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Abstract 

Forecasting and planning for inventory management has received considerable attention from 

the OR community over the last 50 years because of its implications for decision making, 

both at the strategic level of an organization and at the operational level. Many influential 

contributions have been made in this area, reflecting different perspectives that have evolved 

in divergent strands of the literature, namely: system dynamics (SD), control theory and 

forecasting theory (both statistical and judgemental). Although this pluralism is healthy in 

terms of knowledge advancement, it also signifies the fragmentation of the OR discipline and 

the lack of cross-fertilization of ideas to develop more comprehensive approaches towards the 

resolution of the same issues. In this paper, the relevant literature is reviewed and synthesized 

to promote some convergence between these different approaches to inventory forecasting 

and planning. The review concludes with an inter-disciplinary agenda for further research.  
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Introduction  

From its foundation, Operational Research (OR) has made many substantial 

contributions to inventory forecasting and planning. These contributions have 

influenced supply chain practices in public and private organizations across the world 

over the last 50 years.  

 

In this paper, we focus on inventory forecasting and planning from the perspective 

taken by divergent strands of the literature, namely: system dynamics (SD), control 

theory and forecasting theory (both statistical and judgemental)1. Although this 

plethora of different perspectives to the same problem may be perceived as a healthy 

development in terms of knowledge advancement, it also signifies the fragmentation 

of the Operational Research discipline into sub-disciplines that are not adequately 

cross-informing theory and practice. These sub-disciplines have grown into 

disciplines in their own right, prohibiting a constructive exchange of ideas for the 

benefit of solving problems of common interest. This fragmentation is exemplified by 

the different conferences (and corresponding audiences) organized by different 

societies (eg, SD, Forecasting, Inventories Research) that in turn produce different 

journals with, in our opinion, inadequate cross-referencing. There is great scope for 

their cross-utilization (Akkermans and Dellaert, 2005) to develop more 

comprehensive approaches to inventory forecasting and planning. This review intends 

to promote convergence between these different approaches to addressing forecasting 

                                            
1 Control theory is the inter-disciplinary branch of mathematics and engineering that deals 

with the behaviour of dynamical systems. Its applications overlap with many of the interests 

of the OR community, such as production and inventory problems, machine maintenance and 

replacement and marketing. The interface between Control Theory and OR is discussed in 

Sethi and Thompson (2000). 
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and planning for inventory management. We do not attempt to review all the 

interactions between forecasting and OR, as this has already been done recently 

(Fildes et al, 2008a).  

 

The remainder of our paper is organized as follows: in the following section we 

examine strategic planning, followed, in section 3, by the control theoretic approach 

to supply chain inventory planning. In section 4, we review the contributions made in 

the last 50 years to forecasting for the replenishment of fast moving items.  This is 

followed, in section 5, by the developments over the same time period, for the control 

of slow and intermittent demands. In section 6, we discuss the issue of human 

judgement in forecasting. Finally, our conclusions are discussed in section 7, where 

we also present an agenda for inter-disciplinary future work. We offer an integrative 

framework linking four OR approaches, namely Statistical Forecasting, Judgemental 

Forecasting, Control Theory and System Dynamics. 

 

Strategic planning and System Dynamics  

Early work on forecasting and inventory management focussed on operational 

improvements. Brown (1951:21) remarked: “The quantitative study of the operation is 

made by statistical analysis of operational data to predict the outcome of similar 

conditions.” Although this statement referred to OR in general, it also encapsulates 

the OR approach to inventory management at the time. For example, detailed 

operational models, based on statistical analysis, were developed by the Field 

Investigation Group at the National Coal Board (eg, Lawrence et al, 1961; Mitchell, 

1962; Boothroyd and Tomlinson, 1963).  

 



Syntetos, A.A., Boylan, J.E. and Disney, S.M., (2009), “Forecasting for inventory planning: A 50-year review”, Journal of the Operations 
Research Society, Vol. 60, Iss. S1, pp149–160. DOI: 10.1057/jors.2008.173. 

 

 4

Comprehensive operational computerised forecasting and stock-control systems 

became more prevalent in the 1960s and 1970s, stimulated by the pioneering work of 

Brown (1959, 1963, 1967). These computer systems became ever more complex, but 

tended to lack strategic capabilities. An important paper by Johnston (1980) described 

the design and implementation of a forecasting and stock control system that enabled 

the quantification of strategic decisions, such as the consequences of changing the 

total investment in stock, or the overall service level. His system enabled managers to 

appreciate, for each stock grouping, how various control settings would affect stock 

values, out of stock percentages, excess stocks and working stocks. Cooper (1984) 

adopted a similar approach at Rolls-Royce (Aero). The stock-control programs in use 

at the time had not been designed or implemented as aggregate level control systems. 

The Rolls-Royce OR Group at Derby responded by introducing a ‘development 

testbed’ approach to mimic some of the features of a testbed for aero-engines. One of 

the operating modes of the new software was called ‘strategic’. It enabled managers at 

Rolls-Royce to evaluate the consequences of alternative market trend assumptions, 

terms of business and control policies.    

