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Critique of Stepwise Multiple Linear 
Regression for the Extraction of Leaf 
Biochemistry Information from Leaf 
Reflectance Data 

Y. L. Grossman, S. L. Ustin,* S. Jacquemoud,* E. W. Sanderson,* 
G. Schmuck, t and J. Verdeboutt 

T h i s  study examined the use of stepwise multiple linear 
regression to quantify leaf carbon, nitrogen, lignin, cellu- 
lose, dry weight, and water compositions from leaf level 
reflectance (R). Two fresh leaf and one dry leaf datasets 
containing a broad range of native and cultivated plant 
species were examined using unconstrained stepwise mul- 
tiple linear regression and constrained regression with 
wavelengths reported from other leaf level studies and 
wavelengths derived from chemical spectroscopy. Al- 
though stepwise multiple linear regression explained large 
amounts of the variation in the chemical data, the bands 
selected were not related to known absorption bands, 
varied among datasets and expression bases for the chemi- 
cal [concentration (g g-1) or content (g m-2)], did not 
correspond to bands selected in other studies, and were 
sensitive to the samples entered into the regression. Step- 
wise multiple regression using artificially constructed da- 
tasets that randomized the association between nitrogen 
concentration and reflectance spectra produced coeffi- 
cients of determination (R2"s) between 0.41 and 0.82 for 
first and second derivative log(1/R) spectra. The R2"s 
for correctly-paired nitrogen data and first and second 
derivative log(1/R) only exceeded the average random- 
ized R2"s by O. 02-0.42. Replication of this randomization 
experiment on a larger dry ground leaf data set from the 
Harvard Forest showed the same trends but lower R2"s. 
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All of these results suggest caution in the use of stepwise 
multiple linear regression on fresh leaf reflectance spectra. 
Band selection does not appear to be based upon the absorp- 
tion characteristics of the chemical being examined. 

INTRODUCTION 

The detection of biologically important compounds in 
plant canopies at regional scales may become possible 
using airborne sensors with high spectral and spatial 
resolution (Curran, 1989; ACCP, 1994). The first step 
in developing techniques to detect these compounds in 
remotely sensed data is to evaluate laboratory methods 
for extracting biochemical information from fresh leaves. 
Laboratory-based statistical techniques known as near- 
infrared spectroscopy (NIRS) protocols, have been de- 
veloped and used extensively for determining protein, 
carbohydrate, and other biochemical contents from 
dried, ground agricultural and food products (Williams 
and Norris, 1987; Card et al., 1988; Marten et al., 1989; 
Wessman, 1990). The NIRS protocols use stepwise mul- 
tiple linear regression to develop a calibration equation 
by selecting a small number of narrow band reflectances 
that explain a large proportion of the variation in bio- 
chemical content (Williams and Norris, 1987; Marten 
et al., 1989). Frequently, derivative transformations of 
the reflectance data provide the best explanation of the 
variation (Hruschka, 1987). These measurements show 
a high level of reliability and reproducibility when used 
under carefully controlled conditions. In fact, NIRS 
methods are now used by many labs in place of analytical 
chemical techniques to determine chemical composition 
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of dried ground samples (Williams and Norris, 1987; 
Marten et al., 1989). The NIRS approach has been 
extended to dried ground plant materials to measure 
nitrogen, lignin, and other biochemical contents with 
the goal of developing remote sensing applications (Card 
et al., 1988; Peterson et al., 1988; Wessman et al., 1988; 
McLellan et al., 1991). Bolster et al. (1996), however, 
found stepwise multiple regression did not perform as 
well on dried green foliage samples as the full spectrum 
calibration method, partial least squares. 

The extension of NIRS type protocols to intact fresh 
leaves may prove difficult. Two types of difficulties arise: 
1) The NIRS protocols have been developed and vali- 
dated on uniformly ground, uniformly packed, optically 
thick layers of dried, ground material whereas, for use 
with spaceborne sensors, we wish to determine bio- 
chemical information from intact fresh leaves, and 2) 
the spectrum of water dominates fresh leaf reflectance, 
potentially masking the reflectance features detected in 
dry material (Gates, 1970; Tucker and Garratt, 1977; 
Curran, 1989; Elvidge, 1990). Recent studies on reflec- 
tance properties of fresh leaves have used stepwise 
multiple regression to select wavelengths that correlate 
with leaf biochemistry (Curran et al., 1992; ACCP, 
1994). Johnson and Billow (1996) examined Douglas 
fir needles that were grown under various fertilization 
treatments and found that the first derivative of the 
fresh leaf spectra was strongly correlated with total 
nitrogen concentration. Yoder and Pettigrew-Crosby 
(1996) also found first derivative spectra were the best 
predictors for nitrogen and chlorophyll for bigleaf maple 
grown under three fertilization treatments. Jacquemoud 
et al. (1995) determined that stepwise multiple regres- 
sion of dried leaf and optically thick sample spectra gave 
higher correlations than did fresh leaves for nitrogen. 
Curran et al. (1992) examined fresh leaves of Ama- 
ranthus and concluded that spectral overlaps between 
foliar biochemicals needed to be considered to obtain 
accurate estimates of concentration. 

In this study we used species-diverse sets of intact 
fresh and dry leaves to examine the relationship between 
chemical and spectral characteristics. We have exam- 
ined the use of unconstrained and constrained stepwise 
multiple linear regressions to predict carbon, nitrogen, 
lignin, cellulose, water, and dry weight composition 
from infrared reflectance. Several data transformations 
were examined to determine which explains the greatest 
amount of the variation in the chemical data. To test 
for spurious correlations, we developed an empirical 
test to estimate the "baseline" explanation of the varia- 
tion when there is no statistical relationship between 
the chemical composition and reflectance spectra. The 
consistency of the wavelengths selected by stepwise 
multiple linear regression to changes in dataset composi- 
tion was tested by running regressions on five subsets 
of the one dataset. 

