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In 2-D time-dependent fluid flows, a patch represents a localized region in space that has a
significantly different average velocity compared to its surroundings. We show that one can ob-
tain important information about the Lagrangian particle motion in such flows by studying the
nature, long-term evolution, and statistical characteristics of the patchiness behavior. For exam-
ple, the dispersion of passive tracers at any time is directly related to the distribution of patches
in the flow. We thoroughly investigate the transport properties of the Lagrangian trajectories
associated with a cellular flow previously used as a model for time-dependent Rayleigh–Bénard
convection, and a kinematic model of a meandering jet (originally due to Bower [1991]). In
both cases, we examine the statistical attributes of the patchiness, their relationship with the
geometric features of the stable and unstable manifolds, and the effect of noise on the structure
of patchiness. We uncover some interesting features associated with the origin of these patches
and their influence on Lagrangian transport.
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1. Introduction

There has been much work on applying dynam-
ical systems techniques to the study of mixing
and transport issues in fluids over the past ten
years. Babiano et al. [1994] and Aref and El
Naschie [1994] provide recent reviews. In two di-
mensions the analogy between the global, geomet-
rical study of dynamical systems theory and trans-
port of fluid in time-periodic flows is quite apparent.
For two-dimensional, incompressible time-periodic
fluid flows, the equations for the trajectories of a
point in the fluid are given by

ẋ =
∂ψ

∂y
(x, y, t) ,

ẏ = −∂ψ
∂x

(x, y, t) ,

(1)

where ψ(x, y, t) is the stream function, periodic in
t. These trajectories are also referred to as “fluid
particle trajectories”. Thus, a fluid “particle” is
analogous to the “point” in geometry. In that
sense, it is a somewhat fictitious notion, but prac-
tically, very useful. A number of physical situa-
tions arise where material particles are transported
by the flow, yet their presence does not affect the
flow. In this case, the trajectories of the material
particles in the flow can be considered to be the
fluid particle trajectories. We refer to such mate-
rial as “passive tracers, or scalars” (e.g. the reader
can think of dye being placed in a fluid as a passive
scalar, or tracer). Transport of material points in
a flow is often referred to as Lagrangian transport

since the formulation of the theory of fluid mechan-
ics in the setting of the material properties of the
fluid is referred to as the Lagrangian viewpoint of
fluid mechanics. Similarly, fluid particle trajectories
are often called “Lagrangian trajectories”.

From the dynamical systems viewpoint, these
equations for fluid particle trajectories are just
Hamilton’s equations where ψ(x, y, t) is the
Hamiltonian function and the phase space of this
dynamical system is actually the physical space
where the fluid flows. Through time periodicity the
study of these equations can be reduced to the study
of a two-dimensional, symplectic Poincaré map and
once the problem has been cast in this setting a
variety of techniques and ideas from dynamical sys-
tems theory can be applied for the purpose of study-
ing fluid transport and mixing issues. For exam-
ple, KAM tori represent barriers to fluid transport
and mixing, chaotic dynamics should act to enhance
mixing, and invariant manifolds, such as the sta-
ble and unstable manifolds of hyperbolic periodic
points, are manifested as “organized structures” in
the fluid flow.

One of the advantages of the dynamical sys-
tems viewpoint for studying large-scale geomet-
rical structures in fluid flows is that most dy-
namical systems results are not dependent on a
specific analytical form of the dynamical system
under consideration. Rather, they require that only
certain geometrical features be present. For exam-
ple, the existence of stable and unstable manifolds
of some invariant set requires only the existence of
a hyperbolic invariant set, the existence of Smale
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horseshoe type chaos requires only the transverse
intersection of the stable and unstable manifolds
of a hyperbolic periodic orbit, and the existence
of KAM tori requires only that the flow be a two-
dimensional time-quasiperiodic perturbation of an
integrable flow that has a region of closed stream-
lines. If it is known that these structures are present
in the flow, then this information, along with in-
formation on their geometrical arrangement in the
flow, can be used to gain a quantitative understand-
ing of transport. For example, if a flow with peri-
odic boundary conditions contains a KAM torus,
then the recent work of Mezić and Wiggins [1995a]
shows that, neglecting molecular diffusion, an initial
distribution of tracer that is both inside and outside
the KAM torus will exhibit asymptotic t2 disper-
sion. If the effects of molecular diffusion are con-
sidered, then the work of Mezić et al. [1996] shows
that in the high Peclet number limit the effective
diffusivity scales are like the square of the Peclet
number. The existence of a Smale horseshoe im-
plies the existence of local exponential expansion of
fluid line elements and rapid stirring of fluid. The
stable and unstable manifolds of hyperbolic peri-
odic orbits may form a template which governs large
scale transport in a flow [Beigie et al., 1994]. A
common feature of each of these examples is that
a “low dimensional” geometric feature of the flow
can be used to quantify a more global feature of the
transport.

A central topic in this paper is the nature of
the distribution of passive scalars in a fluid flow.
From the point of view of dynamical systems the-
ory, this is the study of the distribution in phase
space of the time evolution of ensembles of initial
conditions. Recent studies of the distribution of
passive scalars in fluid flows have concentrated on
the so-called anomalous diffusion properties of such
distributions (see [Shlesinger et al., 1994] and the
references therein). These are commonly observed
in the regions of physical space where the flow un-
der consideration is mixing,1 and the dynamics of a
flow or a map can be modeled as a probabilistic dy-
namical system. In this study we take a somewhat

different point of view. We are interested in the in-
terplay between the geometrical objects in the flow,
like lobes2 and KAM tori and the statistics of the
passive scalar motion. A commonly observed prop-
erty of fluid flows at the time-scales at which molec-
ular diffusion is not important is nonhomogeneity
of passive scalar distributions. The phenomena in
which we are interested are finite-time phenomena.
This makes sense given the spatial extent of prob-
lems that we study: Cellular flows and motion in the
Gulf Stream modeled as a meandering jet. Besides
being topics of research of many research teams,
these problems are paradigms of two situations, the
difference of which we want to emphasize: Cellu-
lar flows that we study have zero (temporal) mean
velocity, while jets have nonzero mean velocity.

The concept that we use most in this study is
the Lagrangian velocity average, i.e. the average of
the velocity field along fluid particle trajectories.
We introduce the second moment of the distribu-
tion of Lagrangian velocity averages as a measure
of patchiness of the flow. This is suggested by the
dispersion behavior of nonhomogeneous flows. The
initial dispersion behavior of such flows is quadratic
in time [Mezić, 1994]. If nonhomogeneity of La-
grangian time-averages is preserved at longer times,
i.e. if the Lagrangian time-average of velocity is
not constant for almost every initial condition, the
quadratic dispersion in time persists. As shown in
detail below, it is then interesting to monitor the
development in time of patchiness — the second
moment of the distribution of Lagrangian velocity.
We will show that this quantity decays to zero if the
flow is ergodic or if the velocity field has a zero time
average. In fact, it provides a good indicator of the
mixing behavior of the flow. If patchiness tends to
a constant different from zero, the flow is not er-
godic. If the flow is ergodic, then patchiness decays
to zero. The scaling of patchiness as time goes to
infinity is associated with the scaling of dispersion.