 

Starr and Miller (1962) advocated the use of an ‘optimal policy curve’, derived using 

Lagrange multipliers, showing the trade-off between inventory investment and 

workload (annual orders). This approach was extended by Gardner and Dannenbring 

(1979), who proposed the determination of an ‘optimal policy surface’ based on 

inventory investment, workload (annual orders) and percentage of requisitions short.  

This enables managers to explore the policy surface and to determine the best policy 

mix, in the light of organizational priorities. Johnston et al (1988) developed more 

ambitious ‘response curves’, showing the effect on ‘stock cover’ (ratio of the average 
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total stock to the average monthly demand) of average lead times, reorder intervals 

and service level percentages (using the fill-rate or P2 measure). Gardner (1990) used 

a simpler approach to construct ‘trade-off curves’ between inventory investment and 

average delay in filling back orders. His analysis took a step forward by examining 

separate trade-off curves for each forecasting method, allowing the ‘best’ method to 

be identified. The ‘best’ method is simply the one whose trade-off curve dominates all 

others, if such a curve exists. More recently, Catt (2007) has advocated a formula-

driven approach to the calculation of the Cost of Forecast Error, based on analysis of 

individual products, using the cycle service level or P1 measure. Boylan (2007) 

recommended that, before employing such an approach, the following factors should 

be considered: i) ensuring that an appropriate service measure is employed, ii) using 

the most appropriate level of aggregation, iii) applying sensitivity analysis to the cost 

estimates, since they are approximate, and iv) using different carrying charges for 

different groups of products, according to the risk of obsolescence.  

   

A number of algebraic formulae have been proposed to estimate the relative costs of 

holding stock centrally or at a range of decentralised locations. Maister (1976:124) 

postulated the following ‘square root law’: “The total inventory in a system is 

proportional to the square root of the number of locations at which a product is 

stocked”.  This law applies to both safety stocks and cycle stocks. For safety stocks, 

the law holds when the demands at each decentralised location are uncorrelated and 

have equal variances, and the safety stocks are controlled by setting them at a constant 

multiple of the standard deviation of demand, assuming a P1 service measure. For 

cycle stocks, the law holds if the mean demands at each decentralised locations are 

equal and the cycle stocks are controlled by an Economic Order Quantity approach.  
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Zinn et al (1989) provided a more general formula for safety stocks for a two-depot 

problem, which takes into account the ratio of the standard deviations of demand at 

the two depots and the correlation of demand between them. This safety stock formula 

was generalized to any number of depots by Mahmoud (1992), who also discussed 

rules for deciding between sub-consolidations (of a subset of depots) and a super-

consolidation (of all depots).  Further extensions were analyzed by Das and Tyagi 

(1997), taking into account inventory and transportation costs. A broader management 

perspective is offered by Wanke and Zinn (2004) who consider make to order / make 

to stock and push / pull deployment, in addition to inventory centralization decisions.  

 

Whilst inventory centralization models may have quite a simple structure, interactions 

between echelons of a supply chain call for a more sophisticated approach. The first 

major contribution to this field was by Forrester (1958). In his ground-breaking article 

on ‘industrial dynamics’ (which later became known as system dynamics), he 

illustrated his new approach using the Production and Distribution functions of an 

organization. This showed how relatively small variations in demand can be amplified 

through the supply chain, a phenomenon later known as the ‘bullwhip effect’. Case 

study evidence for this phenomenon was provided by Forrester (1961). Forrester’s 

group at MIT introduced the Beer Game, involving independent inventory decision 

making by players. Sterman (1989) discusses the bullwhip effect in this game and 

how the irrational behaviour exhibited by the players contributes to this effect.  

 

System dynamics focuses on stocks and flows, allowing the effect of feedback loops 

to be analysed. It is therefore a natural modelling tool for inventory planning. For 

example, Akkermans and Vos (2003, 2004) analysed demand variance and workload 
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amplification effects in service supply chains. System Dynamics can be used in a 

qualitative mode, concentrating purely on system structure, or in a quantitative mode, 

predicting the effect of policy changes. It can also be used as a foundation for other 

modelling methods, such as the control theory models (to be reviewed in the next 

section of the paper). Wolstenholme (1982) argued that system dynamics is often 

misunderstood by soft systems methodologists as a hard systems modelling technique. 

Although quantitative SD is ‘hard’, he argued that Qualitative System Dynamics 

(QSD) should be seen as a ‘soft’ method. QSD was supported by software 

developments in packages such as PowersimTM and VensimTM allowing icon-based 

models to be drawn on screen very simply (Moorcroft and Sterman, 1992). 