Table 1. Spectral and Biochemical Analyses Were 
Conducted on the Following Plant Species Collected 
at Jasper Ridge Biological Preserve, Stanford University, 
Stanford, California (a) and at the Joint Research 
Centre (JRC), Ispra, Italy (b) 

(a) Jasper Ridge Species 

Acer macrophyUum 
Aesculus californica 
Arbutus menziesii 
Dirca occidentalis 
Eriodictyon californicum 
Heteromeles arbutifidia 
Ludwigia pacifica 
Prunus ilicifolia 

Quercus agrifolia 
Quercus kelloggii 
Quercus lobata 
Typha angustifolia 
Umbellularia californica 
Wyethia s p p  

Xanthium strumarium 

(b) Joint Research Centre Species 
Acer pseudoplatanus Musa ensete 
Alnus glutinosa Oryza sativa 
Armeniaca vulgaris Phleum pratense 
Bambusa acundinacea Phragmites ccnnmunis 
Beta vulgaris Platanus acerifolia 
Betula alba Populus canadenis 
Brassica oleracea Populus tremula 
Castanea sativa Prunus laurocerasus 
Chamaerops humilis Prunus serotina 
Corylus avellana Quercus pubescens 
Fagus sylvatica Quercus rubra 
Ficus carica Robinia pseudoacacia 
Fraxinus excelsior Salix alba 
GIycine max Salvia officinalis 
Hedera helix Solanum tuberosum 
Helianthus annuus Sorghum halepense 
Iris germanica Tilia platyphylla 
Juglans regia Trifidium pratense 
Lactuca sativa Ulmus glabra 
Laurus nobilis Urtica dioica 
Lycopersicon esculentum Vitis silvestris 
Medicago sativa Vitis vinifera 
Morus alba Zea mays 

METHODS 

Study Sites 
Spectral and biochemical data were obtained at two 
locations: Jasper Ridge Biological Preserve, Stanford 
University, Stanford, California, and the Joint Research 
Centre (JRC), Ispra, Italy. Fifteen native plant species 
were collected from several coastal California plant com- 
munities at Jasper Ridge (Table la). Forty-six plant 
species, including native and cultivated species, were 
collected at JRC (Table lb). 

Jasper Ridge Biological Preserve 
At Jasper Ridge, multiple collections of leaf samples 
were made in June, September, and December 1992 
and May 1993. Approximately 10 replicate leaf samples 
were collected from each plant for spectral analysis. 
One leaf disk (3.5 cm diameter) was punched from each 
leaf, weighed, placed into a sample holder against a 
quartz lens, and backed with a black background for 
reflectance measurements. Reflectance measurements 
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were made with a NIRSystems Model 6500 spectropho- 
tometer (NIRSystems Inc., Silver Spring, Maryland) 
from 400 nm to 2498 nm at 2-nm intervals with a full 
width-half maximum slit width of 10 nm. This study only 
uses the reflectance measurements from the infrared, 
between 800 nm and 2498 nm. All spectra taken from 
leaves of one plant were averaged. 

Following reflectance measurements, leaf disks 
were wrapped in aluminum foil, frozen in liquid nitro- 
gen, lyophilized, reweighed, and electronically scanned 
for area measurement. The difference in weight be- 
tween fresh and dried sample was attributed to water 
content. An additional 15-20 leaves (bulk samples) of 
each plant species were wrapped in aluminum foil and 
frozen in liquid nitrogen for later biochemical analysis. 
The samples were stored on dry ice during transport, 
lyophilized, and ground through a 1-~m screen using a 
ball mill grinder. Leaf powders were stored desiccated 
at - 7 0 ° C  until chemical analyses were performed. 

A subset of the lyophilized bulk samples was sent 
to the laboratory of Dr. John Aber, University of New 
Hamphire, for biochemical analysis. Total carbon and 
nitrogen were determined with a Perkin-Elmer 2400 
CHN Elemental Analyzer (Norwalk, Connecticut). Cel- 
lulose and lignin were determined by proximate analy- 
sis, a technique of sequential extractions in dichloro- 
methane, water, and sulfuric acid. The sulfuric acid 
fraction represents cellulose and the residue represents 
lignin (Eft]and, 1977). 

Joint Research Centre (JRC) 
Leaf samples were collected in the vicinity of the Joint 
Research Centre (JRC) during the summer of 1993 
(Jacquemoud et al., 1995). Five replicate leaf samples 
were collected from each plant for spectral analysis. 
Reflectance measurements were made with a Perkin- 
Elmer Lambda 19 spectrophotometer (Norwalk, Con- 
necticut) equipped with an integrating sphere. Measure- 
ments were made on fresh and dried leaves from 400 
nm to 2500 nm at 1-nm intervals, although only data 
from the infrared portion of the spectrum, at 2-nm 
intervals were used in this study to match the Jasper 
Ridge sample interval. Spectral resolution varied from 
1-2 nm in the near-infrared to 4-5 nm in the mid- 
infrared. Reflectance spectra from five leaves were aver- 
aged for each sample spectrum. Sufficient quantities of 
fresh leaves were collected to obtain at least 25 g of 
dry leaf material. Biochemical analyses were performed 
at the Centre de Recherches Agronomiques, Libramont, 
Belgium, as described in Jacquemoud et al. (1995). 

Statistical Manipulations 
Leaf reflectance measurements were reported as log(1 / 
reflectance), hereafter identified as log(1/R). Smoothed 
first derivatives of log(1/R) spectra were produced by 
taking the difference between log(1 / R) values separated 

by 8 nm and then performing a five-channel running 
average (Johnson and Billow, 1996). Second derivatives 
of log(1 / R) spectra were obtained by taking the differ- 
ence between first derivative values separated by 2 nm. 
Unconstrained stepwise multiple regression was used 
to determine which six or fewer regressors explained 
the largest amount of variation in the chemical data. To 
add or retain a regressor, the partial F statistic must have 
been significant at the 0.15 level or less. Constrained 
regressions for nitrogen concentrations were performed 
using wavelengths identified in other studies (Table 8). 
Regressions were performed using the reflectance input 
[first or second derivative log(1/R)] reported by each 
study. Regression was also performed using wavelengths 
suggested by theoretical studies based on known absorp- 
tion features for nitrogen, lignin, and water (Table 9; 
Curran, 1989). 

