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16.1 Introduction

Mosaic is a form of art to produce decorative images or patterns out of small components. It requires a great

deal of time and labor and it is often very expensive. Mosaic is, in return, far more durable in time than

painting, so it can be used in places where painting cannot be of practical use, such as floors. Mosaic moreover

allows the realization of light effects that are impossible with other media. The success of the mosaic art form

through the ages is at the origin of large collections in several museums, among them we can cite the “Great

Palace Mosaic Museum” (Istanbul, Turkey) and the “Musée du Bardo” (Tunis, Tunisia).

Recently, questions rise about the virtual conservation and management of collections and their accessi-

bility to experts such as archeologists or art historians, and even to the large public. Requirements concern

facilities

• for cataloging collections and distant consultation, and for intelligent retrieval tools (e.g., the extraction

of objects with a semantic meaning, such as animal or human, in a complex mosaic scene);
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• for virtual conservation (e.g., restoration of tesserae color), reconstruction (e.g., missing patches) and

anastylosis of ancient mosaics.

The aim of this Chapter is to draw an overview of image processing based methods dedicated to the specificities

of mosaic images for applications to restoration and cataloging of ancient mosaics.

16.1.1 Some Historical Facts about Mosaics

The following description only intends to give some basis entries about history of mosaics. And so, it is quite

superficial and partial. Interested readers should consult the numerous books covering the subject, among

them we can cite the following books [11,16,26]. The worldwide web gives also access to very complete lists

of bibliographical references on ancient mosaics (e.g., [44]).

The earliest mosaics were installed as floors or pavements, occasionally as walls. Later, ceilings were also

decorated. Originally, mosaics were used strictly in an architectural context. Mosaicking smaller, portable

items such as panels or portraits is a later development, though there are a few rare instances of items such as

icons from the late Byzantine era. The first mosaics that we know of are from what is now the Middle East.

Temple columns in ancient Babylon (present day Iraq) had thousands of small clay cones pressed into wet

plaster in decorative and geometric patterns. These date from five thousand years ago. From these humble

beginnings, mosaic developed into a major art form. It was the Greeks, in the four centuries BC, who raised

the pebble technique to an art form, with precise geometric patterns and detailed scenes of people and animals.

By 200 BC, specially manufactured pieces “tessera” were being used to give extra detail and range of color to

the work. Using small tesserae, sometimes only a few millimeters in size, meant that mosaics could imitate

paintings. Many of the mosaics preserved at, for example, Pompeii were the work of Greek artists. The

expansion of the Roman Empire took mosaics further afield, although the level of skill and artistry was diluted.

Typically Roman subjects were scenes celebrating their gods, domestic themes and geometric designs.

With the rise of the Byzantine Empire from the 5th century onwards, centered on Byzantium (present day

Istanbul, Turkey), the art form took on new characteristics. These included Eastern influences in style and

the use of special glass tesserae called “smalti”, manufactured in northern Italy, made from thick sheets of

colored glass. Smalti have a rough surface and contain tiny air bubbles. They are sometimes backed with

reflective silver or gold leaf. Whereas Roman mosaics were mostly used as floors, the Byzantines specialized

in covering walls and ceilings. The smalti were ungrouted, allowing light to reflect and refract within the

glass. Also, they were set at slight angles to the wall, so that they caught the light in different ways. The

gold tesserae sparkle as the viewer moves around within the building. Roman images were absorbed into the

typical Christian themes of the Byzantine mosaics, although some work is decorative and some incorporates

portraits of Emperors and Empresses.

In the west of Europe, the Moors brought Islamic mosaic and tile art into the Iberian peninsula in the 8th

century, while elsewhere in the Muslim world, stone, glass and ceramic were all used in mosaics. In contrast

to the figurative representations in Byzantine art, Islamic motifs are mainly geometric. Examples can be seen

in Spain at the Great Mosque at Cordoba, the Alhambra Palace and Meknes in Morocco (Figure 16.4(b)).