 

The qualitative approach to SD has been somewhat neglected in inventory 

management. Akkermans and van Helden (2002) used a QSD approach to understand 

the interrelationships between critical success factors in the implementation of an 

Enterprise Resource Planning system, but such examples are not plentiful. Similarly, 

soft systems methodology (SSM) has not been employed extensively in problems 

related to forecasting and planning. Boylan and Williams (2001) reported a case-study 

of the application of SSM that enabled managers to reconceptualise the role of 

forecasting from an adjunct activity to an integral part of their planning. This was 

achieved through a vigorous debate on the purposes of the planning systems. The 

Conceptual Models were high-level and were not greatly significant in helping 

managers gain a greater understanding of planning systems. Recently, Paucar-Pecares 

and Rodriguez-Ulloa (2007) have shown how system dynamics models can be 

embedded within SSM, taking over the role of Conceptual Models.   
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The application of cognitive mapping to identify ‘cognitive feedback loops’ was 

advocated by Eden et al (1983), who commented on their similarity with influence 

diagrams used in system dynamics, while noting that cognitive maps were subjective 

(or inter-subjective) and no claims were made for their objectivity. Ackermann et al 

(1997) showed how cognitive maps can be used as a basis for system dynamics 

models. This seems a promising approach to modelling logistical problems, as 

structural feedback loops can be embedded within a broader model that encompasses 

behavioural factors (Boylan et al, 2008). The potential for QSD as an integrated 

modelling tool will be explored in the final section of this paper.    

 

Control theory 

Control theory is a well-developed inter-disciplinary approach for studying dynamic 

systems. The first application of control theory to supply chains was by Simon (1952) 

who investigated a production and inventory control problem. He used the Laplace 

transform to study a stylised inventory replenishment rule in continuous time. The 

continuous time representation was used by Forrester in his famous industrial 

dynamics work discussed in the previous section.   

 

This continuous time approach was quickly extended into discrete time by Vassian 

(1955) with the newly discovered z-transform. Vassian (1955) showed that if Work-

In-Progress (WIP) information were to be incorporated into a discrete version of 

Simon’s inventory replenishment policy, then this would minimize the inventory costs 

for any forecasting method. Early text books documenting the z-transform approach 

include Magee (1958), in a production and inventory management context, and Brown 

(1963), in a forecasting context. The approach became more popular in the 1960s 
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(see, for example, Adelson, 1966; Deziel and Eilon, 1967; Bessler and Zehna, 1968). 

Major contributions on the use of the classical z-transform approach were made by 

Jury (1964, 1976) and Tsypkin (1964). The field of control theory has developed over 

time, with a move away from transfer functions to state space representations.  

 

The seminal contribution to state space theory was made by Kalman (1960) with the 

introduction of the Kalman Filter. This is the basis of the Bayesian updating of prior 

distributions (possibly based on human judgment) proposed by Harrison and Stevens 

(1971, 1976). The Kalman Filter is also used to compute estimators for the state-space 

models developed by Harvey (1989). The state space representation led to what is 

now known as ‘modern control theory’ and it became popular in the 1970s and 1980s. 

Notable supply chain contributions came from Gaalman (1978), Schneeweiβ (1975) 

and Bertrand (1986) who used the state space approach to identify optimal policies for 

certain cost functions. This research approach remains productive and new single-

echelon (Gaalman and Disney, 2008) and multi-echelon (Gaalman and Disney, 2006) 

supply chain strategies are still being discovered. 

 

Towill (1982) developed the IOBPCS classification system for replenishment 

policies. IOBPCS stands for ‘Inventory and Order Based Production Control System’, 

and has been extended to cover many different inventory replenishment systems. A 

recent overview of the classification system in given in Lalwani et al (2006). Towill’s 

original 1982 paper was concerned with exploiting hardware control engineering 

knowledge in production and inventory control via a device called the ‘co-efficient 

plane’.  Recent research that is inspired by hardware engineering includes the ‘ideal 

filter’ (Towill et al, 2003) and ‘h-inifinity’ approaches (Ouyang and Daganzo, 2006).  
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Popplewell and Bonney (1987) and Grubbström (1996) exploited control theory to 

study Materials Requirements Planning (MRP) systems. It is possible to use matrices 

to capture the structure of products via the Bill of Materials and transforms to capture 

the time dependencies. Much work has been done to develop this field by Robert 

Grubbström, although the impact of forecasting here is often not explicitly considered.  

 

The ground-breaking work of Lee et al (1997a, b), although not in the control theory 

tradition, led to a resurgence of academic interest in the bullwhip effect, yielding new 

insights into the influence of forecasts on production rates and inventory levels in 

multi-echelon supply chains. Chen et al (2000) studied the impact of moving average 

and exponential smoothing forecasting methods on the bullwhip effect on a supply 

chain with AR(1) consumer demand. Lee et al (2000) analyzed minimum mean 

squared error (MMSE) forecasts for the same demand process. They identified 

potential reductions in total inventory costs resulting from demand information 

sharing between downstream and upstream members. 