We also suggest that density plots of
Lagrangian velocity averages are useful tools for the
study of finite-time mixing and transport in fluid
flows. In these plots, the color is associated with

1We define the notion of “mixing” for a dynamical system. Let M be a space equipped with a measure denoted by µ.
Let φt be a one-parameter family of automorphisms of M that depends measurably on t. Then φt is said to be mixing if
limt→∞ µ(φt(A) ∩ B) = µ(A)µ(B), for every pair of measurable sets A, B ⊂M . For more details see [Arnold & Avez, 1968].
Mixing implies ergodicity, but ergodicity does not imply mixing.
2A lobe is a region bounded by segments of stable and unstable manifolds of a hyperbolic trajectory, or the stable and unstable
manifolds of two different hyperbolic trajectories. Lobes are important because they are invariant regions that transport fluid,
see [Wiggins, 1992].
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velocity averages. These plots are patchy — the
predominant feature in them are blobs of the same
color. This indicates lack of mixing in these regions,
as sampling different velocities is related with ex-
ploration of the phase-space. The patchiness plots
have features closely related to the geometrical ob-
jects in the flow — invariant regions around elliptic
fixed points and lobes. For example, in an invariant
elliptic region in the flow, time averages of the veloc-
ity converge very quickly to a constant value (which
can be nonzero or zero, depending on whether that
elliptic region is an accelerator mode or not (see
[Mezić & Wiggins, 1995b]). Lobes transfer parti-
cles from one zone in the physical space to another
[Wiggins, 1992] and contribute to mixing. Parti-
cles in a lobe lose uniformity of velocity averages by
intersecting with other lobes.

Patchiness plots give color-coded indication of
the nature of the dynamics, and although we test
the newly introduced concepts on two-dimensional
flows, they might prove to be particularly important
in three-dimensional flows where Poincaré maps are
not as revealing as in the two-dimensional case.

1.1. Patchiness in fluid flows

The patchiness in fluid flows is characterized by the
presence of a huge number of small localized re-
gions (i.e. patches) that have average velocity sig-
nificantly different than the area surrounding them.
The existence of patchiness implies a strong depen-
dence of the dispersion behavior on initial location
in space. Pasmanter [1988, 1991], while studying
the variability of dispersion processes in the ocean,
observed that the dispersion of the fluid particles
in laminar incompressible flows exhibit the phe-
nomenon of patchiness. He also found that the
presence of patchiness led to anomalous diffusion
behavior of the passive tracers. In this paper we
examine the nature of the patches in detail and in-
terpret the transport properties of the passive par-
ticle trajectories in terms of underlying patchiness
behavior.

1.2. Lagrangian transport of
passive tracers

Consider a general incompressible velocity field in

two-dimensional space (x, z)

ẋ = vx(x, z, t) = −∂ψ
∂z

(x, z, t) ,

ż = vz(x, z, t) =
∂ψ

∂x
(x, z, t) , (2)

For a fluid particle initially located at (x(0), y(0)),
the horizontal transport can be characterized in
terms of the finite time average along particle tra-
jectories of the x-component3 of the velocity field,
and is given as follows.

vx(t) =
1

t

∫ t

0
vx(x(τ), z(τ), τ)dτ

=
x(t)− x(0)

t
. (3)

Thus, the x-component of the trajectory (x(t), z(t))
can be expressed as

x(t) = x(0) + vx(t)t . (4)

The velocity field is defined over a two-dimensional
domain A, and let p(x, z) be the initial distribution
of some ensemble of initial conditions over the do-
main A. At time t, the mean displacement and the
dispersion are defined as

mx(t) = 〈x(t)− x(0)〉 =

∫
A

[x(t)− x(0)]p dµ , (5)

and,

Dx(t)=〈[x(t)−x(0)−〈x(t)−x(0)〉]2〉

=
∫
A

[x(t)−x(0)−〈x(t)−x(0)〉]2p dµ , (6)

where dµ (= dx dz) represents the measure of some
area element on A. Using (4)–(6), it is easy to see
that

mx(t) = mv(t)t , (7)

and
Dx(t) = Dv(t)t

2 (8)

where

mv(t) = 〈vx(t)〉 , (9)

Dv(t) = 〈[vx(t)−mv(t)]
2〉 . (10)

3The dependence of average velocity component on its initial condition is assumed to be implicit, and is not shown in the
argument(s).
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Here, Dv(t) represents the dispersion of patchiness
behavior as a function of time, and it monitors the
progress of the spatial inhomogeneities in the veloc-
ity field that a particle observes. In the finite time,
the behavior of Dv(t) effectively determines the re-
sulting dispersion behavior of the tracer particles in
the time-dependent velocity fields.

The conditions for the asymptotic behavior of
the dispersion are formally obtained in [Mezić &
Wiggins, 1994]. They used Birkhoff’s Ergodic The-
orem to obtain necessary and sufficient conditions
for the existence of anomalous (t2) dispersion be-
havior in nondiffusive passive particles in a class of
incompressible laminar flows. They show the non-
ergodicity to be the dynamical mechanism giving
rise to such dispersion behavior (see [Mezić, 1994;
Mezić & Wiggins, 1994]).

The limiting value of Dv(t) as t → ∞, which
exists if the velocity is bounded, is equal to

a = 〈[v∗x − 〈v∗x〉]2〉

where

v∗x = lim
t→∞

vx(t) = lim
t→∞

1

t

∫ t

0
vx(x(τ), z(τ), τ)dτ

is the infinite-time average of the horizontal veloc-
ity. From (8) it is clear that t2 dispersion is pos-
sible only when Dv(t) approaches a constant lim-
iting value different from zero, thus providing a
sufficient condition for the t2 dispersion behavior
in the advection of two-dimensional velocity fields.
The relation of this result to lack of ergodicity can
be seen as follows. If Birkhoff’s ergodic theorem
(or some other appropriate ergodic theorem) is ap-
plicable then 〈v∗x〉 = 〈vx〉. In this case we have
a = 〈[v∗x − 〈vx〉]2〉, and a = 0 implies v∗x = 〈vx〉,
or the time average of vx equals the space average
of vx, which is true if the flow is ergodic. Hence, if
Dv(t) goes to a constant different from zero when
time goes to infinity, the velocity field is not ergodic
and different initial conditions can have different
Lagrangian time-averages of velocity. We also see
that a = 0 in the case where the flow has temporal
mean zero. In this case the flow can be nonergodic,
yet Dx(t) does not behave asymptotically like t2.

1.3. Statistical and geometric
features of Lagrangian
trajectories

In the study of fluid mixing, mean square displace-
ment D(t) at time t of the passive tracers (hence the
flow trajectories) is an important measure of disper-
sion of the fluid particles. In the presence of molec-
ular diffusion it is well known that the mean square
displacement varies linearly with time, and such be-
havior is referred to as diffusive. When the variance
of the tracer particles grows nonlinearly with time,
the dispersion behavior is referred to as anomalous
diffusion. As seen earlier [refer to Eq. (10)], the dis-
persion of particle trajectories in any velocity-field
is determined by the dispersion of patchiness.

The nature and stability of the probability dis-
tribution of the patches also yields crucial informa-
tion about the particle transport. The origin and
spatial location of these patches is also of interest
to us. These are intimately related with the basic
geometric structures (such as stable and unstable
manifolds and their intersections) associated with
the flow.