In Arabic countries a distinctive decorative style called “zillij” uses purpose-made ceramic shapes that are

further worked by hand to allow them to tessellate (fit together perfectly to cover a surface).

In the rest of Europe, mosaic went into decline throughout the Middle Ages, although some tiling patterns

in abbeys, for example, used mosaic effects. In the 19th century there was a revival of interest, particularly in

the Byzantine style, with buildings such as Westminster Cathedral in London and Sacre-Cœur in Paris. The

“Art Nouveau” movement also embraced mosaic art. In Barcelona, Antoni Gaudı́ worked with Josep Maria

Jujol to produce the stunning ceramic mosaics of the Guell Park in the first two decades of the 20th century.

These used a technique known as trencadis in which tiles (purpose-made and waste tiles) covered surfaces of
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buildings. They also incorporated broken crockery and other found objects, a revolutionary idea in formal art

and architecture.

Mosaic still continue to interest artists but also crafts people because it is a very accessible, non-elitist

form of creativity. The field is rich with new ideas and approaches, and organisations such as the British

Association for Modern Mosaic (BAMM) [2] and the Society of American Mosaic Artists (SAMA) [1] exist

to promote mosaic. As a recent example, we can cite the development of algorithms for computer-aided

generation of mosaic images from a raster image, simulating ancient or modern styles [6].

16.1.2 Mosaics, Images and Digital Applications

Mosaics are made of colored tiles, called tessera or tessella, usually formed in the shape of a cube of materials

separated by a joint of mortar. The earliest known mosaic materials were small cones of clay pressed into

wet plaster. Semi-precious stones such as lapis lazuli and onyx, as well as shells and terra cotta were also

used. As the art developed, glass, ceramic and stone tesserae were the most common materials, along with

pebbles. Modernly, any small singular component can be used: traditional materials, glass or ceramic cast or

cut into tiles, plus plastic, polymer clay (such as Sculpey or Fimo), beads, buttons, bottle caps, pearls, etc.

The physical study of materials used in mosaics continue to be an active research field [10, 17, 38].

Structure characteristics

Mosaics can be built on different natural ground made of soil or rock, or on top of a previous pavement.

The mosaic itself is composed of a variety of foundation or preparatory layers and a layer of tesserae. Also,

the mosaic surface exhibits irregular hollows (tesserae) and bumps (mortar) through the scene. Hence, a

mosaic can not be considered as a plane surface, as for paintings, but has numerous forms of irregularities,

typical of the artwork style:

• Shape of tesserae, The shapes of tesserae are irregular, from square shapes to polygonal ones.

• Organization of tesserae, Tesserae are not positioned according to a regular lattice. On the contrary, the

smart and judicious choice in the orientation, size and positioning of tesserae characterize the artwork

style and exhibit the “general flow” (guidelines) of the mosaic chosen by the mosaicist.

• Mortar joint, This positioning makes the joints appear as an irregular network with numerous intercon-

nections throughout the mosaic. Network color intensity, mainly middle gray, is however not uniform

through the scene.

• Color of tesserae, Because of materials used and their oldness, tesserae of ancient mosaics are generally

characterized by pastel colors, with low contrast.

Oldness characteristics

Other artifacts can be associated to the wear, erosion and oldness of ancient mosaics (some of them are

illustrated by images in Figures 16.1 and 16.2):

• Disaggregated tesserae, Some tesserae can display a loss of cohesion of their surfaces, disintegrated into

powder or small grains. Also erosion and patinae deteriorations are commonly encountered in studying

ancient mosaics.

• Missing tessera patches, Most of mosaics are not completely preserved and, as a consequence of

disaggregation, lacunas generally corrupted mosaic scenes.