 

In single and multi echelon supply chains, the focus may be on minimizing inventory 

costs and production (capacity) costs. We may assume linear inventory holding and 

backlog costs, as is common in the OR literature. In this case, the target safety stock is 

set to satisfy the critical fractile of demand via the newsboy approach. When this is 

done, the inventory costs are a linear function of the standard deviations of inventory 

levels over time (Disney et al, 2006).    
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In order to minimize inventory costs in a single level of a supply chain, it has long 

been recognized that accurate forecasts of the demand over the lead time and review 

period are required. This is because the variance of the forecast error of the demand 

over the lead time and review period is equal to the inventory variance, for certain 

inventory control policies. Thus, in a single echelon of a supply chain, optimal 

forecasts that minimize the mean squared error over the lead time and review period 

are required. However, if our objective is to minimize inventory costs in a multi-

echelon supply chain, then the situation is much more complex, as non-optimal 

forecasts at the first echelon of the supply chain can have a smoothing effect on the 

demand placed on the supplier. This smoothing effect may mean that it is easier for 

the supplier to predict his future demand and may even be able to reduce his inventory 

costs more than the corresponding increase at the first echelon. Thus, the interaction 

between forecasting and inventory is complex in multi-echelon supply chains. There 

are many issues that need to be taken into account, including altruistic behaviour, trust 

and game-playing (eg, Hosoda and Disney, 2006a, b).  

 

In a like manner, we may also assume linear over-capacity costs and under/lost-

capacity costs and set the capacity level via the newsboy principle. In this case, the 

capacity costs are a linear function of the standard deviation of the order rates over 

time. This also results in a very complex relationship between forecasting methods 

and total (inventory plus capacity) costs, even in a single echelon of a supply chain, 

(Disney and Hosoda (2008). 
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Multi-echelon supply chains raise a number of issues related to information sharing. 

We could, for example, transmit consumer demand up the supply chain to other 

members. Thus, a supplier could base his forecasts on the end consumer demand 

rather than the orders received. If a non-optimal forecasting method is used (for 

example using exponential smoothing to predict an AR(1) process), then the theory 

shows that there is a benefit to information sharing (Dejonckheere et al, 2004).  

However, if we use optimal forecasts (for example using conditional expectation to 

forecast an AR(1) process), then there is no benefit to information sharing 

(Raghunathan, 2001; Hosoda and Disney, 2006a), assuming that the demand process 

and demand parameters at the first echelon are known throughout the chain. In theory, 

this allows us to derive the end consumer demand information, rendering information 

sharing redundant. Hosoda et al (2007) attempt to link the theory to real-life and 

conclude that, with real data, there is a benefit of sharing end consumer demand.  

 

Statistical forecasting (fast-moving items) 

Exponential smoothing was originated by RG Brown in his work as an OR analyst for 

the US Navy. His work on single exponential smoothing (SES) was first presented in 

a conference of the American Operations Research Society in 1956. That presentation 

formed the basis of his first book, published in 1959, followed in 1963 by a more 

general exponential smoothing methodology, where he also established a formula for 

the variance of smoothed data. This work was driven by the practical requirements of 

designing and implementing inventory systems.  

 

 

 



Syntetos, A.A., Boylan, J.E. and Disney, S.M., (2009), “Forecasting for inventory planning: A 50-year review”, Journal of the Operations 
Research Society, Vol. 60, Iss. S1, pp149–160. DOI: 10.1057/jors.2008.173. 

 

 13

The simple smoothing procedure discussed above is based on a model without a trend 

and therefore is inappropriate when the underlying demand pattern involves such a 

change over time. Holt (1957) suggested a procedure that is a natural extension of 

single exponential smoothing with two smoothing constants. A reprinted version of 

his 1957 report to the Office of Naval Research (ONR 52) appeared in the 

International Journal of Forecasting in 2004 (Holt, 2004a) to provide greater 

accessibility, followed by a brief commentary (retrospective) by Holt (2004b) himself. 

Harrison (1967) showed, amongst others, that the Holt procedure minimizes the 

expected one-period-ahead mean square forecast error for a state space model that 

incorporates trend. However, a single parameter updating procedure suggested by 

Brown (1963), has also received considerable attention and recommended for 

application in contexts where no seasonality is present (Silver et al, 1998). Besides 

involving only a single smoothing parameter, Brown’s procedure has the intuitively 

appealing property of being derived from minimising the sum of geometrically 

weighted forecast errors for a constant trend model. Chatfield et al (2001) noted that 

this type of ‘discounting’ is theoretically dubious. If the trend were constant, then 

ordinary least squares should be used. The empirical performance of Brown’s method 

was evaluated in the forecast accuracy competition undertaken by Makridakis et al 

(M1 competition, 1982) and it is worth contrasting the negative conclusions of the 

authors regarding the accuracy of this estimator with the actual reported empirical 

results. The method was not included in the M3-competition (Makridakis and Hibon, 

2000).  
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Sometimes, data is so noisy, or the trend is so erratic, that a linear trend is not accurate 

(Roberts, 1982), especially when forecasting several periods ahead. Gardner and 

McKenzie (1985) introduced a damped trend procedure that works particularly well in 

these situations. The method follows closely Holt’s procedure and is quite easy to use 

in practical applications. It incorporates a dampening parameter φ  (with 1=φ  

indicating a linear trend). Exponential smoothing methods have also been extended to 

incorporate seasonality. Winters (1960) developed a form of smoothing, later known 

as the Holt-Winters method that smooths level, trend and seasonality. The method is 

intuitively appealing and is a natural extension of the Holt procedure for trended 

demand. 