1.4. Two case studies

We consider two different kinematic flow fields4

First, we examine the patchiness behavior associ-
ated with the a model of a Rayleigh–Bénard flow
used to study cell-to-cell transport in the presence
of the even-oscillatory instability (see [Camassa &
Wiggins, 1991]). The mean velocity is zero for this
flow. Next, a model of a meandering jet5 (originally
due to Bower [1991]) is considered, where we study
the effect of periodic and quasi-periodic meridional
flow on such a jet. The jet travels with a nonzero
mean velocity.

In addition, we also investigate the effect of
white noise on the patchiness structure in both the
cases. It should be mentioned that the techniques
developed here are not limited to the availability
of kinematic models, but can be easily modified to
accommodate numerically generated velocity fields
from the dynamically consistent models.

4By the term “kinematic model” we mean a vector field whose trajectories and phase space structures, i.e. kinematic features,
model similar features that are observed in certain types of fluid flows. Thus, kinematic models are not solutions of the fluid
mechanical equations of motions.
5A “jet” is described by a velocity field containing a localized region in which the velocity in a certain direction is much larger
than the velocity in the same direction for the surrounding fluid. The jet is said to be a “meandering jet” if its spatial stucture
varies in space. In our example such a variation will be sinusoidal.
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2. Lagrangian Transport in
Cellular Flows

In this section we consider the classical Rayleigh–
Bénard convection in two dimensions. We consider
a steady convection cell whose horizontal length is
much larger than its height, and the convection
cells are aligned along the y-axis. For this flow,
an explicit form of the velocity field was obtained
by Chandrasekhar [1961] under the assumptions
of stress-free boundary conditions and single mode
convection. The stream function is given as

ψ0(x, z) =
A

k
sin (kx) sin (πz) , (11)

and the associated velocity field is given by

ẋ = −∂ψ0

∂z
(x, z) = −Aπ

k
sin (kx) cos (πz) ,

ż =
∂ψ0

∂x
(x, z) = A cos (kx) sin (πz) ,

(12)

where A is the maximum vertical velocity, and
k = 2π/λ is the wave number in the horizontal di-
rection. The length measures are nondimensional-
ized such that the top and the bottom of the cells
are at z = 1 and z = 0, respectively. The stream-
lines for the steady flow are shown in Fig. 1 for
A = 1, and k = 2. In this case, the steady flow is
confined in two-dimensional spatially periodic cells,
with period π in the x-direction, and lies between
the boundaries at z = 0 and z = 1. The steady ve-
locity field has two types of hyperbolic fixed points
located at (jπ/k, 0) and (jπ/k, 1), respectively, for
j = 0, ±1, ±2, . . . . The fixed points that have the
same x coordinate on the upper and the lower wall
are connected by a vertical boundary (a heteroclinic
connection).

For two adjacent cells, the interior flow consists
of closed circulatory motion moving clockwise for
one cell and counterclockwise for another, and the
pattern repeats itself after each λ distance result-
ing in a stream of infinite cells, or rolls (Note: In

Fig. 1. Steady flow in the row of convection cells.

the context of this problem, throughout the litera-
ture the terms “rolls” and “cells” are used synony-
mously). For this flow our concern lies in the trans-
port of a passive tracer from cell-to-cell. For the
steady velocity field, the flow inside each cell is dis-
tinctly separated by a dividing stream line (i.e. the
heteroclinic orbit). Each of these vertical hetero-
clinic connections separates clockwise flow from the
counterclockwise flow, and in the absence of molecu-
lar diffusion these barriers act to completely inhibit
any transport between the cells.

2.1. Effect of periodic disturbances

If the temperature difference between the top and
the bottom walls is increased, a time-periodic in-
stability occurs which results in time-periodic ve-
locity field. In the presence of time-periodicity (no
matter how small), the dividing streamlines break
and allow inter-cell transport and chaotic fluid par-
ticle trajectories. Based on their experimental re-
sults of roll-to-roll transport of a passive tracer,
Solomon and Gollub [1988] introduced the following
unsteady stream function,

ψ(x, z, t) =
A

k
sin (πz)[sin (kx)

+ εk cos (kx) cos (ωt)] , (13)

The time-dependence corresponds to the collective
oscillation of the roll boundaries in the perpendic-
ular direction of the roll-axes. This phenomenon is
known as the even oscillatory instability. The cor-
responding time-dependent velocity field is given as

ẋ = −∂ψ
∂z

(x, z, t)

= −Aπ
k

cos (πz)[sin (kx) + εk cos (kx) cos (ωt)] ,

ż =
∂ψ

∂x
(x, z, t)

= A sin (πz)[cos (kx)− εk sin (kx) cos (ωt)] ,
(14)

where ω = 2π/T is the frequency associated with
the time-dependent instability, T is the correspond-
ing period, and ε is proportional to the square-root
of the difference between the Rayleigh number from
its critical value corresponding to the onset of the
even oscillatory instability. For a detailed descrip-
tion of the mechanism for roll-to-roll fluid trans-
port, the reader is referred to [Camassa & Wiggins,
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1991]. In this flow, we are interested in obtaining a
quantitative measure of the fluid moving in and out
of the cell boundaries, and the qualitative nature
of the fluid particle trajectories that participate in
cell-to-cell transport. We are also interested in lo-
cating the subdomains within a cell that are likely
to disperse at the most efficient rate, and in relat-
ing these to the geometric structures in the flow,
such as invariant manifolds. Since the top and the
bottom boundaries of the cells are rigid, the trans-
port primarily occurs in the horizontal direction.
We next present the results from some numerical
experiments showing the dispersion behavior in the
Rayleigh–Bénard flow.

2.2. Description of the patchiness
structure

In time-periodic cellular flow the time average of
the x-component of velocity along the Lagrangian
trajectories (x(t), z(t)) is given by

vx(t) = −1

t

∫ t

0

Aπ

k
cos (πz(τ))[sin (kx(τ))

+ εk cos (kx(τ)) cos (ωτ)]dτ (15)

This can be computed numerically over an appro-
priate domain. It is sufficient to consider a domain
covering a single cell. For illustrative purposes, we
consider a domain consisting of two adjacent cells
(x ∈ [0, π], z ∈ [0, 1]). This domain consists of
a uniform grid of 300 × 100 grid points. We plot
the average x-velocity contours on the initial grid.
The same color in any picture corresponds to a sub-
domain with the same average x-velocity.

• The first slice in Fig. 2 shows the initial config-
uration of the x-velocity (at time t = 0), and
the remaining slices give the average x-velocity
contours at the respective times. In subsequent
pictures at t = T, 2T, 3T, . . . , we observe the de-
formation of the initial contour configuration.
• In the beginning, the contour structure deforms

along the unstable manifolds and gives a reason-
ably good template for the unstable manifolds of
the three hyperbolic (periodic) orbits in the do-
main and the KAM tori in a relatively short time
of integration (within 3T ). For comparison, the
reader is referred to Fig. 29 for the associated
manifold geometry.
• This contour structure starts to disintegrate into

big patches, and these big patches further dis-
sociate into smaller and smaller structures. The

patches represent regions of relatively much larger
magnitude of the average x-velocity than the re-
gion surrounding them. These patches are pri-
mary regions for the intercellular transport.
• These patches persist for as long as the numeri-

cal trajectories are computed, although their rela-
tive strength (i.e. the magnitude of the associated
average-velocity) diminishes.
• The qualitative nature of the patchiness behavior

remains the same when we change the amplitude
(ε) or the associated frequency (ω) of the oscilla-
tory instability.