To estimate the "baseline" coefficient of determina- 
tion (i.e., the coefficient of determination if there were 
no linear relationship between reflectance and biochem- 
istry), 50 randomized datasets containing nitrogen con- 
centration and content versus log(1 /R), first-derivative, 
and second-derivative spectra were prepared from the 
actual datasets for Jasper Ridge fresh, JRC fresh, and 
JRC dried leaves by randomizing the association be- 
tween the measured nitrogen concentration or content 
and the reflectance spectra. Randomizations were done 
by assigning random numbers to the nitrogen observa- 
tions, sorting by these random numbers, then assigning 
the first nitrogen observation to the first spectrum in 
the actual dataset, the second to the second, and so on. 
These randomized datasets were submitted to stepwise 
multiple linear regression, and the resulting 50 coeffi- 
cients of determination were averaged. 

An additional dataset, provided by Dr. John Aber 
and Dr. Mary Martin (described in Bolster et al., 1996) 
was randomized in the same manner. This dataset con- 
tained nitrogen concentrations and reflectance spectra 
for 186 samples of dried, ground leaves, representing 
14 species from the Harvard Forest, Petersham, Massa- 
chusetts. 

The repeatability of wavelength selection was tested 
by assembling five randomly chosen subsets of 40 sam- 
ples from the 63 samples in the JRC fresh leaf dataset. 
Stepwise multiple linear regressions of nitrogen concen- 
tration versus log(1 / R) spectra were performed on these 
subsets. The wavelengths chosen as the best three re- 
gressors for each subset were compared for consistency 
among the five regressions. All statistical procedures 
were performed using SAS (SAS Institute Inc., Cary, 
North Carolina). 

RESULTS 

Chemistry Data 
The chemistry data for the Jasper Ridge dataset con- 
tained information from 21-34 samples depending on 
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Table 2. Leaf Chemical Concentrations (g g-l) and Contents (g m -2) for the Jasper Ridge Dataset (a) and the Joint 
Research Centre (JRC) Dataset (b) 

Standard 
Mean Deviation Minimum Maximum n 

(a) Jasper Ridge Dataset 
Carbon concentration 0.476 
Nitrogen concentration 0.018 
Cellulose concentration 0.372 
Lignin concentration 0.185 

Carbon content  57 
Nitrogen content  2 
Cellulose content  45 
Lignin content  22 
Dry weight 123 
Water  content  183 

(b) Joint Research Centre Dataset  
Carbon concentration 0.474 
Nitrogen concentration 0.034 
Cellulose concentration 0.197 
Ligniu concentration 0.102 

Carbon content  25 
Nitrogen content  2 
Cellulose content  11 
Lignin content  6 
Dry weight 53 
Water  content  115 

0.021 0.432 0.511 30 
0.009 0.008 0.053 30 
0.086 0.255 0.592 26 
0.031 0.142 0.260 26 

28 14 127 24 
0.8 0.6 4 24 

22 15 99 21 
9 7 38 21 

57 31 256 34 
104 53 552 34 

0.029 0.385 0.523 63 
0.011 0.012 0.059 63 
0.064 0.091 0.372 63 
0.064 0.011 0.275 63 

12 8 67 63 
0.5 0.9 3 63 
7 3 45 63 
6 0.3 30 63 

23 19 135 63 
67 46 405 63 

the chemical, representing 14 dicot and 1 monocot 
species (Table 2a). The chemistry data for the JRC 
dataset contained information from 63 samples, repre- 
senting 37 dicot and 9 monocot species (Table 2b). The 
mean carbon concentrations, 47.6%, Jasper Ridge, and 
47.4%, JRC, were not significantly different (Table 2). 
The mean nitrogen concentration in the Jasper Ridge 
dataset, 1.8%, was significantly (p< 0.001) lower than 
the nitrogen concentration in the JRC dataset, 3.4%, 
although the ranges nearly completely overlapped. The 
higher mean nitrogen concentrations in the JRC dataset 
were due to the large number of cultivated plants, which 
typically have values near or greater than 3%. The mean 
cellulose and lignin concentrations were significantly 
higher in the Jasper Ridge dataset than in the JRC 
dataset, with the ranges overlapping at the lower end 
and the Jasper Ridge values exceeding the JRC values 
at the upper end. The mean specific leaf areas differed 
significantly (8.4 mm2mg -1 and 22.5 mm 2 mg -1 in the 
Jasper Ridge and JRC datasets, respectively). 

Stepwise Multiple Linear Regression 

Unconstrained Regressions 
Stepwise multiple linear regression between 800 nm 
and 2498 nm with a maximum of six regressors was 
performed with log(1 / R)-transformed reflectance values 
and their first and second derivatives as the independent 
variables. In the Jasper Ridge dataset, the second deriva- 
tive regressions explained at least 82% of the variation 
in the chemistry data, and were the best fit regressions 

for all data (Table 3). The first derivative regressions 
for lignin and dry weight content (g m- 2) explained the 
same amount of the variation as the second derivatives. 
The log(1 /R) and first derivative regressions explained 
lower proportions of the variation in all other cases, but 
at least 62% of the variation. Higher explanations of 
variation were obtained by expressing the data on the 
basis of content than by expressing the data on the 
basis of concentration (g g-i) for all regressions except 
cellulose vs. the first derivative of log(1/R) (Table 3). 
When the data were analyzed using unsmoothed deriva- 
tives, the coefficients of determination were slightly 
higher [mean difference of 0.04, and 0.03, respectively 
for first derivative log(1/R), and second derivative 
log(1/R), with the exception of first derivative log(l/ 
R) lignin concentration which was 0.23 higher; Gross- 
man et al., 1994]. 