• Color alteration, Alteration of the mosaic surface characterized by a localized change in color (due to fire

damage, graffiti, etc.).
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FIGURE 16.1

Excerpt of an ancient Greek mosaic scene (from Paphos, Cyprus), showing missing patches and geometric

deformation due to slant acquisition [25], public domain image.

(a) Disaggregated (b) Eroded (c) Altered in color

FIGURE 16.2

Three examples of deteriorated tesserae, from [34].
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Data acquisition

For latter processing and virtual anastylosis, mosaic scene must first be digitized using camera. All

peculiarities cited above have a strong and complex impact on acquisition and the way mosaic scenes appear

in an image with a limited resolution:

• Relief shadows, During snapshot acquisition, the relief of tesserae generates shadows on mortar which

does not appear nearly uniform in intensity all over the image, as it should be.

• Indoor/outdoor acquisition, Previous item is further accentuated by indoor acquisition with flash. In

outdoor acquisition, light is not controlled and one should expect severe contrast variations in acquisitions.

• Geometric deformation, Another degradation comes from the snapshot acquisition angle, especially for

very large mosaic scenes lying on the floor. This point produces perspective (rotation, scaling and shearing)

deformations of tesserae shape in image and the thinning down of the mortar width (till disappearing).

• Tessera resolution, The resolution of tesserae in an image (i.e., the number of pixels to describe a tessera)

should not be too low for latter processing. On the other hand, a too high resolution will only able to

capture partial scene.

As a consequence, very large mosaic scenes have to be recorded using multiple overlapping images that

are subsequently co-registered in geometry and color to produce the entire digital scene. An interesting

complementary approach to camera acquisition is given by laser scanning. This technique, used recently for

ancient mosaics analysis [23, 37], can produce a 3D mesh of the mosaic surface and material for a detailed

shape analysis.

Hence, dedicated processing methods are required to take into account the specificities of mosaic and

the specificities of mosaic images, and to adopt image processing strategies suited to the tiling organisation

of tesserae. This way, one can expect better performances than general purpose algorithms. The nature and

the artifacts in mosaic images make segmentation methods based on pixel intensities inefficient (e.g., pixels

associated to the mortar interfere with the classification process of tesserae). A strategy better suited to mosaic

images is to consider tesserae as indivisible entities with an almost uniform gray-level value.

The remaining of the Chapter starts in Section 16.2 with a brief description of several projects involving

image processing methods for restoration, preservation and indexation of ancient mosaics. Then we present

in details some fondamental applications of the tessera-oriented point-of-view on mosaic images proposed

by the authors, according to the diagram in Figure 16.3. Section 16.3 presents an effective way to extract

tesserae, while Section 16.4 exposes two direct applications of this strategy for mosaic image segmentation

and coding. Section 16.5 presents an effective way to retrieve the main guidelines of a mosaic which can be

helpful for delimitating semantic objects present in a complex scene. Finally, the conclusion in Section 16.6

examines some open issues and suggests future research directions to succeed in providing appropriated tools

to museums and experts.

16.2 Recent Image Processing Projects Concerned with Mosaics

A few project involving computer science and image processing for mosaic conservation, restoration or

cataloging are reported in the literature. Here is a short description of them.
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FIGURE 16.3

Organization of Chapter with the processing pipeline.

16.2.1 St. Vitus Cathedral Mosaic Restoration

The more accomplished project concerns the restoration of the St. Vitus cathedral mosaics, in Prague (Czech

Republic), reported in [49]. The Golden Gate (the southern entrance to the cathedral) is decorated with a

unique work of art: a colored, richly gilded mosaic representing the Last Judgement, see Figure 16.4(a). In

1992 the Office of the President of the Czech Republic and the Getty Conservation Institute [3] began to

cooperate to restore and conserve the mosaic.

Having the historical photo of the mosaic from the end of the 19th century and the photos of the current

state, authors study the evolution of the mosaic, which was several times reconstructed and conserved. Firstly

they tried to restore the historical photograph - remove noise , deblur the image, increase the contrast. Then,

they remove the geometrical difference between images by means of the multi-modal registration using

mutual information. Finally, they identify mutual differences between the photos, which indicate the changes

on the mosaic during the centuries.