In time-dependent nonlinear flows, the individ-
ual particle trajectories may be unstable for small
perturbations, however the statistical properties of
the tracer trajectories are robust and reproducible.
Thus, the statistical properties of the patches are
important for understanding the mixing behavior in
the flow. The distribution of the patchy structures,
and the dispersion behavior of the passive tracers is
discussed next.

2.2.1. Distribution of patchiness

The distribution of the average x-components of ve-
locity for particle trajectories is shown at four dif-
ferent time intervals in the following diagrams. The
bin-width is chosen to be 0.005 for time-periods less
than 10, and 0.002 for all other times. The following
features are noted:

• The mean flow is zero in the x-direction for the
cellular transport case. This means the net flow
through the left boundary of the cell is the same
as the net flow through the right boundary.
• The probability distributions are always symmet-

ric about the zero mean flow in the x-direction,
implying that the left moving and the right mov-
ing patches are evenly distributed in the cell
domain.
• The probability distribution approaches the ap-

pearance of a normal distribution very fast when
the amplitude of the time-dependence is high,
i.e. large values of ε (see Figs. 4 and 5).
• For lower values of ε (say, ε = 0.1), the distri-

bution takes an extremely long time to settle to
normal distribution. In this case, the probability
distribution remains non-Gaussian even after 100
periods (see Fig. 3).
• None of the distributions reach an equilibrium

even after 1000 time-periods.



Fig. 2. Average x-velocity contours corresponding to initial points having the same time-average along the tracer trajectories.
The parameters are fixed at A = 1, k = 2, ω = 4.2, and ε = 0.1.
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Fig. 2. (Continued )
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Fig. 3. The probability distribution of the averaged x-component of velocity at time T , 5T , 20T , and 100T . Other parameters
are set at A = 1, k = 2, ω = 4.2, and ε = 0.1. On the vertical axis, the fraction of total points is plotted.

Fig. 4. Same as Fig. 3 except ε = 0.4.

2.2.2. Dispersion characteristics

The resulting dispersion of the tracer particles
depends on the dispersion of the patches [from
Eq. (8)]. In fact, the dispersion of the particle
trajectories is directly proportional to the disper-
sion of patchiness. Figure 6 shows the dispersion
behavior of the patches, and Fig. 7 shows the cor-
responding dispersion law (Dx(t)) for the passive
tracers for three values of ε, the strength of the
time-dependence of the velocity field. Figure 8
shows similar characteristics for two different val-

ues of the frequency ω. We note the following
features.

• Dv(t) is found to be proportional to t−γ, where
γ is referred to as the patchiness exponent. Thus,
Dx(t) increases like tγx , where γx = (2− γ).
• In all the cases examined, the value of the expo-

nent γx lies between 1.06 and 1.08 for up-to 100
time-periods. The scaling law for the particle tra-
jectories between 100 and 1000 periods gives the
exponent γx to be approximately 1.02 (see Figs. 9
and 10). The patchiness exponent approaches 1



Patchiness in Time-Dependent Fluid Flows 1063

Fig. 5. Same as Fig. 3 except ε = 0.8.

Fig. 6. Dispersion of patches of average x-velocity as func-
tion of time, for three different ε values.

Fig. 7. Dispersion law for the passive tracers corresponding
to Fig. 6. The associated values of the slope (or exponent γx)
is shown in the parenthesis.

as t → ∞, thus implying a linear dispersion law
in the asymptotic limit.
• Solomon and Gollub [1988] experimentally ob-

served that the effective diffusion constant grows
linearly with the amplitude of time-dependence.
A simple Melnikov type calculation also shows
the effective diffusion constant is directly propor-
tional to ε (see e.g. [Chirikov, 1979]). Our nu-
merical results confirm the linear dependence of
advective diffusion constant on the amplitude of
the lateral oscillation. Figure 11 shows the evo-
lution of the ratio R(ε1, ε2, t) for three different
combinations of amplitude values, where

R(ε1, ε2, t) =
Dv(t)|ε1
Dv(t)|ε2

, (16)

In all three cases the ratio R(ε1, ε2, t) settles to
a value very close to ε1/ε2 very fast. This shows
the robustness of the linear dependence of the dis-
persion behavior on the amplitude.

2.3. Discussion

The characteristics of the probability distribution
function of the patchiness explain the observed dis-
persion behavior in the cellular transport case. The
long-term dispersion law Dx(t) is proportional to t
because the dispersion of patchiness Dv(t) decays
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(a)

(b)

Fig. 8. (a) Dispersion of patches of average x-velocity, and
(b) Dispersion law for the passive tracers, for two different
frequencies.

like 1/t. The dispersion of patchiness decays be-
cause the symmetric probability distribution con-
tinuously shrinks towards the zero mean flow in the
cell-flow case. This further implies that the patches
diminish in strength as t → ∞, and thus the rate
at which the trajectories (initially contained in cell
R0) invade the cells (on the right or the left) slows
down continuously as t → ∞. This is precisely
what we observe when we examine the spreading
of the passive tracers which are initially contained
in cell R0. We show the distribution of passive par-
ticles among various cells as a function of time in
Fig. 12 for ε = 0.1, 0.4 and 0.8, respectively. Here,
the color scheme is chosen such that various colors

Fig. 9. Same as Fig. 3 except ε = 0.4.

correspond to different cells or cell-clusters. In this
figure, one can spot at various times the current cell
Rj of all passive scalars that were initially located
in the reference cell R0.

The ratio of trajectories, Fe(t), that escape the
reference cell R0 through the left or right bound-
ary is shown in Fig. 13 as a function of time for up
to 1000 time-periods for all three cases. For rela-
tively high values of amplitude of time-dependence,
most trajectories escape the reference cellR0 within
the first 15 to 20 periods, and beyond that Fe(t)
approaches a steady limit. This is expected since
(1−Fe(∞)) gives the area within the KAM tori on
the time-slice. On the other hand, for small values
of ε more and more trajectories continue to escape
from R0 and as a result Fe(t) steadily grows even
beyond 1000 periods.

3. Lagrangian Transport in a
Meandering Jet

We next consider Lagrangian transport in mean-
dering jets. We examine the motion of fluid particle
trajectories in the two-dimensional kinematic model
of a meandering jet originally proposed by Bower
[1991]. This model, based on RAFOS float obser-
vations, consists of a jet of uniform width which
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(a)

(b)

Fig. 10. The dispersion of (a) patchiness, and (b) particle
trajectories, between 100T and 1000T .

Fig. 11. The ratio of Dv(t) for different values of ε versus
time.

is deformed by a steadily propagating sinusoidal
meander. This jet, when examined in a reference
frame moving with the meander, has three distinct
regimes of fluid flow, a central jet, exterior retro-
grade motion, and intermediate closed circulations
above meander troughs and below meander crests.
In this model, no transport is possible between the
three regimes because the flow is steady. In or-

der to make the fluid exchange possible among the
regimes, Samelson [1992] introduced spatiotempo-
ral variability in the regular velocity field of Bower.
He considered three different kinds of time-periodic
irregularities in the steady velocity field, and us-
ing Melnikov’s method and numerical computations
he provided a quantitative measure of transport
between different regions of the meandering jet.
Samelson’s model was reconsidered by Duan and
Wiggins [1996] by taking quasi-periodic spatiotem-
poral variability in the velocity field to provide de-
tailed computations of finite and infinite-time fluxes
between the different regimes of the flow as a func-
tion of various perturbation parameters such as am-
plitude and frequency of the time-dependence in the
moving reference frame. Here, we revisit the model
considered by Duan and Wiggins [1996] to examine
the geometric and statistical properties of the pas-
sive particle trajectories in a reference domain that
is spatially periodic in the horizontal direction.