In most cases in the JRC fresh leaf dataset (Table 
4), the first derivative of log(1/R) explained more varia- 
tion than did log(1/R) or the second derivative of log(1 / 
R). When the data were expressed on a concentration 
basis (g g-i), the first derivative of log(1/R) explained 
the largest proportion of the variation for nitrogen, 
cellulose, and lignin, and the second derivative of log 
(1 /R) explained the largest proportion of the variation 
for carbon. When the data were expressed on a content 
basis, the first derivative of log(1/R) explained the 
largest proportion of the variation for carbon, nitrogen, 
cellulose, and log(1 / R) explained the largest proportion 
of the variation for lignin and dry weight. Log(1 / R) and 
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Table 3. Coefficients of Determination (R ~) and Number of Regressors for Best Fit Stepwise Multiple Linear 
Regression with Six or Fewer Regressors of log(l/R), Smoothed First Derivative of log(l/R), Smoothed Second Derivative 
of log(l/R) versus Chemical Concentrations (g g-l) and Contents (g m-2) of Fresh Leaves in the Jasper Ridge Dataset 

1st 2nd 
Chemical log(l/R) Derivative Derivative 

R 2 # R 2 # R 2 # 

Carbon concentration 0.82 5 0.81 3 0.93 6 

Nitrogen concentration 0.73 5 0.76 6 0.82 6 

Cellulose concentration 0.73 5 0.90 6 0.91 6 

Lignin concentration 0.69 4 0.62 2 0.90 6 

Carbon content  0.92 4 0.96 3 0.99 6 

Nitrogen content  0.83 6 0.82 6 0.97 6 

Cellulose content  0.95 6 0.88 3 0.98 6 

Lignin content 0.90 4 0.95 4 0.95 3 

Dry weight content  0.97 6 0.98 6 0.98 6 

Water  content 0.94 5 0.97 6 0.98 6 

the first derivative both explained 99% of the variation 
for water content. At least 60% of the variation was 
explained for all chemicals except for cellulose and 
lignin concentrations, for which no significant regres- 
sions were found. Higher explanations of variation were 
obtained by expressing the data on the basis of content 
than by expressing the data on the basis of concentration 
for all chemicals except nitrogen (Table 4). 

In the JRC dry leaf dataset (Table 5), the first or 
second derivative of log( l /R)  consistently explained 
more of the variation than did log(i/R).  When the 
data were expressed on a concentration basis, the first 
derivative of log(1 / R) explained the largest proportion 
of the variation for carbon, cellulose, and lignin. The 
first and second derivatives explained equal amounts of 
the variation for nitrogen concentration. When the data 
were expressed on a content basis, the second derivative 
of log(1 / R) explained the largest proportion of the varia- 
tion for carbon, nitrogen, cellulose, lignin, dry weight, 
and water. In one case, only 35% of the variation was 
explained. In all other cases, at least 53% of the variation 

was explained. Higher explanations of variation were 
obtained for all chemicals by expressing the data on the 
basis of concentration than by expressing the data on 
the basis of content (Table 5). 

The wavelengths selected by the unconstrained re- 
gressions depended upon whether the data were ex- 
pressed on the basis of concentration or content (e.g., 
nitrogen, Fig. 1). Over all chemicals analyzed, wave- 
lengths chosen for concentration and content were 
within 10 nm for less than 6% of the comparisons. 

"Baseline" Coefficients of  Determination 
for Unconstrained Regressions 
The largest explanation of variation in nitrogen concen- 
tration and content of the randomized datasets was 
provided by the second derivative of log(1/R) (Table 
6). The mean coefficients of determination ranged from 
57% to 82% of the variation, however individual co- 
efficients of determination were as high as 91%. The 
first derivative and log(l /R) regressions explained 41- 
48% and 4-18% of the variation, respectively. The 

Table 4. Coefficients of Determination (R z) and Number of Regressors for Best Fit Stepwise Multiple Linear 
Regression with Six or Fewer Regressors of log(I/R), Smoothed First Derivative of log(l/R), Smoothed Second Derivative 
of log(l/R) versus Chemical Concentrations (g g-l) and Contents (g m-2) of Fresh Leaves of the JRC Dataset a 

1s t  2 n d  

Chemical log(l/R) Derivative Derivative 

R z # R 2 # R 2 # 

Carbon concentration 0.60 6 0.63 6 0.71 6 
Nitrogen concentration 0.85 6 0.86 6 0.79 6 

Cellulose concentration ns - 0.76 6 0.65 6 
Lignin concentration ns -- 0.77 6 0.63 6 

Carbon content 0.93 6 0.94 6 0.82 6 
Nitrogen content 0.77 6 0.81 6 0.74 6 
Cellulose content 0.69 6 0.85 6 0.76 6 
Lignin content 0.87 6 0.85 6 0.75 6 

Dry weight content  0.94 6 0.93 6 0.80 6 

Water  content 0.99 6 0.99 6 0.98 6 

ns = no significant regression found. 
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Table 5. Coefficients of Determination (R 2) and Number of Regressors for Best Fit Stepwise Multiple Linear 
Regression with Six or Fewer Regressors of log(l/R), Smoothed First Derivative of log(l/R), Smoothed Second Derivative 
of log(l/R) versus Chemical Concentrations (g g-l) and Contents (g m -2) of Dried Leaves of the JRC Dataset 

1st 2nd 

Chemical log(l/R) Derivative Derivative 

R 2 # R 2 # R 2 # 

Carbon concentration 0.68 6 0.77 6 0.71 6 
Nitrogen concentration 0.83 6 0.84 6 0.84 6 
Cellulose concentration 0.81 6 0.89 6 0.82 6 
Lignin concentration 0.63 5 0.80 6 0.73 6 

Carbon content  0.58 6 0.68 6 0.70 6 
Nitrogen content  0.35 6 0.53 6 0.64 6 
Cellulose content  0.57 6 0.62 6 0.68 6 
Lignin content  0.54 6 0.62 6 0.69 6 
Dry weight content  0.59 6 0.68 6 0.70 6 
Water  content  0.59 6 0.69 6 0.70 6 

coefficients of determination were higher for nitrogen 
content than for nitrogen concentration, except for 
log(1 /R) regressions for the JRC fresh leaf dataset. 