 

For fast-moving SKUs with short demand histories, the estimation of seasonal 

components can be challenging. Miller and Williams (2003) proposed a ‘shrinkage’ 

method that dampens seasonal estimates towards unity. Dekker et al (2004) suggested 

a variation of the Holt-Winters method, where the level and trend components are 

estimated at the individual item level, but with seasonality at the group level. Rules 

for basing seasonality on groups, for non-trended series, have been derived and 

empirically tested by Chen and Boylan (2007, 2008). 

 

An important consideration in dealing with exponential smoothing methods having 

separate trend and seasonal aspects is whether or not the model should be additive or 

multiplicative. Pegels (1969) provided a simple but very useful classification 

framework that included consideration of additive and multiplicative models. This 

framework was extended by Taylor (2003), who included damped additive and 

multiplicative trend methods to the classification. 
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In the early 1960’s some influential work was performed with respect to signalling a 

bias in the forecasting procedure, indicating that either the parameters of the 

underlying demand model have been incorrectly specified or that the model itself is 

incorrect. Harrison and Davies (1964) suggested the use of the cumulative sum 

techniques to monitor the bias in a forecasting procedure. Trigg (1964) suggested the 

use of a tracking signal based on the ratio of the smoothed (signed) error to the 

smoothed (absolute) error. The general idea of adaptive smoothing is that the 

smoothing constants are increased (smoothing becomes faster) when the tracking 

signal gets too far away from zero. Various adaptive smoothing procedures have been 

proposed in the literature, the one developed by Trigg and Leach (1967) having 

perhaps attracted most attention. Although these procedures have intuitive appeal, 

substantial research findings suggest that adaptive methods are less accurate than 

regular, non-adaptive smoothing (see, for example, Chatfield, 1978 and Ekern, 1981). 

 

Autoregressive Integrated Moving Average (ARIMA) models have been studied 

extensively. Their theoretical underpinnings were described by Box and Jenkins 

(1970) and later by Box et al (1994). Although ARIMA models are currently included 

in some generic forecasting software packages (eg, Forecast Pro) they never gained 

popularity in stock-management software solutions and, more generally, within 

inventory forecasting and planning.  

 

Most linear exponential smoothing models have equivalent ARIMA models, the only 

notable exception being the multiplicative form of Holt-Winters. However, a state-

space model underpinning multiplicative Holt-Winters, characterized by a single 

source of randomness, was identified by Ord et al (1997). The researchers built on the 
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work of Snyder (1985) to develop a general class of state-space models with a single 

source of error (SSOE). State space models for exponential smoothing may also be 

formulated based on multiple sources of error (MSOE). For example, SES is optimal 

for a model with two sources of error (Muth, 1960).  

 

In practice, smoothing methods continue to dominate supply chain forecasting 

applications. They are embedded in the great majority of, if not all, relevant inventory 

control software packages. Gardner (2006) summarized all studies published after 

1985 that present empirical results for exponential smoothing. Out of the 65 studies 

considered, there were only 7 that did not report reasonable forecast accuracy with 

exponential smoothing, and those unfavorable outcomes may be explained, according 

to Gardner, in terms of the underlying demand characteristics or experimental 

structure related details.  

 

Statistical forecasting (slow and intermittent items) 

Intermittent demand is characterized by occasional demand arrivals interspersed by 

time intervals during which no demand occurs. As such, demand may be built, for 

modelling purposes, from constituent elements (demand arrivals and demand sizes) 

rendering the management of the relevant SKUs a very challenging exercise. Classical 

and widely used estimators discussed in the previous section, such as Single 

Exponential Smoothing (SES), have long been shown to over-estimate the mean level 

of intermittent demand, if applied immediately after a demand occurrence. Most work 

on intermittent demand forecasting is based on Croston’s (1972) influential article 

which, although neglected for many years, has seen 40 citations in the last four years.  
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Croston (1972) proposed a method that captures the compound nature of the 

underlying demand structure (i.e., demand arrivals and demand sizes, when demand 

occurs). In particular, he suggested using SES for separately forecasting the interval 

between demand incidences and the demand sizes. The ratio of the latter to the former 

may then be used to estimate the mean demand per time period. The method was 

claimed to be unbiased but, despite its theoretical superiority, modest benefits were 

recorded in the literature when it was compared with simpler forecasting techniques 

(Willemain et al, 1994). Some empirical evidence even suggested losses in 

performance (Sani and Kingsman, 1997). Syntetos and Boylan (2001) showed 

Croston’s method to be biased. More recently, Syntetos and Boylan (2005, 2006) 

proposed a correction factor that accounts for the bias in Croston’s method and 

presented an approximately unbiased estimator, the Syntetos-Boylan Approximation 

(SBA). SBA deflates Croston’s method by a factor of 2/1 α− , where α  is the 

smoothing constant used to update the SES estimates of the mean inter-arrival time 

for demands. The empirical validity and utility of this estimator have been 

independently established in work conducted by Eaves and Kingsman (2004) and 

Gutierrez et al (2007). Correction factors to overcome the bias associated with 

Croston’s approach have also been discussed by Boylan and Syntetos (2003) and 

Shale et al (2006). Finally, Teunter and Sani (2008) discuss an almost unbiased 

estimator that suffers from a somewhat increased variance of the estimates, as 

compared to the SBA. 