The stream-function for the meandering jet in a
stationary frame of reference is given as (see [Bower,
1991; Samelson, 1992]):

ψ(X, Y, t)

= ψ0

[
1− tanh

(
Y −A cos k(X − cxt)

λ[1 + k2A2 sin2 k(X − cxt)]
1
2

)]
(17)

where X and Y are the eastward and northward
Cartesian coordinates, respectively, 2ψ0 represents
the net eastward transport, A, cx, and k are the
amplitude, phase-speed, and the wavenumber of the
meander, and the parameter λ determines the width
of the jet. In a reference frame moving with the
meander, the coordinates are given as follows after
scaling them with λ.

x = λ−1(X − cxt) , y = λ−1Y . (18)

In this reference frame the stream function takes
the following form

φ(x, y, t) = 1− tanh

(
y −B cos κx

[1 + κ2B2 sin2 κx]
1
2

)
+ cy

(19)
where

φ = ψ−1
0 ψ + cy , B = λ−1A ,

κ = 2πL−1 = kλ , c = λψ−1
0 cx ,

and the nondimensional time is given by τ =
ψ0λ

−2t. The associated velocity field in the frame
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Fig. 12. The distribution of initial points colored according to which cell they invade as a function of time, for ε = 0.1, 0.4
and 0.8, respectively. The other parameters remain identical to Fig. 2. Initially all the passive tracers are located in cell R0,
and subsequently escape to the other cells. The color scheme is chosen such that various colors correspond to different cells
or cell-clusters.
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Fig. 12. (Continued )
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Fig. 12. (Continued )
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Fig. 12. (Continued )
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Fig. 13. The ratio of the trajectories Fe, which escape the
initial cell R0 through the left or right boundary, is shown as
a function of time for up to 1000 time-periods. The curves
are labeled with the respective ε values.

Fig. 14. Steady flow of the meandering jet as observed in a
frame moving with the phase-speed of the meander. The pa-
rameters of the kinematic model are set at B = 1.2, k = 0.1,
and c = 0.1.

co-moving with the phase-speed of the meander is
given as follows.

ẋ = −c+
1

[1 + κ2B2 sin2 κx]
1
2

g(x, y)

ẏ =
1 + κ2B2(1− y cos κx)

[2 + κ2B2(1− cos 2κx)]
3
2

g(x, y)

(20)

where

g(x, y) = sech2

(
y −B cos κx

[1 + κ2B2 sin2 κx]
1
2

)
.

Following [Samelson, 1992], we fix the parameters
for the underlying meandering jet as B = 1.2,
L = 10, and c = 0.1. The streamlines for the steady
jet are shown in Fig. 14 in the co-moving frame. As
mentioned earlier, the steady flow consists of three
regular flow regimes, i.e. eastward moving fluid tra-
jectories in the central jet, trajectories executing pe-
riodic motion above and below the central jet, and
westward moving fluid trajectories exterior to the
jet. The periodic motion is separated from the un-
bounded eastward and westward motion by a pair
of heteroclinic connections which join saddle-type
stagnation points.6

3.1. Effect of quasi-periodic
disturbances

We examine the effect of spatially uniform quasi-
periodically time-varying meridional flow over the
underlying meandering jet. The resulting stream
function is expressed as

Φ(x, y, τ)=φ(x, y)+εφ′(x, y, t)

=φ(x, y)+εx
l∑
i=1

γi cos (ωiτ+δi) (21)

where γi, ωi, and δi are the amplitude, frequency
and the phase-lag associated with the ith compo-
nent of the quasi-periodic variability. For the sake
of simplicity we consider only two frequencies in the
disturbance.7

3.2. Horizontal transport

In order to examine the horizontal (eastward) trans-
port in the meandering jet, we proceed in a manner
similar to the cellular transport case. We consider
a domain (x ∈ [0, 10], z ∈ [−4, 4]) which contains
a complete heteroclinic structure above the trough
of the central jet (see Fig. 14). Next, we cover this
domain with a uniform grid of 200×200 grid points.
The average x-velocity contours are shown on this
initial grid (see Fig. 15).

6“Stagnation point” is the fluid mechanical term for an equilibrium point of a steady vector field.
7The term “meridional flow” means that the perturbation is solely in the y direction, i.e. from the point of view of the earth,
it is in the direction of the meridians.



Fig. 15. Average x-velocity contours corresponding to initial points having the same time-average along the tracer trajectories at eight different time intervals.
The jet parameters are fixed at B = 1.2, k = 0.1, c = 0.1, ω = (0.3, π), γ = (0.5, 0.86), δ = (3.5, π), and ε = 0.1.
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3.2.1. Description of patchiness
structure

The initial configuration of the x-velocity contours
deforms along the unstable manifolds in the do-
main. The shape of the unstable manifolds and
KAM tori appear to be well resolved in the aver-
age x-velocity plot at 5T . As observed in the previ-
ous case, the contours start to disintegrate into big
patches at first, and slowly shrink to small patches
of large (as compared with the surrounding region)
average x-velocity. In the case of the meandering jet
flow, we observe a few distinct characteristics which
distinguish the jet flow from the cellular flow.

In the meandering jet case, the domain con-
sists of an eastward moving fast speed jet which
separates the counter-clockwise periodic flow north
of the central jet from the clockwise periodic flow
south of the jet. For the parameter values consid-
ered here, the central jet is not affected by the time-
dependence introduced due to the quasi-periodic
meridional flow.

We also note the presence of two large red
patches (see average x-velocity contours at later

times) on the top and bottom of the central jet
in the right side of the domain. The strength of
these sub-regions is of a comparable magnitude to
the other small patches scattered throughout the
domain. These big patches arise due to the asym-
metry introduced by the phase-angle parameter δ
in the time-dependence.

3.2.2. Probability distribution of
patches

The probability distribution of the patchiness is
very different from the cellular flow case. In the
domain considered here, the flow has a nonzero
mean eastward component of velocity. In addition,
the probability distribution is asymmetric about the
mean flow. We notice that the distribution of the
average x-component of the velocity is distinguished
by the presence of four distinct peaks (see Fig. 16).

• The peak which appears close to 〈v1
x〉 = −0.1 cor-

responds to the westward moving fluid particle
trajectories near the top and the bottom of the
domain.

Fig. 16. The probability distribution of the averaged x-component of velocity at four different time-intervals (for perturbations
arising due to the quasi-periodic meridional flow). On the vertical axis, the fraction of total points is shown. The parameters
are the same as for Fig. 15.
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• The largest peak at 〈v2
x〉 = 0.0 is due to to the

background flow of very small average x-velocity.
• The peak near 〈v3

x〉 = 0.47 corresponds to the
patches (including the two large ones) in the flow.
• The peak near 〈v4

x〉 = 0.75 represents the high
average x-velocity of the fast moving central jet.
• At later times, we also observe the gradual ap-

pearance of new peaks between 〈v3
x〉 and 〈v4

x〉.
These additional peaks are due to the band-
like structure of the central jet region. This
seems to be an important fact: While in the un-
perturbed case particles in the jet region were
carried by a shear flow8 with strong veloc-
ity differences between near-by streamlines, the
time-dependence resulted in a formation of zones
with the constant average velocity. This is the
consequence of resonance-locking and the cross-
section of the average-velocity profile has the
structure of a devil’s staircase.
• Although the peaks tend to be relatively nar-

rower, sharper, and longer at later times, the ap-
pearance of the patchiness distribution remains
the same even after 100T time-interval.