16.2.2 Arabo-moresque and Islamic Mosaic Pattern Classification

Lot of attention has also been paid to islamic mosaics, of which artwork style is illustrated through Fig-

ure 16.4(b). The particularities of such mosaics come from the periodicity and symmetry of tile patterns.

A. Zarghili et al, [47, 48] propose a method to index an Arabo-Moresque decor database which is not

based on symmetry. They use a supervised mosaicking technique to capture the whole principal geometric

information (connected set of polygonal shapes, called “spine”) of a pattern. The spine is then described

by using Fourier shape descriptors [35] to allow retrieving of images even under translation, rotation and

scale. But, according to [14], the method cannot be automatized and does not allow the classification of these

patterns according to any criterion.

In [21], the authors propose image processing techniques to restore mosaic patterns. Image analysis

tools are developed to obtain information about design patterns which are used to recover missing motifs or
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(a) (b)

FIGURE 16.4

(a) Photo of the “Last Judgement” mosaic in the St. Vitus cathedral (Prague, Czech Republic), from [4]. (b)

Islamic mosaic (Meknes, Morocco).

tesserae. One difficulty was to propose methods robust to the discrepancies between equal object shapes (due

to manual artwork, oldness, etc.). The symmetry, once recovered, allows virtual reconstruction by inpainting

methods and physical restoration of damaged parts of mosaics.

To study Islamic geometrical patterns, and all periodic patterns such as those encountered in textile

patterns [41] or wallpapers, several works are based on the symmetry group theory. In [14], authors first

classify patterns into one of the three following categories: (i) pattern generated by translation along one

dimension, (ii) patterns which contain translational symmetries in two independent directions (refers to the

seventeen wallpaper groups), and (iii) “rosettes” that describes patterns which begin at a central point and

grow radially outward. For every pattern, authors extract the symmetry group and the fundamental region (i.e.,

a representative region in the image from which the whole image can be regenerated). Finally, they describe

the fundamental region by a simple color histogram and build the feature vector which is a combination of the

symmetry feature and histogram information. Authors shows promising experiments for either classification

or indexing.

In [15], authors exploit symmetry and auto-similarity of motifs to design a system to index Arabo-

Moresque mosaic images based on the fractal dimension. Mosaics are first segmented automatically using

color information. The classification decomposes the initial motif into a set of basic shapes. Contours of those

shapes are then characterized by their fractal dimension which gives, according to the authors, a relevant

measure of the geometric structure of the tile pattern. Some retrieval performances are also reported.

16.2.3 Roman Mosaics Indexation

Recently, two Content-Based Image Retrieval (CBIR) systems have been proposed to catalog and index

Roman mosaic images.

The first one, proposed in [32], details a complete CBIR system which include (i) object extraction from

a complex mosaic scene by using unsupervised statistical segmentation and (ii) invariant description of

semantic objects using the analytical Fourier-Mellin transform [13, 20]. Similarity between querying mosaic

and the database is based on an index constructed from the invariant descriptors and an appropriate metric

(Euclidean and Hausdorff).
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(a) (b)

FIGURE 16.5

Excerpt of an ancient mosaic showing a wild boar (a) and a zoom on its hind legs (b).

The second CBIR [27, 28] is a general system to index and retrieve by the content historic document

images. While the object annotation in database images is done manually and off-line, the indexation is done

automatically using an extended curvature scale space descriptor [33] suitable for concave and convex shapes.

The query/retrieval of pertinent shapes from the database starts with a user drawing query (with a computer

mouse or a pen) that is compared to entries in the database using a fuzzy similarity measure. The system

integrates an XML Database conform to the MPEG7 standard, and experiments on large databases providing

by the National Library of Tunisia and some Tunisian museums are reported.

