Stephen D. SimpsonUniversity of Bristol | UB · School of Biological Sciences
Stephen D. Simpson
BSc MRes PhD
About
177
Publications
102,955
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,631
Citations
Introduction
Additional affiliations
August 2012 - present
Publications
Publications (177)
Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise...
European continental shelf seas have experienced intense warming over the past 30 years1. In the North Sea, fish have been comprehensively monitored throughout this period and resulting data provide a unique record of changes in distribution and abundance in response to climate change2, 3. We use these data to demonstrate the remarkable power of ge...
Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognized as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thresholds, communication, movement...
Climate change affects marine biological processes from genetic to ecosystem levels [1-3]. Recent warming in the northeast Atlantic [4, 5] has caused distributional shifts in some fish species along latitudinal and depth gradients [6, 7], but such changes, as predicted by climate envelope models [8], may often be prevented because population moveme...
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hea...
Sound is a valuable cue in the marine environment that can inform animals about habitat location and community composition. Indeed, sound is often used for orientation and navigation by larval reef fishes during settlement. However, despite sound’s role in the early life of reef fishes, whether post-settlement reef fishes use ambient soundscapes to...
The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges—such as CO2-induced aquatic acidification and fluctuating oxygen availability—may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute...
Animals are expected to respond flexibly to changing circumstances, with multimodal signalling providing potential plasticity in social interactions. While numerous studies have documented context-dependent behavioural trade-offs in terrestrial species, far less work has considered such decision-making in fish, especially in natural conditions. Cor...
Passive acoustic monitoring can offer insights into the state of coral reef ecosystems at low-costs and over extended temporal periods. Comparison of whole soundscape properties can rapidly deliver broad insights from acoustic data, in contrast to the more detailed but time-consuming analysis of individual bioacoustic signals. However, a lack of ef...
Many animals use camouflage to avoid detection by others, yet even the most inconspicuous objects become detectable against the background when moving1,2. One way to reduce detection while moving would be to 'hide' behind the movements of objects or other animals3. Here, we demonstrate experimentally that a common marine predator, the trumpetfish (...
Recruitment of coral larvae on reefs is crucial for individual survival and ecosystem integrity alike. Coral larvae can detect and respond to a wide range of biotic and abiotic cues, including acoustic cues, to locate suitable sites for settlement and metamorphosis. However, the acoustic ecology of coral larvae, including how they perceive auditory...
Building back coral reefs requires limiting greenhouse gas emissions, limiting local threats, and active restoration. Vessel noise pollution is a widespread threat acting at a local level impacting a broad range of species from cetaceans to cephalopods. Ultimate consequences of noise pollution include death due to injury or predation, failure to de...
Both sharks and humans present a potentially lethal threat to mesopredatory fishes in coral reef systems, with implications for both population dynamics and the role of mesopredatory fishes in reef ecosystems. This study quantifies the antipredator behaviours mesopredatory fishes exhibit towards the presence of large coral reef carnivores and compa...
Recreational SCUBA diving is widespread and increasing on coral reefs worldwide. Standard open-circuit SCUBA equipment is inherently noisy and, by seeking out areas of high biodiversity, divers inadvertently expose reef communities to an intrusive source of anthropogenic noise. Currently, little is known about SCUBA noise as an acoustic stressor, a...
In highly modified coastal environments, such as commercial harbours, the installation of artificial habitats has garnered support as a means of enhancing local biological recruitment and connectivity. The success of these measures depends largely on the patterns of species colonisation. Using post-installation monitoring data, we compared the comp...
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysi...
Within the set of risk factors that compromise the conservation of marine biodiversity, one of the least understood concerns is the noise produced by human operations at sea and from land. Many aspects of how noise and other forms of energy may impact the natural balance of the oceans are still unstudied. Substantial attention has been devoted in t...
Using analysis of field survey size-at-age data, we examine responses of European plaice (Pleuronectes platessa) to spatial differences in environmental variables in the North Sea.
Using available samples of plaice aged 1–7, northern and southern migrating groups of males and females grew differently. However, length-at-age growth patterns were no...
Demand for marine fisheries is rising despite global impacts on the productive capacity of wild fish stocks due to overfishing, habitat loss, and global warming. Fisheries enhancement programs—aimed at augmenting stocks by releasing juveniles into the wild—are expected to play an increasingly important auxiliary role in addressing capture-based fis...