3.2.3. Dispersion characteristics

Since the probability distribution does not change
appreciably with time, the dispersion of the patchi-
ness Dv(t) in the x-direction almost remains con-
stant. This suggests asymptotic in time t2 dis-
persion behavior from (8), as predicted by the
general result in [Mezić & Wiggins, 1995a]. In fact,
that is what we observe in the computations. Fig-
ure 17 shows the variation of the dispersion (in the
x-direction) with time as t1.96.

Fig. 17. Log–log plot of the Dx(t) versus time for the me-
andering jet flow.

3.3. Northward transport

In the case of a meandering jet, we are also inter-
ested the northward transport of passive scalars, the
interaction of the central jet with the flow above and
beneath the jet, and whether there is any cross jet
transport at all.

We plot the contours of the average northward
velocity in Fig. 18, and probability distributions in
Fig. 19. In this case, there is no net northward flow
through the horizontal boundaries, and the distri-
bution of the average northward velocity patches is
symmetric about the zero mean flow and the distri-
bution function is nearly Gaussian. The probability
distribution shrinks towards the zero mean flow (in
the y-direction) very fast (see Fig. 20). The corre-
sponding dispersion of patchiness of the northward
velocity decays as t−1.92 (Fig. 21), thus indicating
an extremely small growth rate of Dy(t). This is
due to the presence of restraints (barriers) north
and south of the jet-flow.

3.4. Comparison with time-periodic
variability

In order to compare the passive scalar transport
in the quasi-periodic case with the time-periodic
disturbances, we reconsider the periodic model ex-
amined by Samelson [1992]. In the case of peri-
odically varying meridional disturbances, Samelson
found that exchange across the interior heteroclinic
boundaries (i.e. the boundaries adjacent to the cen-
tral jet) was always greater than the exterior hete-
roclinic boundaries (i.e. the boundaries adjacent to
the westward moving flow near the top and the bot-
tom of the domain). This is obvious from Fig. 4 of
[Samelson, 1992] which shows the behavior of the
Melnikov function as the forcing frequency ω is var-
ied from 0 to 1. On examining the transport of
passive scalars for various values of the forcing fre-
quencies, we notice that the extent to which the in-
terior heteroclinic boundaries interact with the cen-
tral jet (or the extent of interaction of the exterior
heteroclinic boundaries with the westward moving
flow) is directly related with the value of the Mel-
nikov function(s) as given in Fig. 4 of [Samelson,
1992]. The patchiness behavior for four representa-
tive cases, corresponding to ω = 0.02, 0.11, 0.3, and
1.0, respectively, is shown in Figs. 22–25.

8Roughly speaking, a “shear flow” is a flow in which the velocity is essentially in one direction, and the speed increases
monotonically as one moves normal to this direction.



Fig. 18. Average y-velocity contours corresponding to initial points having the same time-average along the tracer trajectories at eight different time intervals. The
jet parameters are fixed at B = 1.2, k = 0.1, c = 0.1, ω = (0.3, π), γ = (0.5, 0.86), δ = (3.5, π), and ε = 0.1.
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Fig. 19. The probability distribution of the averaged y-
component of velocity at time T , 10T , and 100T . On the
vertical axis, the fraction of total points are shown.

The first case (ω = 0.02) corresponds to the
largest value of the Melnikov function for both ex-
terior as well as interior boundaries, and thus ex-
hibits the maximum amount of transport across
both boundaries (see Fig. 22). The exterior bound-
aries after breaking-up act to bring-in the westward
moving flow in the recirculatory regime, while the
interior boundaries vigorously interact with the cen-
tral jet and lead to considerable amount of trans-
port across the jet. Despite the presence of such
strong interaction, we also observe the presence of

Fig. 20. Combined distribution functions for T , 10T , and
100T .

Fig. 21. Log–log plot of the Dv,y(t) versus time for the me-
andering jet flow.

two invariant sub-domains of zero transport (KAM-
tori). The second case (ω = 0.11) corresponds to
the significantly larger transport across the interior
boundaries as compared with the exterior bound-
aries (see Fig. 23). In this case, the initially fast
moving central jet is a region filled with patches af-
ter 10T time-interval, while very little number of
westward moving patches are observed in the do-
main. On increasing the value of ω to 0.3 (Fig. 24),
we notice that the central jet preserves its structure
even after 10T , although narrower than the steady
case. In this case, the interior boundaries primarily
interact with the edges of the jet. We also notice the
presence of a cluster of eastward moving patches on
either side of the central jet in the right half of the
domain. The last case (ω = 1) corresponds to the
weaker version of the previous case. Here, we only
observe a fuzzy region near the heteroclinic bound-
aries (see Fig. 25), and elsewhere the flow is similar
to the steady case.



Fig. 22. Same as Fig. 15 except for the periodic case with ω = 0.02, T = 314.16, δ = π, and εγ = 0.1.
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Fig. 23. Same as Fig. 22 except for ω = 0.11, and T = 57.12.

1
0
8
1



Fig. 24. Same as Fig. 22 except for ω = 0.3, and T = 20.94.
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Fig. 25. Same as Fig. 22 except for ω = 1, and T = 6.28.
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Fig. 26. The probability distribution of patchiness for various values of forcing frequency after 10 time-periods.

The probability distribution of the patches
shows a variety of behavior as ω is varied from 0
to 1. We show the distribution of patchiness af-
ter 10 time-periods for six different values of the
forcing frequency in Fig. 26. The probability distri-
bution is closest to the Gaussian distribution (with
eastward moving mean-flow) for ω = 0.11, and for
values of ω larger than 0.11 the distribution tends
to be dominated by a finite number of peaks. For

all values of ω < 0.11, the distribution is charac-
terized by the presence of a broad range of average
x-velocities that are uniformly distributed.

The dispersion of patchiness is shown in Fig. 27
and the corresponding dispersion behavior of pas-
sive tracers is shown in Fig. 28. For ω = 0.01, the
dispersion law for the particle trajectories evolves
like t in the beginning but eventually it settles
to t2 behavior. This case exhibits an interesting
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Fig. 27. The dispersion of patchiness as a function of time
on a logarithmic scale. On the vertical axis, we plot D∗v =
Dv(t)/T

2, where T = 2π/ω, and along the horizontal axis
n = t/T is shown. The different curves are labeled with the
corresponding frequency values (ω).

Fig. 28. Same as Fig. 27 except the dispersion of passive
tracers D∗x = Dx(t)/T 2 is shown along the vertical axis.

Table 1. The patchiness and
passive particle dispersion ex-
ponents for various ω-values.

Frequency (ω) γ γx

0.01 0.0 2.0

0.02 −0.2 1.8

0.05 −0.5 1.5

0.11 −0.6 1.4

0.15 −0.1 1.9

0.3 −0.1 1.9

1.0 0.0 2.0

π 0.0 2.0

t2 → t→ t2 dispersion behavior.9 The passive par-
ticle dispersion exponent γx sharply decreases to
1.4 for ω = 0.11, and then approaches the ballistic
behavior (γx = 2) very fast. Table 1 gives the ex-
ponents corresponding to different values of ω after
10 time-periods.