Mean coefficients of determination for the Harvard 
Forest dataset were lower than those for the Jasper 
Ridge and JRC datasets, but exhibited the same pattern 
(Table 7). That is, the second derivative of log(1/R) 
explained the greatest amount of variation (9%), the 
first derivative explained an intermediate level (5%), 
and log(l/R) explained the lowest amount (1%). A 
number of factors may have contributed to lower expla- 
nation of variation by random datasets, including the 
greater species homogeneity in the dataset, lower exper- 
imental error due to larger sample numbers, and mea- 
surement factors, such as the use of dry ground uni- 
formly packed leaf samples. 

Constrained Regressions 
Wavelengths selected in other studies. The five sets of 
fixed wavelengths explained 25-44 % of the variation in 
the nitrogen concentrations in the Jasper Ridge dataset, 
14-49% of the variation in the JRC fresh leaf dataset, 
and 30-71% of the variation in the JRC dry leaf data- 
set (Table 8). The coefficients of determination for the 
relationship between measured and predicted nitrogen 
concentration were less than or equal to the average 

Figure 1. Wavelengths selected using log(1 / R), first deriva- 
tive of log(1 / R), and second derivative of log(1 / R) spectra 
vs. nitrogen content and concentration. 
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coefficient of determination for randomized datasets 
(randomized R 2) in 10 of 15 comparisons, up to 0.03 
units greater than the randomized R 2 in two of 15 
comparisons, and between 0.20 and 0.29 units greater 
than the randomized R 2 in three of 15 comparisons. High 
explanatory power for one dataset did not necessarily 
indicate high explanatory power for other datasets. For 
example, although the Johnson and Billow (1996) wave- 
lengths derived from dry Douglas fir needles explained 
62% of the variation in the JRC dry leaf dataset, they 
explained only 25 % of the variation in the Jasper Ridge 
dataset and 32% of the variation in the JRC fresh leaf 
dataset. 

Wavelengths suggested from theoretical studies. Mul- 
tiple linear regressions using wavelengths suggested 
from theoretical studies based on known absorption 
features (Table 9) were inconsistent in the proportion 
of variation explained for nitrogen, lignin, and water, 
which explained from 0% to 94% (Table 10). None of 
the spectral inputs [log(l/R), first derivative log(1/R), 

Table 6. Mean Coefficients of Determination (R 2) for 
Best Fit Stepwise Multiple Linear Regression with Six 
or Fewer Regressors of log(i/R), Smoothed First 
Derivative of log(i/R), Smoothed Second Derivative of log(l/ 
R) versus Nitrogen Concentrations (g g ]) and Contents 
(g m -2) Using 50 Randomized Datasets for Jasper Ridge 
Fresh Leaves, JRC Fresh and Dried Leaves (Summary 
of 900 Regressions) 

Leaf log 1st 2nd 
Type (I/R) Derivative Derivative 

Nitrogen concentration 
Jasper Ridge Fresh 0.08 
JRC Fresh 0.13 
JRC Dry. 0.05 

Nitrogen content  
Jasper Ridge Fresh 0.18 
JRC Fresh 0.04 
JRC Dry 0.13 

0.41 0.75 
0.47 0.60 
0.42 0.57 

0.43 0.82 
0.48 0.65 
0.47 0.62 
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Table 7. Coefficients of Determination (R 2) for Best Fit 
Stepwise Multiple Linear Regression with Six or 
Fewer Regressors of log(l/R), Smoothed First Derivative 
of log(i/R), Smoothed Second Derivative of log(i/R) versus 
Nitrogen Concentrations (g g-l) Using 50 Randomized 
Datasets for Harvard Forest Dried, Ground Leaves 

I st 2nd 
Leaf Type log(1/R) Derivative Derivative 

Harvard Forest Dried, ground 0.01 0.05 0.09 

and second derivative log(1/R)] consistently explained 
the nitrogen or lignin concentrations or contents across 
the three datasets. The results for water content were 
more consistent. 

For example, for nitrogen concentration, the co- 
efficients of determination (R 2) for log(1 / R) and the first 
derivative were higher than the randomized R2's for the 
three datasets, except for Jasper Ridge first derivative, 
which was not significant. The second derivative R2's 
were always lower than the randomized R2's. For nitro- 
gen content, three of the six regressions performed on 
log(1/R) and the first derivative were  not significant, 
two were greater  than the randomized R2's, and one 
was lower. For lignin concentration, two of the log(1 / 
R) regressions had moderate  R2's but  one was not sig- 
nificant, and all of the first derivative RZ's were less than 
0.35. 

The results for water  content  were more consistent, 
with the two water-containing datasets (Jasper Ridge 
and JRC fresh) giving high R2's for log(1/R), first deri- 
vative, and second derivative regressions, but low or 
nonsignificant regressions for the JRC dry leaf dataset 
(Table 10). 

Table 9. Absorption Features of Water, Nitrogen, and 
Lignin from Curran (1989). 

Chemical Wavelength (nm) 

Water 970 
1200 
1400 
1450 
1940 

Nitrogen 1020 
1510 
2060 
2130 
2180 
2300 

Lignin 1120 
1200 
1420 
1450 
1690 
1940 

Comparison of Wavelengths Selected by Regressions 
on Subsets of One Dataset 
The wavelengths chosen by stepwise multiple linear 
regression of l og ( l /R)  for subsets of the JRC fresh 
leaf dataset exactly coincided with those for the entire 
dataset for one subset (subset 4, Fig. 2). The regression 
for the entire dataset explained 49% of the variation in 
nitrogen concentration. The regressions for the subsets 
explained 41-71% of the variation in nitrogen concen- 
tration. For two subsets, only one of six selected wave- 
lengths was within 14 nm of a selected wavelength for 
the entire dataset (subsets 2, 3, Fig. 2). A second se- 
lected wavelength in each of these two datasets was 

Table 8. Descriptive Information and Coefficients of Determination (R 2) for Five Fixed Wavelength Comparisons 
Using Nitrogen Concentrations and Spectra from the Jasper Ridge and JRC Datasets 

CoeJflcient of 
Determination (R 2) 