One key-point for such systems to be effective is to improve semantic objects extraction. Pixel-based

methods, as the one used in [32], require heavy post-processing to detect shapes of interest from pixels classe.

Recently, a new viewpoint on mosaic images, based directly on tesserae, have been proposed [8]. Once tessera

extraction is achieved, this strategy facilitates basic steps toward CBIR applications, as described in the

following.

16.3 Tesserae Extraction

A “natural way” to describe mosaics is to consider tesserae in their own instead of groups of isolated pixels,

allowing to develop tessera-oriented processing. Indeed, a mosaic image can be seen as an irregular lattice

in which a node is a tessera (Figure 16.5). The grid structure has been superposed to the zoomed image in

Figure 16.5(b) to illustrate the complexity of the neighborhood system, both in the number of neighbors and

in their orientation. To adopt this point of view on mosaic images, a robust method is required to extract

tesserae from the network of mortar surrounding them.

A way to consider this problem is to deal with the dual problem (i.e., the extraction of the network of

mortar) which is close to recurrent problems encountered in several image processing applications (i.e., in

medical imaging: vascular network segmentation from angiographies [12, 46], or in satellite imaging: road

extraction in urban scenes [29, 30]).

Several approaches have been proposed. Methods based on contour extraction are widely used and mainly
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FIGURE 16.6

Processing chain involved in tessera extraction, using gray-scale morphology tools.

rely on the assumption that the network pixels and neighboring ones have different gray levels in order to

compute gradients. But methods based on high-pass filter, such as Harris’s corner detector, highlight pixels

belonging to the network, not connected components. Higher-level processings detect lines with varying

widths [18, 39]. Strategies that track the entire network from a starting point [7, 45] are difficult to justify in

the mosaic image case due to the high number of interconnections in a mosaic network graph.

Numerous methods based on Markov modeling [19,40] or active contours [36,42] have also been proposed.

These methods are quite efficient but time consuming. In the case of mosaics, these methods are not suited

because of the high density of the network to be extracted in images. In [19], a Markov model is applied

on a graph of adjacency crests, detected by a Watershed Transformation applied on a criterion image. This

criterion image, computed from the original one, exhibits the potential of each pixel to belong to the network.

A study of tessera extraction has been conducted in [8]. The solution adopted, and preferred over other

experimented strategies, is based on gray-level morphology which is suited to the tiling organisation of

mosaics. The Watershed Transformation (WT) approach [31] appeared interesting for mosaic images since

this method is a good compromise between low-level methods (contour detection) and approaches by energy

minimization (Markov model or active contours). But to work well, the WT needs to be computed on a

criterion image (processed from the original one) that shows tesserae as catchment basins and the mortar

network as watershed crests.

The entire algorithm is sketched in Figure 16.6. The goal is to present to the WT a potential image that

exhibits tesserae as catchment basins and the network as a crest crossing the entire image. The pre-processings

are: (i) Contrast enhancement, based on top-hat and bottom-hat transforms; (ii) Potential criterion computation

to exhibit the network as a crest; and (iii) Area closing [43] to reduce over-detection by WT.

The extraction quality highly depends on the way mosaic images have been acquired. It should be taken

not too far from the mosaic since individual tiles will not be visible: according to experiments, tesserae should

appear with a resolution of not less than 10× 10 pixels. Parameter h is a threshold used by the area closing
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FIGURE 16.7

Criterion image obtained from Figure 16.5. This processing improves the contrat between tessera and the

network of mortar.

operator [43]. Its value has an impact on the number of extracted tiles: a small value gives an over-detection

whereas a big one produces an under-detection one. Hence, it should be (roughly) adjusted according to the

mean size α of tesserae in the image (in number of pixels), assuming that α almost constant in a mosaic.

Parameter h should be less than α2 to avoid small tesserae to be deleted by the morphological operator. In

experiments, value h = α2/2 gives good results.