4. On the Evolution of Patchy
Structures

In the previous sections we observe that
the patchy structures prominently govern the
Lagrangian transport of the passive particle tra-
jectories. However, the following questions remain
unanswered.

• How do such structures evolve?
• What is the nature of their existence?
• Why do certain spatial locations within the do-

main lead to the formation of patches while others
do not?

The answers to these questions are obtained by
relating the patchiness behavior with the geometri-
cal characteristics of the underlying flow.

4.1. Stable and unstable manifolds

We recall that both the flows examined in the
present study have a strong hyperbolic component
in the sense that they contain hyperbolic trajecto-
ries whose stable and unstable manifolds intersect
transversely to give chaotic, hyperbolic invariant
sets. It is well known that the stable and unsta-
ble manifolds of hyperbolic periodic orbits present
in the flow provide the basic geometric templates
for the study of the transport behavior (see e.g.
[Wiggins, 1992]). It is generally not possible to de-
rive analytic expressions for the stable and unstable
manifolds, and thus we resort to numerical compu-
tations. For periodic time-dependence, the most
widely used numerical algorithms involve finding
a small segment of the stable (unstable) manifold
near the saddle point, evolving this segment under
the velocity field, and mapping the flow at every
time-period. However, for quasi-periodic and aperi-
odic time-dependence one can use double time-slice

9In the theory of turbulent dispersion, it is well known that the mean square distance of the particles Dturb(t) at time t varies
like t2 for t� 1. Mezić [1994] uses Wiener’s local ergodic theorem to show initial behavior of D(t) as t2 for the velocity fields
such as the ones discussed in this paper (the interested reader is referred to Theorem 3.5.2 in [Mezić, 1994]).
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Fig. 29. Average x-velocity (shown in color) corresponding to the tracer particles lying on the stable and unstable manifolds
associated with Rayleigh–Bénard flow. The parameters are fixed at A = 1, k = 2, ω = 4.2, and ε = 0.1.
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method. This method involves initializing a small
geometric object surrounding the hyperbolic point
on two different time-slices (ΣT−∆T , and ΣT+∆T ,
respectively), and evolving such an object forward
and backward to the intermediate time-slice ΣT .
We refrain from providing the details of algorithm
to compute the manifolds, and refer the reader to
[Parker & Chua, 1989] for the time-periodic case,
and [Malhotra & Wiggins, 1998] (and references
therein) for the double time-slice method used for
quasi-periodic/aperiodic time-dependence.

In two-dimensional time-dependent velocity
fields, the stable and unstable manifolds intersect
to form lobes on any time-slice and these lobes
act as primary agents of the fluid transport (see
[Wiggins, 1992]).

4.2. Patchiness structures as
geometric constructs

In the cellular transport case, the manifolds are
computed for a reference case, and are shown in
Fig. 29. These stable and unstable manifolds are
computed for up to two time-periods for the sake
of clarity of the intersections, and the adequate
resolution for the manifolds. For periodic time-
dependence, we notice that all lobes occupy the
same area in the fluid domain. In order to gain
an understanding of the behavior of particle tra-
jectories at longer times, we also compute the av-
erage x-velocity for 10 000 points lying on each of
the stable and unstable manifolds. The average x-
velocity is shown in various colors in this diagram.
We observe an interesting behavior of the average
x-velocity spectrum along the manifolds. We no-
tice unusually high magnitude of average x-velocity
values along the boundaries of the secondary lobes
(i.e. the lobes formed by the intersection of primary
lobes). Along the boundaries of primary and sec-
ondary lobes, we also notice a spectrum of colors
which signify the additional higher order manifold
intersections after we compute the additional length
of manifolds beyond ∆T = 2T . On comparing the
location of these secondary and higher order lobes,
we recognize that such locations approximately cor-
respond to the location of the patches in a cell.

We use the double time-slice method to compute
the manifolds for the meandering jet with quasi-
periodic meridional flow (see Fig. 30). We compute
the manifolds for the flow above the central jet only,
because the rest of the flow-picture can be con-
structed from symmetry arguments. In this case,

the manifolds are computed in such a way that the
trajectories re-enter the domain (because of spatial
periodicity in x-direction). This way we are able
to compute the manifolds for ∆T = 10T with rea-
sonable resolution. For the sake of clarity we show
the stable and unstable manifolds separately. Once
again, we calculate the average x-velocity spectrum
for 10 000 points along the manifolds. It is easy
to discern unusually high average x-velocity val-
ues along the boundaries of secondary lobes. We
can also isolate the boundary of the large patch as
seen earlier in corresponding patchiness plot (see
Fig. 15).

In both the cases described here we notice
that overlapping segments of the lobe area are the
regimes of higher average velocity or patches. Since
such a patchy area lies on two lobes moving in two
different time-directions, and thus this area is capa-
ble of transporting itself along the unstable direc-
tion (t > 0) and the stable direction (t > 0) with
equally high magnitude of x-average velocity.

5. Effect of Molecular Diffusivity

We have thus far seen the effect of periodic/quasi-
periodic time-dependence on the fluid transport
across the boundaries. Under such deterministic
time-dependence (periodic or otherwise), the fluid
transport through lobes dominates for a long time
if the molecular diffusion coefficient of the passive
scalar is small, but in the limit t→∞ the molecu-
lar diffusion would definitely have an impact on the
transport and mixing properties of the fluid parti-
cles. Camassa and Wiggins [1991] provides a cri-
terion which enables us to determine a time-scale
beyond which the molecular diffusion may have sig-
nificant impact on the transport properties. This
states that the fluid transport via lobes would domi-
nate over the molecular diffusion provided the time-
scale for a passive particle to diffuse across a dis-
tance of the order of a turnstile width, Td, is long
compared to the time T for the turnstile to be
mapped across the roll boundary.

Now we address the problem of transport in
the presence of molecular diffusion. Such random
perturbations may be introduced through thermal
or turbulent fluctuations in the velocity field. It
is easy to show that in the Lagrangian description,
a small random process term in the velocity field
(2) is equivalent to the molecular diffusion in the
Eulerian approach (see e.g. a classic review by
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Fig. 30. Average x-velocity (shown in color) corresponding to the points lying on the stable and unstable manifolds associated
with the meandering jet. The jet parameters are fixed at B = 1.2, k = 0.1, c = 0.1, ω = (0.3, π), γ = (0.5, 0.86), δ = (3.5, π),
and ε = 0.1.
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Chandrasekhar [1943], or a recent review by
Crisanti et al. [1991]). The resulting motion of
the tracer particles is described by a generalized
Langevin equation,

ẋ = −∂ψ
∂z

(x, z, t) + ηx(t) ,

ż =
∂ψ

∂x
(x, z, t) + ηz(t) ,

(22)

where ηx(t) and ηz(t) are two homogeneous and
isotropic random processes with Gaussian proba-
bility function of zero mean and the following cor-
relation properties.