JRC JRC 
Plant Jasper Fresh Dry n 

Reflectance Material Citation Ridge L e a v e s  Leaves (Calibration) 

Nitrogen 
Concentration 

Range 
(g g-l) 

1st derivative Fresh maple Yoder and 0.33 0.33 0.30 57 
log(l/R) leaves, Pettigrew- 
980,1194,1644, single layer Crosby, 1996 
1676,2274 

1st derivative Dry, ground Bolster 0.44 0.47 0.37 558 
log(l/R) deciduous and et al., 1996 
1928,2044,2140,2156 conifer leaves 

2nd derivative Fresh, stacked Martin and 0.39 0.14 0.71 147 
log(l/R) deciduous and Aber, 1996 
1712,2128,2174 conifer leaves 

1st derivative Fresh, stacked Johnson 0.28 0.49 0.70 87 
log(l/R) Douglas and Billow, 
2156,2208,2338 fir needles 1996 

1st derivative Dry, stacked Johnson 0.25 0.32 0.62 87 
log(l/R) Douglas and Billow, 
1722,2142,2346 fir needles 1996 

0.018-0.040 

0.007-0.028 

0.011-0.021 

0.014-0.025 

0.014-0.025 
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Table 10. Coefficients of Determination (R e ) for 
Regressions of Nitrogen Concentration, Nitrogen 
Content, Lignin Concentration, Lignin Content, and 
Water Content against Known Absorption Bands for 
Compounds Containing These Chemicals" 

CoeJficient of Determination (R e) 
1st 2nd 

log(l/R) Derivative Derivative 

Nitrogen concentration 
Jasper Ridge 0.51 ns 0.40 
JRC- fresh 0.78 0.60 0.26 
JRC- dry 0.78 0.70 0.39 

Nitrogen content 
Jasper Ridge 0.65 ns ns 
JRC- fresh 0.66 0.47 0.28 
JRC- dry ns ns ns 

Lignin concentration 
Jasper Ridge 0.56 ns 0.54 
JRC- fresh ns 0.23 0.21 
JRC- dry 0.32 0.34 0.34 

Lignin content 
Jasper Ridge 0.71 0.78 0.73 
JRC -fresh 0.36 0.40 0.28 
JRC-dry 0.25 0.21 0.27 

Water content 
Jasper Ridge 0.88 0.65 0.94 
JRC-fresh 0.93 0.75 0.85 
JRC - dry 0.29 ns ns 

ns = no  s ign i f i can t  r e g r e s s i o n  found .  

within 56 nm. For the remaining two datasets, the 
selected wavelengths were more than 350 nm away 
from those chosen for the entire dataset. 

DISCUSSION 

Chemistry Data 

The chemical compositions of the leaves in the Jasper 
Ridge and JRC datasets were typical of most plant leaves 
(Table 2). Both datasets included native Mediterranean- 
type plant species, while the JRC dataset also contained 
cultivated species (Table 1). The higher mean specific 
leaf area and cellulose and lignin contents in the Jasper 
Ridge dataset suggest that the mean leaf was more 
xerophytic in this dataset than in the JRC dataset. The 
inclusion of cultivated species in the JRC dataset proba- 
bly accounted for the higher nitrogen concentration 
compared to the Jasper Ridge dataset. 

Stepwise Multiple Linear Regression 

Unconstrained Regressions 
The data transformation that explained the greatest 
proportion of the variation in the chemical composition 
varied with dataset, chemical, and whether the data 
were expressed as concentration or content (Tables 3- 
5). For most chemicals, the first or second derivative 

explained more of the variation than did log(1 / R) (Ta- 
bles 3-5). Similarly, Yoder and Pettigrew-Crosby (1996) 
found that the first derivative of log(1/R) explained 
more of the variation in nitrogen concentration in bigleaf 
maple fresh leaves, and Johnson and Billow (1996) found 
the first and second derivatives explained similar 
amounts of variation in nitrogen concentration in Doug- 
las fir needles. However, the first derivative did not 
explain a significant amount of variation in protein con- 
centration in Amaranthus leaves (Curran et al., 1992). 

For the two fresh leaf datasets, more of the variation 
was explained by expressing the data on a content 
basis than a concentration basis for all chemicals except 
cellulose in the Jasper Ridge dataset and nitrogen in 
the JRC dataset (Tables 3 and 4). This could have 
resulted from the fact that the spectrometer beam 
probes the leaf on an area basis. However, this general- 
ization did not hold true for the dry leaf dataset (Table 
5). In addition, the results of the randomization study 
indicated that this apparent pattern may be partially 
dependent on random processes because the same pat- 
tern occurred in eight out of nine comparisons of nitro- 
gen concentration and content (Table 6). 

In general, the proportions of variation in chemical 
concentrations and contents explained by the regres- 
sions with the highest R2's were somewhat higher in 
the Jasper Ridge dataset than in the JRC fresh leaf 
dataset, possibly due to the smaller number of samples 
in the Jasper Ridge dataset than in the JRC dataset 
(Tables 3 and 4). Lower R2's were generally obtained 
for the JRC dry leaf dataset than for the JRC fresh leaf 
dataset. Similarly, the coefficients of determination for 
dry needle regressions of Douglas fir were slightly infe- 
rior to those for fresh needles (Johnson and Billow, 
1996). However, Jacquemoud et al. (1995), using reflec- 
tance as the input, found higher coefficients of determi- 
nation for dry leaves. 

