sufficient to accom- 
modate the analysis of accuracy data possessing a high degree 
of measurement error. Specifying criteria for rigorous inference 
when the analyses depend on a model would be a useful contri- 
bution to the accuracy assessment literature. 

Example: Tradeoffs when Intensifying Sampling Near Roa& 
An example summarizes some of the tradeoffs between cost 
and the four criteria of quality described in the previous sub- 
sections. Suppose that the cost of ground reference samples 
increases with distance from a road. Cost is a primary consider- 
ation in planning, and several sampling design options, each 
differing in cost, are considered. Option 1 is stratified random 
sampling employing two strata defined by distance from a road 
(>I km and 1 km). A larger sample size is planned for the less 
expensive to sample, near-road stratum. Option 2 is a probabil- 
ity sample of only locations within 1 km of a road. Option 3 is 
also initiated from a probability sample limited to locations 
within 1 km of a road but, to further reduce costs, a few conve- 
nient staging sites are selected at which field crews will be 
based. The field crews then travel to the probability sampling 
sites beginning with those closest to the staging sites until a 
specified minimum number of sites have been visited. The 
remaining unvisited sample sites are discarded. In Option 4, 
again only locations within 1 km of a road are visited, but these 
locations are not identified by a probability sampling protocol. 
Instead, the locations visited are conveniently accessed from 
the staging sites described in Option 3. In effect, Option 4 is a 
reconnaissance windshield survey. A fifth option, unrelated to 
sampling design, is to avoid ground visits entirely and to derive 
the reference data from photointerpretation. 

Options 1 through 4 are ordered by decreasing cost and 
decreasing quality. All four options are less expensive than 
simple random or systematic sampling, neither of which is con- 
strained to intensify sampling closer to roads. Option 1 is the 
only probability sample unambiguously representative of the 
full population. This option may be more expensive than the 
other options because it forces some sampling to occur away 
from roads. But rigorous inference to the full map population is 
justified without assumption. Option 2 is also a probability 
sample and therefore provides rigorous design-based infer- 
ence, but only to the reduced population defined by the area of 
the mapped region within 1 km of a road. If Option 2 is imple- 
mented, the accuracy report should clearly specify this reduced 
population representation. 

Option 3, being initiated from a probability sample, allows 
inference to the same reduced population described for Option 
2. But visiting sample locations in a sequence established by 
distance from the staging sites introduces a complicated devia- 
tion from the original probability sampling structure of Option 
2. Those locations closer to staging sites have a higher proba- 
bility of being included in the sample. Deriving the .rr,'s for 
Option 3 will be problematic, thus jeopardizing the goal of sat- 
isfying the consistency criterion. It may be necessary to assume 
values for the mu's, or to assume that accuracy is the same near 
the staging sites as it is distant from the staging sites. Neither 
assumption may be tenable. Option 4 is not a probability sam- 
pling design, and inferences drawn from the data are com- 
pletely dependent on assumptions. 

When choosing among these options, the evaluation 
should focus on the four specific criteria of quality proposed. 
Accordingly, Option 4 is clearly the worst choice, forfeiting the 
inferential rigor provided by probability sampling. The ran- 
domization present in Option 3 makes this option more satis- 
factory than Option 4, but the sampling protocol of Option 3 
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creates the problem that it may be impractical to satisfy the con- 
sistency criterion because of the difficulty of determining the 
rU)s. Option 1 has an advantage over Option 2 because it allows 
inference to the full target population. However, the precision 
criterion may influence the choice between Options 1 and 2. If 
sampling distant from a road is so expensive that the overall 
sample size is small for Option 1, precision may be unaccept- 
ably poor. Because of the lower cost of sampling near roads, 
Option 2 might permit a larger sample size, producing precise 
estimates, although for a reduced population. If the budget is 
very small, a difficult decision must be made: Is it better to 
obtain reasonably precise estimates for a reduced population 
(Option 2), or to estimate imprecisely parameters of the full tar- 
get population (Option I)? 