Historically, ecological monitoring of marine habitats has primarily relied on labour-intensive, non-automated survey methods. The field of passive acoustic monitoring (PAM) has demonstrated the potential of this practice to automate surveying in marine habitats. This has primarily been through the use of ‘ecoacoustic indices’ to quantify attribute...
Anthropogenic noise impacts are pervasive across taxa, ecosystems and the world. Here, we experimentally test the hypothesis that protecting vulnerable habitats from noise pollution can improve animal reproductive success. Using a season-long field manipulation with an established model system on the Great Barrier Reef, we demonstrate that limiting...
Microplastics (<1 mm) are ubiquitous in our oceans and widely acknowledged as concerning contaminants due to the multi-faceted threats they exert on marine organisms and ecosystems. Anthozoans, including sea anemones and corals, are particularly at risk of microplastic uptake due to their proximity to the coastline, non-selective feeding mechanisms...
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2-1 kPa CO2 (2,000 - 10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the...
Passive acoustic monitoring (PAM) involves recording the sounds of animals and environments for research and conservation. PAM is used in a range of contexts across terrestrial, marine and freshwater environments. However, financial constraints limit applications within aquatic environments; these costs include the high cost of submersible acoustic...
Pantropical degradation of coral reefs is prompting considerable investment in their active restoration. However, current measures of restoration success are based largely on coral cover, which does not fully reflect ecosystem function or reef health.
Soundscapes are an important aspect of reef health; loud and diverse soundscapes guide the recruit...
Determining influences of predation and competition on community dynamics is particularly challenging in coral reef systems where interspecific interactions between many predator and prey species play out in patchy landscapes. We used ~1000 stereo-baited remote underwater video deployments (stereo-BRUVs) to assess the relative abundance and analyse...
Underwater passive acoustic monitoring (PAM) is of growing importance for monitoring the health of aquatic environments. Standard practices use expensive hydrophones to sample soundscapes. They must either be linked to surface recording rigs or use autonomous instrumentation which comes at a premium cost. Although citizen science projects could be...
Best Practice Guide for Underwater Particle Motion Measurement for Biological Applications
Inshore fisheries are an important source of employment and income across Europe. However, their sustainability and management efficacy are relatively understudied, particularly in a multispecies context. Management of these data-limited fisheries can be informed by assessments of standardized catch and landings per unit effort (CPUE and LPUE) data...
Fish in coastal ecosystems can be exposed to acute variations in CO 2 that can approach 1 kPa CO 2 (10,000 μatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO 2 (blood and tissue acidosis); however, studies about the sp...
Acoustic pollution in aquatic environments has increased with adverse effects on many aquatic organisms. However, little work has been done considering the effects of the vibratory component of acoustic stimuli, which can be transmitted in the substrate and propagated into the aquatic medium. Benthic marine organisms, including many invertebrates,...
Climate change causes warming, decreased O 2 , and increased CO 2 in marine systems and responses of organisms will depend on interactive effects between these factors. We provide the first experimental assessment of the interactive effects of warming (14 to 22°C), reduced O 2 (~3 – 21 kPa O 2 ), and increased CO 2 (~400 or ~1000 μatm ambient CO 2...
Climate change-driven alterations in storm frequency and intensity threaten the wellbeing of billions of people who depend on fisheries for food security and livelihoods. Weather conditions shape vulnerability to both loss of life and reduced fishing opportunities through their influence on fishers' daily participation decisions. The trade-off betw...
An anthropogenic cacophony
Sound travels faster and farther in water than in air. Over evolutionary time, many marine organisms have come to rely on sound production, transmission, and reception for key aspects of their lives. These important behaviors are threatened by an increasing cacophony in the marine environment as human-produced sounds have...
Abstract The idea that the presence of sharks impacts the behavior of mesopredatory reef fishes is controversial and lacks clear evidence at reef‐wide scales. We compared the abundance and behavior of these reef fishes in response to the presence of reef sharks using Baited Remote Underwater Video System (BRUVS) deployments in two adjacent reef sys...
Climate change is impacting fisheries globally, posing both risks and opportunities to those dependent on marine resources. Understanding how fishers perceive climate change, and what factors shape these perceptions, can provide insights into behavioural intentions and support required for climate change focused strategies and management. This stud...
Anthropogenic noise is a pollutant of global concern that has been shown to have a wide range of detrimental effects on multiple taxa. However, most noise studies to-date consider only overall population means, ignoring the potential for intraspecific variation in responses. Here, we used field experiments on Australia's Great Barrier Reef to asses...