For all three datasets, the bands selected by step- 
wise multiple linear regressions differed depending 
upon whether log(1/R), first derivative log(1/R), or 
second derivative log(1/R) were used (Fig. 1). Similarly, 

Figure 2. Bands selected by stepwise multiple linear regres- 
sion with three or fewer regressors for log(1 / R) versus nitro- 
gen concentration on the entire JRC fresh leaf dataset and 
five subsets each containing 63% of the samples in the en- 
tire dataset. 
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Jacquemoud et al. (1995) reported that different bands 
were selected for the same chemical in the same leaves 
when the data were examined in reflectance or transmis- 
sion modes. As reported by Curran (1989), selected 
bands rarely corresponded to known features for the 
chemical being examined. In addition, band selection 
was heavily dependent upon the basis on which the 
chemistry was expressed, with selected bands coinciding 
(selection of bands within 10 nm of one another) in less 
than 6% of the paired concentration/content regres- 
sions (Fig. 1). This suggests that band selection by 
stepwise multiple linear regression on intact fresh leaves 
may be sensitive to factors other than the absorption 
characteristics of the chemicals being examined, includ- 
ing scattering due to cell walls and anatomical character- 
istics (Peterson and Hubbard, 1992) and spectral over- 
laps caused by the presence of other biochemicals 
(Curran et al., 1992). 

"Baseline" Coefficients o f  Determination 
The high coefficients of determination obtained for the 
randomized datasets suggest that stepwise multiple lin- 
ear regressions of using log(1/R), first derivative log 
(1/R), and second derivative log(l/R) "explained" a 
high proportion of the variation even when no actual 
relationship existed between the chemical data and the 
reflectance spectra (Table 6). These coefficients of deter- 
mination ranged from 41% to 48% for the first deriva- 
tive and from 57% to 82% for the second derivative of 
log(1 /R) for the three datasets. 

Although the number of wavelengths selected was 
smaller than the number of samples in the datasets, the 
initial number of wavelengths was quite large (850). 
The number of samples in the Jasper Ridge and JRC 
datasets was relatively small, but the JRC dataset is 
similar in size to several recently reported studies on 
fresh leaf reflectance and biochemistry (Johnson and 
Billow, 1996; Yoder and Pettigrew-Crosby, 1996; see 
Table 8). The number of regressors selected for the 
JRC dataset meets the criterion given by Hruschka 
(1987): five to 15 samples for each regression and data 
treatment constant and for any parameter of the data 
treatment, such as wavelength, that is allowed to vary. 
By this criterion, the Jasper Ridge dataset was too small 
to allow the selection of six regressors. However, the 
patterns observed with the Jasper Ridge dataset were 
similar to those observed in the JRC dataset. Use of a 
larger dataset reduced the magnitude of the "baseline" 
correlation, but did not eliminate it (Table 7). 

In any case, when the number of samples is less 
than the number of initial wavelengths, the number of 
independent ways in which the wavelengths can vary 
from sample to sample is limited, a problem termed 
multicollinearity (Martens and Naes, 1987). Stepwise 
multiple regression compresses the data to remove this 
problem, however, the coefficient of determination is 

inflated by this data compression (Rencher and Pun, 
1980; Birth, 1985). Birth (1985) gives a formula to calculate 
the coefficient of determination that can be expected 
when the true correlation is zero. For 850 uncorrelated 
independent variables and 63 samples, this coefficient 
of determination is 0.19. We would expect a higher 
coefficient of determination from stepwise multiple lin- 
ear regression because more than one regressor was 
allowed. The lower values obtained for the log(1/R) 
regressions (Table 6) suggest that some of the indepen- 
dent variables were correlated with others, reducing the 
number of truly independent variables in the regression. 

In the regressions using correctly-paired nitrogen 
concentration and content data and spectra, the first 
or second derivative generally explained the greatest 
amount of the variation [compared to log(i/R)], but 
because the randomized R2's only exceeded the actual 
R2's by 2-42%, we question how the R2's for the first 
and second derivative of log(1 / R) should be interpreted. 
Further caution is suggested since the maximum R 2 
values obtained from randomized runs of second deriva- 
tive log(1 /R) are near values reported in the literature 
as significant relationships between chemistry and re- 
flectance. The nonzero randomized R 2 values suggest 
that to obtain statistical confidence, the "baseline" R 2 for 
randomized data should be established before accepting 
regressions with high R2's as biologically significant. 

Constrained Regressions 
Prior studies have recommended constraining the re- 
gression (ACCP, 1994) by using a priori selected wave- 
lengths. In this study, fitting regressions to the wave- 
lengths identified in five studies of fresh or dried leaf 
material generally did not provide reliable predictions 
of nitrogen concentration (Table 8). We conclude that 
none of these sets of fixed bands provided adequate 
predictive ability across our datasets. 

The results of regressions using wavelengths sug- 
gested by theoretical studies were also inconsistent. 
Some of the coefficients of determination (R 2) for log 
(1/R) and the first derivative log(l/R) regressions on 
nitrogen concentration and content were higher than 
the randomized R2's for the three datasets, but others 
were lower or not significant. All of the R2's for the 
second derivative log(1 / R) were less than the random- 
ized R2's. The R2's for lignin were similarly variable. The 
results for water content were more consistent, with 
the two water-containing datasets (Jasper Ridge and 
JRC fresh) giving high R2's for log(1 / R), first derivative, 
and second derivative regressions, but low or nonsig- 
nificant regressions for the JRC dry leaf dataset. This 
supports the view that, in fresh leaves, water provides 
a stronger signal than nitrogen or lignin (Curran, 1989; 
Elvidge, 1990). 

Additional explanations for the inability of the con- 
strained regressions to consistently relate reflectance 
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spectra to chemical composition in our datasets may be 
the wide range of species diversity and the use of intact 
leaves. Typically, NIRS protocols involve developing 
species-specific relationships for chemistry prediction. 
Sample preparation is also closely monitored for drying, 
particle size, and packing density prior to measurement. 
Following these techniques, Johnson and Billow (1996) 
and Kupiec and Curran (1996) obtained good results 
with monospectific datasets of dried, ground foliage 
samples. Recently, however, Bolster et al. (1996) re- 
ported good stepwise multiple linear regression predic- 
tions from large datasets that included a wide range of 
species, both broadleaf and conifers, and a variety of 
plant material (leaves, stems, roots, etc.). Furthermore, 
the ACCP report (1994) stressed the importance of 
having a calibration dataset that included the range of 
possible chemical variation rather than limiting species 
diversity. With our datasets, it was not possible to test 
these hypotheses for improving model performance by 
restricting analyses to more homogeneous samples. It 
should be kept in mind, however, with respect to remote 
sensing applications, that some environmental heteroge- 
neity is often present within a scene. Although the 
species in the JRC and Jasper Ridge datasets represent 
a wide range of foliar conditions and adaptations, both 
datasets were acquired from commonly occurring plants 
growing within a radius of 1 km of each other. Thus, 
potential remote sensing techniques need to accommo- 
date the range of species variability within regions, even 
if site-specific relationships are to be developed. 