 

The application of all the above estimators in an inventory management context 

necessitates a hypothesized demand distribution, the Poisson being a natural candidate 

for representing very low demands. The Normal distribution is typically 
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inappropriate, although some empirical evidence suggests that for long lead times 

(that permit Central Limit Theorem effects) the Normality assumption may be more 

reasonable (Syntetos and Boylan, 2008). The Negative Binomial Distribution (NBD) 

has attracted attention for representing intermittent demand patterns. The NBD is a 

compound distribution (Poisson arrivals and Logarithmic sizes being one of its 

possible compound representations) and in that respect its choice may be justified 

theoretically. In addition, empirical evidence exists in its support (Kwan, 1991; Eaves, 

2002). 

 

An assumption about the underlying demand distribution is essential unless a non-

parametric procedure is utilized to reconstruct the empirical distribution of demand. In 

terms of non-parametric forecasting, the bootstrapping approach has received 

considerable attention (and criticism) in the academic literature. Classical 

bootstrapping (Efron, 1979) involves consecutive sampling, with replacement, from 

an available data set, to construct an empirical distribution of the data under concern. 

A large number of replications (say 10,000) is typically used, and, although this 

procedure is computationally demanding, bootstrapping is nowadays fairly easy to 

apply given recent advances in computing. An important underlying assumption in 

such applications is that the past behaviour of data pertains also to the future. The two 

main drawbacks of classical bootstrapping can be summarized as follows: i) any 

potential autocorrelation of the data is not taken into account; ii) values generated in 

the reconstructed empirical distribution may not differ from the observations in the 

original sample.  
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Porras and Dekker (2008) proposed a bootstrapping approach that samples 

consecutive demand observations from the available data set. The number of 

consecutive observations, sampled in each replication, is equal to the length of the 

lead time. Such an approach addresses the issue of autocorrelation directly. Willemain 

et al (2004) proposed a patented non-parametric forecasting method specifically 

developed for intermittent demand data. Their method is essentially a heuristic that 

combines bootstrapping, a Markov process and ‘jittering’ to simulate an entire 

distribution for lead time demand. Estimation of transition probabilities between the 

two states of occurrence and non-occurrence of demand is achieved by the application 

of Markov process modeling. This addresses autocorrelation of demand occurrence. 

Jittering is an ad-hoc procedure designed to allow simulated values to differ from 

those already observed. The researchers claimed significant improvements in 

forecasting accuracy achieved by using their approach over SES and Croston’s 

method. Gardner and Koehler (2005) criticized this study in terms of its 

methodological arrangements and experimental structure, pointing out that: i) the 

authors did not consider published modifications to Croston’s method, such as the 

SBA, and ii) Willemain et al did not use the correct lead time demand distribution for 

either SES or Croston’s method. This second criticism consisted of arguments against 

the use of the classical lead time demand variance estimation procedure and the use of 

the normal distribution for representing demands.  

 

Further empirical evidence is required in order to develop our understanding of the 

benefits offered by such a non-parametric approach. In particular, a comparison 

between the recently developed adaptations of Croston’s method (in conjunction with 
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an appropriate distribution) with the bootstrapping approach should prove to be 

beneficial from both theoretical and practitioner perspectives. 

 

Judgemental forecasting  

Notwithstanding the advances made over recent decades in statistical forecasting, 

empirical research suggests that practitioners rely heavily on judgemental methods 

such as the direct use of managers’ opinions (eg, Klassen and Flores, 2001; McCarthy 

et al, 2006). Further, when quantitative forecasting methods are used, they are very 

frequently judgementally adjusted. According to Sanders and Manrodt’s (1994) 

survey of forecasters at 96 US corporations, about 45% of the respondents claimed 

that they always made judgemental adjustments to statistical forecasts, while only 9% 

said that they never did. Goodwin (2002) discusses a number of reasons for the 

prevalence of judgemental adjustment, including a desire to reflect the effects of 

special events on the forecast and a need for a sense of ownership of the forecasts. 

Sanders and Manrodt (1994: 100) noted that “….the majority of practitioners 

judgementally adjust quantitative methods. This suggests that an important area of 

forecasting research should be developing guidelines for how best to combine the 

judgement of practitioners with quantitative methods”. Moreover, Armstrong and 

Collopy (1998: 289) suggested that “given the importance to decision makers of 

incorporating judgement into their forecasts, and the importance to business and 

society of unbiased and accurate forecasts, this seems to be a most promising area for 

further research”. However, despite this appeal for further work, only a few studies 

have been conducted to advance knowledge in this area. Subsequently, the relevant 

literature is reviewed, followed by a discussion of a number of issues that still need to 

be addressed by the academic community. 
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There is substantial evidence from the economic forecasting literature that statistical 

forecasts can be made more accurate when experts judgmentally adjust them to take 

into account the effects of special events and changes that were not incorporated into 

the statistical model (eg, Turner, 1990). However, few studies have investigated 

judgmental adjustment in the context of company forecasts of the demand for SKUs. 