Collective movement is critical to the survival of some animals. Despite substantial progress in understanding animal collectives such as fish shoals and bird flocks, it is unknown how collective behaviour is affected by changes in multiple environmental conditions that can interact as stressors. Using a fully factorial repeated-measures design, we...
Projecting the future effects of climate change on marine fished populations can help prepare the fishing industry and management systems for resulting ecological, social and economic changes. Generating projections using multiple climate scenarios can provide valuable insights for fisheries stakeholders regarding uncertainty arising from future cl...
Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigati...
Large‐scale and long‐term changes in fish abundance and distribution in response to climate change have been simulated using both statistical and process‐based models. However, national and regional fisheries management requires also shorter term projections on smaller spatial scales, and these need to be validated against fisheries data. A 26‐year...
Marine environments have increased in temperature by an average of 1°C since pre-industrial (1850) times [1]. Given that species ranges are closely allied to physiological thermal tolerances in marine organisms [2], it may therefore be expected that ocean warming would lead to abundance increases at poleward side of ranges and abundance declines to...
Anthropogenic noise is an emergent ecological pollutant in both terrestrial and aquatic habitats. Human population growth, urbanisation, resource extraction, transport and motorised recreation lead to elevated noise that affects animal behaviour and physiology, impacting individual fitness. Currently, we have a poor mechanistic understanding of the...
Predators can exert strong ecological effects on their prey either via consumption or by altering their behaviour and morphology. In marine systems, predators and their prey co‐occur in a three‐dimensional environment, but to date predator–prey studies have largely focussed on behaviours of prey on horizontal (distance from shelter) rather than ver...
Coral reefs worldwide are increasingly damaged by anthropogenic stressors, necessitating novel approaches for their management. Maintaining healthy fish communities counteracts reef degradation, but degraded reefs smell and sound less attractive to settlement-stage fishes than their healthy states. Here, using a six-week field experiment, we demons...
Global environmental change is increasing hypoxia in aquatic ecosystems. During hypoxic events, bacterial respiration causes an increase in carbon dioxide (CO2) while oxygen (O2) declines. This is rarely accounted for when assessing hypoxia tolerances of aquatic organisms. We investigated the impact of environmentally realistic increases in CO2 on...
Coral reefs are exceptionally biodiverse and human dependence on their ecosystem services is high. Reefs experience significant direct and indirect anthropogenic pressures, and provide a sensitive indicator of coastal ocean health, climate change, and ocean acidification, with associated implications for society. Monitoring coral reef status and tr...
Anthropogenic noise is a recognized global pollutant, affecting a wide range of nonhuman animals. However, most research considers only whether noise pollution has an impact, ignoring that individuals within a species or population exhibit substantial variation in responses to stress. Here, we first outline how intrinsic characteristics (e.g., body...
Harmful algae can cause death in fish, shellfish, marine mammals, and humans, via their toxins or from effects associated with their sheer quantity. There are many species, which cause a variety of problems around north-west Europe, and the frequency and distribution of algal blooms have altered in the recent past. Species distribution modelling wa...
Although the behavior of most organisms evolves in response to harvest, teleost fishes in marine systems have remained susceptible to the same basic fishing techniques of hook and lines and nets for millennia. We argue that this has occurred because these techniques circumvent the evolutionary arms race that exists between all other non-human marin...
Anthropogenic noise can negatively impact many taxa worldwide. It is possible that in noisy, high-disturbance environments, the range and severity of impacts could diminish over time, but the influence of previous disturbance remains untested in natural conditions. This study demonstrates the effects of motorboat noise on the physiology of an endem...
To view without paywall: https://rdcu.be/15N5
Significance
Climate change is causing widespread damage to the world’s tropical coral reefs, via increases in cyclones and mass bleaching. Healthy populations of reef fishes facilitate recovery from such events, and recruitment of juvenile fish is influenced by acoustic cues that guide larval orientation, habitat selection, and settlement to reefs...
Oceans of the future are predicted to be more acidic and noisier, particularly along the productive coastal fringe. This study examined the independent and combined effects of short-term exposure to elevated CO2and boat noise on the predator-prey interactions of a pair of common coral reef fishes (Pomacentrus wardiand its predator,Pseudochromis fus...
Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite...
Human noise pollution has increased markedly since the start of industrialization and there is international concern about how this may impact wildlife. Here we determined whether real motorboat noise affected the behavior, space use and escape response of a juvenile damselfish (Pomacentrus wardi) in the wild, and explored whether fish respond effe...