The Shell Element Method for Laplace's Equation

In this document we consider the solution method of the Laplace problems exterior to *thin* discontinuities or 'shells' by the *shell element method* which is viewed as an extension to the traditional boundary element method¹. For example this technique has been for example to model capacitors² (Laplace) acoustic shields³ (Helmholtz) and has been used to extend the boundary element method for Laplace⁴ and Helmholtz⁵ problems.

The purpose is to solve the boundary-value problem⁶ consisting of the two-dimensional Laplace equation⁷

$$\nabla^2 \varphi(\boldsymbol{p}) = 0 \qquad (\boldsymbol{p} \in \boldsymbol{E}) \tag{1a}$$

in the domain *E* exterior to an open boundary *H* with a Robin boundary condition of the form

$$a(\mathbf{p}) \,\delta(\mathbf{p}) + b(\mathbf{p}) \,\nu(\mathbf{p}) = f(\mathbf{p}) \tag{1b}$$

and

$$A(\mathbf{p}) \Phi(\mathbf{p}) + b(\mathbf{p}) V(\mathbf{p}) = F(\mathbf{p})$$
(1c)

for $\mathbf{p} \in H$. Where, in equations (1b) and (1c), we are using the notation in <u>Integral Equation</u> <u>Formulation for Laplace's Equation surrounding thin shells</u>⁸, an 'upper' and 'lower' surface is defined and in which $\delta(\mathbf{p})$ and $\Phi(\mathbf{p})$ are the difference in and average potential for corresponding points on the upper and lower surfaces. Similarly, $v(\mathbf{p})$ and $V(\mathbf{p})$ are the difference and average for the normal derivative of the potential.

In order to apply the boundary element method the boundary is approximated by a set of n_H panels⁹

$$H \approx \widetilde{H} = \sum_{j=1}^{n_H} \Delta \widetilde{H}_j$$

and the boundary functions are approximated or represented by a constant value on each panel¹⁰. The integral equations within the boundary element method are solved by collocation¹¹. By approximating the operators¹² the boundary integral equations are reduced to a linear system of equations¹³. The resulting linear system of equations is solved in order to find the solution on the boundary and this is used in turn in order to find the exterior domain.

¹ Boundary Element Method

² DC capacitor simulation by the boundary element method

³ The computational modelling of acoustic shields by the boundary and shell element method

⁴ The Boundary and Shell Element Method

⁵ Solution of discontinuous interior Helmholtz problems by the boundary and shell element method

⁶ Boundary Value Problems and Boundary Conditions

⁷ Laplace Equation

⁸ Integral Equation Formulation for Laplace's Equation surrounding thin shells

⁹ <u>Representation of a line by flat panels</u>

¹⁰ <u>Piecewise Polynomial Interpolation</u>

¹¹ Solution of Fredholm Integral Equatins by Collocation

¹² Discretization of the Laplace Integral Operators

¹³ Introduction to the Boundary Element Method

The relevant boundary integral equations are⁷

$$\begin{split} \Phi(\mathbf{p}) &= \varphi^{i}(\mathbf{p}) + \{M \,\delta\}_{H} \,(\mathbf{p}) - \{L \,\nu\}_{H}(\mathbf{p}) \quad (\mathbf{p} \in H), \\ V(\mathbf{p}) &= v^{i}(\mathbf{p}) + \{N \,\delta\}_{H} \,(\mathbf{p}) - \{M^{t} \,\nu\}_{H}(\mathbf{p}) \quad (\mathbf{p} \in H), \end{split}$$

where *L*, *M*, *M*^t and *N* are the Laplace integral operators⁴ $\varphi^{i}(\mathbf{p})$ is the possible incident potential and vⁱ(**p**) is its normal derivative.

The application of the collocation method to these equations, that is applying the equation to every collocation point \mathbf{p} on H gives the following linear systems of equations:

$$\underline{\widehat{\Phi}}_{H} = \underline{\varphi}_{H}{}^{i} + M_{HH}\underline{\widehat{\delta}}_{H} - L_{HH}\underline{\widehat{\nu}}_{H},$$

$$\underline{\widehat{V}}_{H} = \underline{v}_{H}{}^{i} + N_{HH}\underline{\widehat{\delta}}_{H} - M_{HH}^{t}\underline{\widehat{\nu}}_{H},$$

where $\underline{\varphi}_{H}{}^{i}$ and $\underline{v}_{H}{}^{i}$ list the incident potential and its normal derivative at the collocation points and $\underline{\widehat{\varphi}}_{H}$, $\underline{\widehat{V}}_{H}$, $\underline{\widehat{S}}_{H}$ and $\underline{\widehat{v}}_{H}$ list the (approximate) values of $\mathbb{D}(\mathbf{p})$, $V(\mathbf{p})$, $\delta(\mathbf{p})$ and $v(\mathbf{p})$ at the collocation points. The $n_{H} \times n_{H}$ matrices L_{HH} , M_{HH} , M_{HH}^{t} and N_{HH} are the discrete equivalent of the releant Laplace integral operator on H.

This is $2n_H$ equations in $4n_H$ unknowns. The remaining $2n_H$ equations are obtained by applying the boundary conditions at the n_H collocation points:

$$a_{H_i}\hat{\delta}_{H_i} + b_{H_i}\hat{v}_{H_i} = f_{H_i},$$
$$A_{H_i}\hat{\Phi}_{H_i} + B_{H_i}\hat{V}_{H_i} = F_{H_i},$$

for $i = 1, ..., n_H$. On solution, approximations to the boundary functions are obtained.

The solution in the domain can then be found by using the discrete equivalent of the following equation⁷ for the n_E exterior points:

$$\varphi(\mathbf{p}) = \varphi^{\mathrm{I}}(\mathbf{p}) + \{M \,\delta\}_{\mathrm{H}} \,(\mathbf{p}) - \{L \,\nu\}_{\mathrm{H}} \,(\mathbf{p}) \quad (\mathbf{p} \in E).$$

The discrete equivalent of this equation is as follows:

$$\hat{\varphi}_{E} = \varphi_{E}^{i} + M_{EH} \hat{\underline{\delta}}_{H} - L_{EH} \hat{\underline{\nu}}_{H},$$

where the terms $\hat{\varphi}_E$ lists the approximations to the solution at the domain points and $\underline{\varphi}_E{}^i$ similarly lists the incident potential at the domain points. The $n_E \times n_H$ matrices L_{EH} and M_{EH} are the discrete equivalent of the releast Laplace integral operator for the exterior points.