This limited literature is divided into laboratory-based research (eg, Lim and 

O’Connor, 1995; Goodwin and Fildes, 1999) and empirical studies (eg, Mathews and 

Diamantopoulos, 1990, 1992). In the former case, given a controlled environment, 

subjects (typically students) are provided with data and contextual information and 

they are asked to adjust forecasts. The benefit of such an approach is the control that 

may be imposed on the environment, enabling extensive experimentation with many 

hypothetical scenarios. Nevertheless, adjustments are generally recommended when 

forecasters have good domain knowledge based on industrial experience; the 

experience of the students is highly questionable.  

 

Regarding the empirical studies, the strongest evidence that judgemental interventions 

can be effective when applied to SKU data come from four studies, all based on the 

same company, from Matthews and Diamantopoulos (1986, 1989, 1990, 1992). They 

showed that judgemental ‘revision’ improves accuracy, albeit sometimes only 

marginally. The first study (1986) examined the improvement of judgemental 

interventions over only one period (quarter) and the outcome was that the revised 

forecasts were at least of lower variance. The longitudinal extension of this work 

came in the next study (1989) where data and forecasts over six consecutive quarters 

were examined. Stronger evidence was found regarding the improvement in the 

forecasting accuracy as a result of the judgemental interventions. The third study 
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(1990) showed the effectiveness of forecast selection; the final study (1992), an 

examination of the relative performance of judgementally revised versus non-revised 

forecasts, indicated that there were significant differences in favour of the former 

approach.  

 

In general, judgemental adjustments of statistical forecasts appear to be most effective 

when the adjustments are made on the basis of important information that is not 

available to the statistical method (Sanders and Ritzman, 2001). Adjustments made in 

the absence of this information may result from the forecaster reading false patterns in 

the noise associated with the time series and these adjustments are likely to damage 

accuracy (O’Connor et al, 1993). One approach to the improvement of managerial 

adjustments would be to require a justification linked to key pieces of information. 

For example, Goodwin (2000) found that the frequency of unnecessary and damaging 

adjustments was reduced when forecasters were required to indicate a reason for 

making the adjustment. 

 

More recently, Fildes et al (2008b) empirically examined issues such as the direction 

of the adjustments and the importance of the magnitude of the adjustments for fast-

moving SKUs coming from four companies. Their main findings are summarised as 

follows: (a) managerial adjustments do improve accuracy; (b) small adjustments, less 

than 10%, are not worth making and should be discouraged; (c) negative adjustments 

are more effective than positive ones.  
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Syntetos et al (2008) examined the monthly intermittent demand forecasts for the UK 

branch of a major international pharmaceutical company that was also included in the 

study conducted by Fildes et al (2008b). The study provided evidence that 

judgemental adjustments can be effective when they are applied to forecasts of 

products with intermittent/slow demand. However, the effectiveness was found to be 

conditional on the nature of the adjustments and the characteristics of the demand 

time series and the results were consistent with those discussed above for products 

that are not subject to intermittent demand.  

 

Additional conclusions from Syntetos et al (2008) relate to: i) the lack of learning 

effect, ie, the adjustments do not tend to improve over time, and ii) the improved 

forecast accuracy achieved by judgementally adjusting forecasts is also reflected in 

the stock control performance of the estimates under concern. The linkage between 

judgemental adjustments and inventory management constitutes a promising avenue 

for further research. Some managers adjust the replenishment orders suggested by a 

software package rather than the forecasts that inform stock control decisions 

(Kolassa et al, 2008). The relative merits of judgemental adjustments of forecasts and 

orders have yet to be researched. Regarding the performance of adjustments over 

time, ie, the question of whether there is any learning effect, Kolassa et al (op. cit.) 

discussed the gradual learning of trusting the quantitative model in use, as opposed to 

improving the quality of adjustments, offering a different perspective on ‘learning’.  
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Conclusions and framework for further research 

The area of inventory planning and forecasting has experienced tremendous advances 

over the last 50 years. There have been significant methodological developments, 

such as the emergence of system dynamics, control theory and statistical forecasting 

methods. These developments have been mirrored by new software applications, 

reflecting their importance in practical situations. 

 

High-level strategic modelling has been facilitated by the introduction of system 

dynamics models showing the interaction between stocks and flows of materials and 

information. This generic approach has direct application to studying supply chains 

from both qualitative and quantitative perspectives. In addition to this simulation-

based approach, trade-off analyses and algebraic models have been developed to 

inform strategic target setting, choice of forecasting method and policies on inventory 

centralization.  