〈ηx(t)ηx(t′)〉 = 〈ηz(t)ηz(t′)〉 = 2νδ(t− t′) ,
〈ηx(t)ηz(t

′)〉 = 0 ,
(23)

where ν is the associated molecular diffusity.
Here, we are mainly interested in what hap-

pens to the patchiness structure (both, geometri-
cally as well as probabilistically) in the presence of
small but finite value of ν. For this we consider a
cell filled with 100 × 100 passive tracers which are
uniformly distributed throughout the cell at t = 0.
The cell parameters are fixed at A = 0.5, ε = 0.2,
ω = 4.2, and the passive particles are assumed to
have a molecular diffusion coefficient D = 10−4.
For these values, using the results in [Camassa &
Wiggins, 1991], we can easily show Td ≈ 24T . Thus,
we would expect the molecular diffusion to signifi-
cantly impact the passive scalar transport beyond
24T . This is what we observe in the patchiness
plots. Figure 31 shows the x-average velocity con-
tours for the deterministic and random cases for
three different time-intervals from 25T to 50T . The
main feature which we identify is the presence of a
1:5 resonance band, and a large KAM torus located
in the central part of the cell. A careful compar-
ison of the two diagrams reveals that most of the
patchy structures, which are located at the bound-
ary between the large KAM torus in the center and
the 1:5 resonance band, leak out to the surrounding
area. The particle trajectories, originating inside
these patches, drift towards other nearby trajecto-
ries as a result of random perturbations. These new
trajectories have different patchiness properties due
to inherent spatial inhomogeneities in the velocity
field. These features are most pronounced in the
slice at t = 50T . The main observations are as
follows.

• The patches located at the boundary between the
resonance bands, KAM tori, or other invariant

regions in the phase space erode much faster as
compared with the patches which co-exist in a
dense patchy region. This is because the differ-
ence of the x-average velocity component between
such patches and the surrounding region is much
larger, and the passive tracers (which initially
have large x-average velocity) have to traverse a
very small distance to get onto the trajectories
with almost negligible x-average velocity.
• As these patches erode, at first the external

boundary reaches out to the outside flow, and the
patch diminishes towards the smaller and smaller
core region before completely disappearing into
oblivion.
• The trajectories originating from other patches

can also leap out either to the ambient region or
to other patches, and as a result such patches also
erode, but with a much slower rate.
• At the same time the trajectories originating from

the outside region can also land up in a patchy
region but with much less probability because by
definition the patches are localized regions in the
space.
• We recall that the probability distribution of

cell patchiness is Gaussian even in the presence
of periodic time-dependence, and thus the ad-
dition of white noise does not make any strik-
ing difference. However, the erosion of boundary
patches is evident because of a larger peak near
the zero x-average velocity as a result of random
perturbations.

For the jet transport case, we consider the effect
of random noise in the presence of periodic excita-
tion with ω = 0.3 while fixing other jet parame-
ters to be the same as those considered in Sec. 3.
For εγ = 0.1, and D = 5 × 10−3, using the results
in [Camassa & Wiggins, 1991] we can numerically
obtain Td ≈ 20T . The corresponding patchiness
structure is shown in Fig. 32 for the purely periodic
as well as with random noise added in the veloc-
ity field. In this case we notice the presence of a
cluster of patches above and below the central jet
mainly in the right half of the domain. We notice
that the isolated patches (such as one that are far
away from the central jet) tend to grow smaller in
size, while their boundaries erode as particle trajec-
tories originating in them tend to escape towards
the background flow region of different patchiness
properties. But the patches in the vicinity of the
central jet can also grow in strength and size as
the originating particle trajectories have an equally
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Fig. 31. Patchiness structure for cell-to-cell transport under purely periodic time-dependence (on the left) and with random
perturbations (with ν = 10−4) added in the velocity field. The cell parameters are set at A = 0.5, εγ = 0.2, ω = 4.2, δ = π,
T = 1.496, and dt = 10−3.



Fig. 32. Patchiness structure for jet transport under periodic time-dependence (on the left), and with a random component in the velocity field (on the right). The
jet parameters are the same as Fig. 14 and εγ = 0.2, ω = 0.3, T = 20.94, and dt = 0.01.
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high probability of drifting towards the central jet
region, and thus the associated average x-velocity
values increase.

6. Discussion

We have presented an extensive numerical study
of geometrical and statistical properties of parti-
cle motion in flows representative of two different
classes: Zero-mean velocity and nonzero mean ve-
locity, and introduced a new statistical measure of
nonhomogeneity of a flow that we call dispersion of
patchiness. In the case of zero-mean flows, we have
studied a model of Rayleigh–Bénard convection. In
this case, for larger amplitudes of perturbation the
distribution of average velocities (which is actually
the distribution of the particles normalized by the
mean path traveled) was found to be Gaussian and
the dispersion of patchiness decayed to zero as in-
verse of time, indicating linear in time dispersion
of particles. No indication of anomalous disper-
sion behavior was found, although for smaller values
of the amplitude of time-dependence non-Gaussian
distribution of average velocities was found. In con-
trast, the predominating feature of distributions in
the Bower–Samelson model of the meandering jet
is non-Gaussianity, which is exhibited both in the
existence of peaks in the distribution that corre-
spond to regions of constant average velocity, and
non-Gaussianity of parts of distributions that ap-
pear smooth. The peaks in the distribution cause
Pe2 behavior of the effective diffusivity when diffu-
sion is introduced to the problem. The dispersion
behavior without diffusion can be anomalous, but
the exponent of the anomalous diffusion depends
strongly on parameter values and time-scale of the
study.

We conjecture that for large-scale flows the
patchy distributions observed here are typical.
Even with a small amount of diffusion acting, the
time-scale on which the process becomes truly diffu-
sive is very long. The further study of the structure
of patches is thus necessary. A first step in that di-
rection is taken here. We have related the formation
of patches with the intersection of lobes. The sta-
tistical properties of motion are thus affected by the
purely geometrical interaction of the objects in the
flow. Further, the formation of resonance zones in
the jet region is reflected in the statistics by the for-
mation of a countable number of small peaks in the
distribution. The addition of small diffusive noise

tends to erode the isolated patchy regions much
faster than the patches that are part of a larger
cluster. A further study of how the addition of dif-
fusion affects the structure of patchy regions — how
different patches are mixed in a jet over long time-
intervals — would be very interesting.
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Mezić, I. & Wiggins, S. [1995b] “On the dynamical ori-
gin of asymptotic t2 dispersion of a nondiffusive tracer
in incompressible laminar flows,” Phys. Rev. E52(6),
3215–3217.



Patchiness in Time-Dependent Fluid Flows 1093

Mezić, I., Brady, J. F. & Wiggins, S. [1996] “Maximal
effective diffusivity for time periodic incompressible
fluid flows,” SIAM J. Appl. Math. 56(1), 40–56.

Parker, T. S. & Chua, L. O. [1989] Practical Numeri-
cal Algorithms for Chaotic Systems (Springer-Verlag,
Berlin).

Pasmanter, R. [1991] “Anomalous diffusion and Patch-
iness generated by Lagrangian chaos in shallow tidal
flows,” Phys. Fluids 3(5), 1441.

Pasmanter, R. [1988] “Anomalous diffusion and anoma-
lous stretching in vortical flows,” Fluid Dyn. Res. 3,
320–326.

Samelson, R. M. [1992] “Fluid exchange across a mean-
dering jet,” J. Phys. Oceanogr. 22(4), 431–440.

Shlesinger, M. F., Zaslavsky, G. M. & Frisch, U. (eds.)
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