Stephen Karabyo Balinandi

Stephen Karabyo Balinandi
Uganda Virus Research Institute · Department of Emerging and Re-emerging zoonotic infections

About

137
Publications
8,304
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,752
Citations

Publications

Publications (137)
Article
Full-text available
Morphological abnormalities in ticks seem to be rare phenomena in nature, and are underreported in Africa. In this article, we describe general and local anomalies in two Amblyomma lepidum females and one Rhipicephalus decoloratus female collected from cattle in Moroto and Kasese districts, Uganda. One A. lepidum specimen displayed metagynander gyn...
Article
Full-text available
Background: Crimean-Congo hemorrhagic fever (CCHF) is the most geographically widespread tick-borne viral infection. Outbreaks of CCHF in sub-Saharan Africa are largely undetected and thus under-reported. On November 9, 2015, the National Viral Hemorrhagic Fever Laboratory at the Uganda Virus Research Institute received an alert for a suspect VHF...
Article
Full-text available
Introduction On 17 September 2015, Buliisa District Health Office reported multiple deaths due to haemorrhage to the Uganda Ministry of Health. We conducted an investigation to verify the existence of an outbreak and to identify the disease nature, mode of transmission and risk factors. Methods We defined a suspected case as onset of hematemesis b...
Article
Full-text available
Background: Uganda has reported five (5) Ebola virus disease outbreaks and three (3) Marburg virus disease outbreaks from 2000 to 2016. Peoples' knowledge and attitude towards Ebola and Marburg virus disease impact on control and prevention measures especially during outbreaks. We describe knowledge and attitude towards Ebola and Marburg virus out...
Data
Questionnaire that was used to collect quantitative data. (PDF)
Data
This picture shows proportional piling technique where participants used 100 grains of beans to distribute them according to what they think is most important in transmitting Ebola Virus disease. Words are written in the local language, Luganda. (TIF)
Data
The picture shows pairwise ranking technique where participants listed and compared the possible causes of filovirus outbreaks among themselves to come up with a rank of the most important cause. Causes were listed in both rows and columns in the local language. (TIF)
Data
This picture shows proportional piling of 100 grains of beans to determine which gender is affected most by filovirus outbreaks. (TIF)
Data
The Receiver Operating Curve(ROC) that was used to assess the model for predictors of knowledge towards Ebola and Marburg virus diseases. (TIF)
Data
This is a picture showing how participants in one of the FGDs ranked the most important clinical signs of Ebola Virus disease. The clinical signs are written in one of the local languages in Uganda, Luganda. (TIF)
Data
Results of pairwise ranking technique applied on risk factors/causes of Ebola and Marburg virus diseases. (DOCX)
Data
Focused group discussion guide that was used to collect qualitative data. (PDF)
Data
Themes and categories generated from focused group discussions by conventional content analysis technique about People’s knowledge and attitude towards Ebola and Marburg virus diseases. (DOCX)
Data
An alternative model to the logistic regression model if no categorisation of knowledge is done. The predictors of knowledge score are the same as those in the logistic regression. (XLSX)
Article
Full-text available
In September 2014, a single fatal case of Marburg virus was identified in a healthcare worker in Kampala, Uganda. The source of infection was not identified, and no secondary cases were identified. We describe the rapid identification, laboratory diagnosis, and case investigation of the third Marburg virus outbreak in Uganda.
Article
Full-text available
On March 9, 2016, a male butcher from Kabale District, Uganda, aged 45 years, reported to the Kabale Regional Referral Hospital with fever, fatigue, and headache associated with black tarry stools and bleeding from the nose. One day later, a student aged 16 years from a different sub-county in Kabale District developed similar symptoms and was admi...
Article
Full-text available
In October 2012, a cluster of illnesses and deaths was reported in Uganda and was confirmed to be an outbreak of Marburg virus disease (MVD). Patients meeting the case criteria were interviewed using a standard investigation form, and blood specimens were tested for evidence of acute or recent Marburg virus infection by reverse transcription-polyme...
Article
Full-text available
In August 2012, a wildlife biologist became ill immediately following a 6-wk field trip to collect bats and rodents in South Sudan and Uganda. After returning to the US, the biologist was admitted to the hospital with multiple symptoms including fever, malaise, headache, generalized myalgia and arthralgia, stiffness in the neck, and sore throat. So...
Article
Full-text available
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a...
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
Photographs taken during August 2008–September 2009 of bat extermination efforts at Kitaka Mine, and table showing demographic characteristics of bats captured during a Marburg hemorrhagic fever outbreak investigation at the mine in November 2012, Uganda.
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Data
##Assembly-Data-START## Sequencing Technology :: Sanger dideoxy sequencing ##Assembly-Data-END##
Article
Full-text available
More than a decade after infection with the Gulu strain of Sudan Ebola virus, persons in Uganda were found to have persistent immune responses. To the Editor: Ebola virus is a highly virulent emerging pathogen and a causative agent of viral hemorrhagic fever.(1) Studies of the pathogenesis of Ebola virus infection in humans have indicated that reco...