 

The modelling of multi-echelon supply chains has been facilitated by advances in 

control theory. For example, z-transform techniques have offered the opportunity to 

model the evolution of supply chains through discrete time. Analytical and control 

theory models of the bullwhip effect have been developed in parallel, leading to 

similar conclusions with regards to inventory systems. However, control theory has 

provided greater insights into more complex systems incorporating production (eg, the 

Inventory and Order-Based Production Control System (IOBPCS) model). It has also 

furthered our understanding of the potential benefits of sharing downstream demand 

information with upstream partners, although this issue is yet to be completely 

resolved. 
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Statistical forecasting for inventories has advanced significantly over the past 50 

years. Effective forecasting for the replenishment of fast-moving items has been 

facilitated by the developments associated with exponential smoothing methods and 

the establishment of their theoretical properties. ARIMA models have proven to be 

useful for strategic modelling purposes and for developing insights into the bullwhip 

effect. However, they have not been used extensively at an operational level mainly 

due to their complexity and similar performance to simpler smoothing methods, as 

demonstrated by the M-competitions. 

 

The statistical forecasting of slow/intermittent demand items was advanced 

considerably through the identification of the limitations associated with the use of 

exponential smoothing and the development of Croston’s (1972) method. Further 

advancements include: i) the critique of Croston’s method and the development of 

bias-reduction adaptations; ii) the development of non-parametric (bootstrapping) 

approaches for forecasting intermittent demand requirements. 

 

Survey evidence of the prevalence of judgemental forecasting in practical situations 

has motivated a considerable amount of research on the factors driving judgemental 

adjustments and their implications for decision making. Empirical studies have 

explored the benefits arising from judgementally forecasting demand (or 

judgementally adjusting statistical forecasts). They have demonstrated improved 

accuracy when the adjustments are made on the basis of important information that is 

not available to the statistical method. Research into the linkages to the learning effect 

and stock control implications of such forecasts is expected to further advance 

knowledge in this area. 
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Although there have been substantial advances in SD, control theory and forecasting 

(statistical and judgemental), there has been comparatively little research on the 

interaction between these areas. In Figure 1 we identify existing linkages between 

areas and highlight promising opportunities for further consideration. We discuss 

these linkages in more detail, followed by an inter-disciplinary agenda for further 

research. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Interactions between areas and opportunities for further developments 

 

The current linkages between the areas discussed in this paper can be summarized as 

follows:  A1) The influence diagrams of Qualitative System Dynamics (QSD) may be 

used as a precursor of more formal stock and flow diagrams in SD (Wolstenholme, 

1982). Such causal loop diagrams can also be used as a structuring device to aid the 

development of control theory block diagrams, as shown by Dejonckheere et al 
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(2003). A2) Judgmental estimates can be used to specify prior distributions in a 

Bayesian forecasting approach. Similarly, subjective prior distributions can be 

incorporated into regression models (Zellner, 1971). A detailed discussion on 

encoding subjective beliefs on the estimation of parameters of statistical models is 

provided by Bunn and Wright (1991). A3)  Baseline predictions, generated using 

statistical forecasting methods, are often subsequently adjusted using judgmental 

approaches (see previous discussion in this paper). A4) The Kalman Filtering 

approach has been exploited by Harrison and Stevens in Bayesian forecasting and by 

Harvey (1989) in his Basic Structural Model, based on state-space modelling. A5) 

Conversely, some recent research has incorporated ARMA models in control theory 

models (for example, Hosoda and Disney, 2006a).  

 

The above discussion indicates the considerable synergy that currently exists between 

System Dynamics (SD), control theory and forecasting and the scope for inter-

disciplinary approaches to problem solving. In addition to further informing and 

developing these existing links, we believe that the following should also attract some 

attention from the academic community: B1) Variance modelling, showing the effect 

of differing forecasting methods with differing variances of forecast error, on the 

performance of an inventory system, using system dynamics. Achievement of service 

targets or physical inventory volumes relate directly to the statistical bias associated 

with an estimator and the variance of the related forecast errors. However, the 

incorporation of the latter variable in SD (stocks and flows) models has not attracted 

sufficient attention from the academic community. B2) There has been considerable 

interest in the educative benefits of the principles of system dynamics. Sterman (1989) 

describes how the Beer Game can be used to convey the counter-intuitive effects of 
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misaligned inventory policies. However, there has been little work done on the 

potential of SD to inform judgemental forecasting by means of demonstrating its 

implications upstream in supply chains. This should be of significant practical 

importance given: i) the frequency with which decision makers exercise judgement; 

ii) the lack of formal models that incorporate judgement. B3) The effect of biases and 

reduced/increased variance of judgemental forecast errors has not been assessed using 

system dynamics modelling. Such an exercise necessitates further research into the 

reasons and rationale driving judgemental estimates and further empirical insights into 

this area that will allow effective modelling of human judgement to take place. 

 

In conclusion, the last 50 years has seen great advances in inventory forecasting and 

planning. Major contributions have been made in this area reflecting differing 

discipline-based perspectives on the resolution of the same issues. However, inter-

disciplinary opportunities have not been adequately addressed. The next half-century 

should be exciting, as there are so many opportunities for further research and for a 

healthy cross-utilization of ideas. 
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