Summary 
Statistical rigor and practical utility are desirable features of 
any accuracy assessment strategy. To effectively incorporate 
statistical rigor and practical utility into the planning process, 
these features must be explicitly defined. Probability sampling 
and consistent estimation are proposed as the two criteria 
determining statistical rigor. Practical utility is framed in terms 
of tradeoffs between cost versus quality, where the proposed 
criteria of quality are estimator precision, the population rep- 
resented by the inference, the assumptions needed to justify 
inference, and the accuracy of the reference data. The criteria 
for statistical rigor and practical utility are defined within the 
context of design-based inference, and the implications of 
these criteria on the practice of accuracy assessment are simi- 
larly specific to design-based inference. Different criteria and 
practical implications would likely result from taking a model- 
based inference perspective. 

Practical constraints are a reality of accuracy assessment. 
Circumventing these practical problems is often extremely dif- 
ficult and may require innovative sampling designs or sophisti- 
cated statistical analyses. But it is possible to construct a 
statistically rigorous, yet practical, sampling strategy for accu- 
racy assessment by adhering to the criteria proposed in this arti- 
cle. Classical sampling methods provide a diverse collection of 
efficient techniques from which to choose, consistent estima- 
tion provides a rigorous approach for analysis, and the pro- 
posed criteria defining quality supply a basis for choosing 
judiciously among options for reducing costs. 

The criteria defining statistical rigor have important practi- 
cal implications on accuracy assessment. The protocol that pro- 
duces the data from which an error matrix and other summary 
measures are estimated determines the appropriateness of the 
data for inference. All data are not equally valuable. Those data 
arising from a probability sampling protocol can be unambigu- 
ously associated with a population to which design-based sam- 
pling inference is justified, and the consistency criterion 
ensures that estimates apply to parameters of this population. 
Probability sampling provides the basis for the estimation pro- 
cedure (using the weights derived from the n;'s) and establishes 
representativeness of the inference. Inferences from data 
obtained using a non-probability sampling protocol are on 
much less certain footing. Poorly designed, statistically flawed 
data collection methods still produce data, error matrices, and 
accuracy estimates, but these estimates represent quantitative 
window dressing to an assessment that is only cosmetically bet- 
ter than an "it looks good" approach. Cavalierly applying sim- 
ple analyses (e.g., SRS estimation formulas) to ad hoc andlor 
complex data collection protocols will produce estimates of 
unknown inferential value and dubious credibility. 

The statistical rigor of an accuracy assessment protocol is 
not apparent from the error matrix or from the accompanying 
accuracy estimates. Therefore, the sampling design and analy- 
sis must be reported in a manner that provides a clear depic- 
tion of the protocol. Ideally, information would also be 

provided to evaluate the four proposed criteria of quality. 
Reporting standard errors supplies the necessary information 
to evaluate precision (assuming that the standard errors are 
computed cbrrectly for the saGpling design and analysis 
im~lementedl. Po~ulation re~resentation and assum~tions 
reiuired for inference can be Aaluated if the sampliniprotocol 
is clearly documented. For example, restrictions on the popu- 
lation sampled and deviations from probability sampling pro- 
tocol should be noted. Any assumptions invoked in the 
analysis should be explicitly stated, and diagnostics evaluating 
the validity or effect of the assumptions should be reported if 
available. To evaluate reference data quality, detailed descrip- 
tion of the response design protocol, perhaps accompanied by 
some of the analyses suggested by Congalton and Green (1999, 
Chapter 6), provides critical information. 

Accuracy assessments may be viewed as falling along con- 
tinua of statistical rigor and quality, depending on the objec- 
tives and user needs underlying the assessment. The highest 
quality, most rigorous assessments will provide precise esti- 
mates from a probability sari1ple representing the full target 
population and based on very accurate reference data. If the 
budget is inadequate to support such an assessment, cost may 
be decreased by accepting less precise estimates, possibly for a 
reduced population of inference. Requiring rigorous inference 
to a known, identifiable population should be non-negotiable. 
If budget constraints prevent implementing a probability sam- 
pling design or if sample size is so small that estimates have 
poor precision, it may be more prudent to skip the assessment 
entirely if minimal standards of precision and statistical rigor 
cannot be met. 

By recognizing specific criteria for statistical rigor and 
quality, we can evaluate the consequences of various accuracy 
assessment planning decisions. The selected protocol must be 
statistically rigorous, practical (i.e., cost-effective), and also of 
high quality. To achieve all three of these desirable features, cri- 
teria of statistical rigor and quality must be taken into account 
when planning and implementing the assessment protocol. 
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