This study was conducted using single leaf layers 
that were not optically thick. Jacquemoud et al. (1995) 
compared reflectance and transmittance on fresh and 
dry individual leaf and stacked (optically thick) fresh 
and dry leaves, using five regressors. They reported that 
the coefficients of determination for single and stacked 
fresh leaf reflectances were higher for optically thick 
samples when protein was analyzed, lower when lignin 
was analyzed, and similar when cellulose and starch 
were analyzed. Because optically thick samples of fresh 
leaves did not give consistently better results than single 
leaves, we conclude that the patterns observed in our 
study cannot be attributed to the use of single leaves 
rather than optically thick leaf stacks. Furthermore, 
Jacquemoud et al. (1994) examined the effect of includ- 
ing different numbers of regressors in the stepwise 
equations. Their results indicate no significant differ- 
ence among these datasets based on the number of 
regressors (up to 10), suggesting that the patterns, within 
the limits of the number of regressors chosen, are not 
significantly affected by overfitting. 

Comparison of Wavelengths Selected by Regressions 
on Subsets of One Dataset 
The effect of changing the sample composition of the 
dataset was tested using 5 subsets of the JRC dataset 

each containing 40 samples (Fig. 2). Due to the limited 
number of samples, only three wavelengths were se- 
lected in order to avoid overfitting (Hruschka, 1987). 
For one of the subsets, the wavelengths exactly coin- 
cided with those selected for the entire dataset. Two 
subsets had one wavelength near a wavelength selected 
for the entire dataset, and two subsets had no wave- 
lengths near those selected for the entire dataset. The 
coefficients of determination for the subsets ranged from 
0.41 to 0.71. These results were similar to those re- 
ported by Jacquemoud et al. (1995), who randomly 
selected two-thirds of the JRC dataset to develop cali- 
bration relationships and tested the regressions on the 
remaining one-third of their data. Their results, the 
means of 50 selections, showed that the coefficients of 
determination on the validation datasets were highly 
variable. Johnson and Billow (1996) reported more con- 
sistent results using subsets containing 14 samples. This 
greater consistency may have resulted from the homoge- 
neity of the dataset, which contained only Douglas fir 
needles. As the JRC dataset was deliberately selected 
to represent a wide range of natural and cultivated 
species, we were not able to able to test this hypothesis. 

CONCLUSION 

Stepwise multiple linear regression relating chemistry 
data and reflectance spectra produced large coefficients 
of determination (R2), particularly when the reflectance 
spectra were expressed as the first or second derivative 
of log(1 / R) (Tables 3-5). Similar high R2's have been 
reported for both fresh and dry leaves in other studies 
(Card et al., 1988; Wessman et al., 1988; Curran, 1989; 
Jacquemoud et al., 1995; Bolster et al., 1996; Dungan 
et al., 1996; Johnson and Billow, 1996; Martin and Aber, 
1996; Yoder and Pettigrew-Crosby, 1996). However, we 
question the meaningfulness of these high R2's due to 
the results of regressions using randomized datasets, 
the lack of correspondence among the bands selected 
by stepwise multiple linear between our datasets and 
those reported in other studies, the dependence of band 
selection on the data used, and the inability of known 
absorption bands to explain the chemical variation in 
our datasets. 

Stepwise multiple linear regressions using artificial 
datasets assembled by randomizing the association be- 
tween nitrogen data and reflectance spectra gave R2's 
of at least 0.41 and as much as 0.82 for the relationship 
between nitrogen concentration and content vs. first 
or second derivative log(1/R) (Table 6). The R2's for 
correctly-paired nitrogen data and first and second de- 
rivative log(1/R) only exceeded the average randomized 
R2's by 0.02-0.42. This suggests that high R2's for step- 
wise multiple linear regression on datasets containing 
substantially fewer samples than initial wavelengths 
must be examined in light of the "'baseline" R2"s for the 
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chemical being examined. Additional caution is advised 
when examining species-diverse datasets containing 
fresh, intact leaf spectra. 

The bands selected by stepwise multiple linear re- 
gression for a given chemical (nitrogen, carbon, lignin, 
etc.) and a given spectral transformation (log(1 /R), first 
derivative, second derivative) did not correspond among 
datasets in this study or with bands selected in other 
studies (Card et al., 1988; Wessman et al., 1988; Curran, 
1989; Jacquemoud et al., 1995; Bolster et al., 1996; 
Dungan et al., 1996; Johnson and Billow, 1996; Martin 
and Aber, 1996; Yoder and Pettigrew-Crosby, 1996). 
Band selection depended on whether the chemical data 
were expressed on a concentration (g g-l) or content 
(g m -2) basis (Fig. 1). For a given chemical, similar 
bands were selected on a concentration or a content 
basis less than 6% of the time. Band selection was also 
very sensitive to the samples included in the dataset 
(Fig. 2). 

Multiple regression using bands identified in other 
studies to explain nitrogen concentration yielded R2's 
that were less than the average R2's for artificially con- 
strutted randomized datasets in eight of 15 tests (Tables 
6 and 8). Multiple regression using bands that represent 
known absorption characteristics for nitrogen and lignin 
were inconsistent, yielding high R2's for some chemicals 
and datasets, but not others (Table 10). The results for 
water were more consistent, giving high R2's for log(1 / 
R), first and second derivative regressions for the fresh 
leaf datasets, and low R2's or nonsignificant regressions 
for the JRC dry leaf dataset. 

All of these results suggest caution in the use of 
stepwise multiple linear regression on fresh leaf reflec- 
tance spectra. Band selection does not appear to be 
based upon the absorption characteristics of the chemi- 
cal being examined. 
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