Figure 16.7 shows the criterion image obtained by applying the method to the wild boar image. As can be

seen in this example, the network appears in dark. However tesserae are not uniform in texture and show local

gray-level crests that should be deleted before WT in order to avoid over-segmentation. Following [19], an

area closing [43] in first computed on the criterion image. This processing gives fewer minima while retaining

crest locations as illustrated in Figure 16.8. The crest contours now represent correctly the network, which is

confirmed by the zoom in Figure 16.9(a). To determine the width of the network (and not only a one-pixel

skeleton as done by WT), which varies through the image, a simple threshold is applied on neighboring pixels

of crests: a pixel is aggregated to the crest if its gray value is no more different by 10% of the skeleton mean

gray value. The result of applying such a threshold can be observed in Figure 16.9(b).

A second example of tessera extraction based on gray-level morphological processing in given in Fig-

ure 16.10.

16.4 Tessera-based Segmentation and Coding

This Section describes two simple and direct applications of the tessera-oriented representation of ancient

mosaic images: segmentation and coding. Especially, these applications preserve the irregularity of tiles shape

and so the mosaic effect perception. From now, we assume that all tesserae in a mosaic image have been

extracted successfully (i.e., one can access the coordinates of every pixel belonging to the contour of each tile

in the mosaic). Each pixel that does not belong to a tessera is assumed to be a background pixel (i.e., a mortar

network pixel).
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(a) (b)

FIGURE 16.8

Extraction of tesserae from the criterion image in Figure 16.7, without (a) and with (b) area closing operator.

(a) (b)

FIGURE 16.9

Result of tessera extraction on the zoom in Figure 16.5(a) in (a), and network/tesserae classification in (b).
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(a) (b)

FIGURE 16.10

Illustration of the tessera extraction algorithm on the mosaic image of a Deer.

16.4.1 Segmentation of Ancient Mosaic Images

Instead of using all pixels from the tesserae, and since tesserae are almost homogeneous in color, classification

can be performed directly on tesserae, not on pixels, by using some dedicated features. Tesserae can be

characterized by several features, among them the mean and variance of gray-level values. Also one can take

into account the number of pixels in the tessera, using a multi-features classification. All pixels belonging to

the mortar network are directly associated to a unique class (they do not participate to the classification). The

class color corresponds to the mean color of the mortar pixels.

In Figure 16.11, a simple K-means algorithm based on the mean gray-level value of tesserae was sufficient

to get an interesting segmentation. From a semantic point of view, this segmentation outperforms the result

obtained by a classical pixel-based K-means strategy. A second example that confirms such interesting

behavior is provided in Figure 16.12. Once again, the segmentation quality depends on the robustness of

tessera extraction.

16.4.2 Tessera-based Coding and Lossy Compression

Another direct application of the WT tessera labeling is to develop a compact and efficient coding representa-

tion of ancient mosaic images [9]. This kind of module can be useful for rapid thumbnails transmission in

case of distant catalog browsing application. The compression proposed is lossy but preserves the specificities

of mosaic images, especially the irregularity of tesserae shape. In a way, the strategy described below is better

suited to ancient mosaic images than a general purpose lossy compression algorithm, such as jpeg which is

based on square-blocks.

We still consider that all tesserae in a mosaic have been extracted successfully (i.e., we can access the

coordinates of every pixel belonging to the contour of each tile in the mosaic). The network can be seen as

the mosaic image background (i.e., each pixel that does not belong to a tessera is assumed to be a background

pixel). Let I be a mosaic image with dimensions L × C, made of N colored tiles. The tessera-based

lossy-compression specificity has been designed in order to take into account the two following observations:

• A tile n, n ∈ [1, N ], is usually formed in the shape of a cube of material, mostly with uniform color.



Analysis of Ancient Mosaic Images for Dedicated Applications 465

(a) Pixel-based K-means segmentation (b) Tile-based K-means segmentation

FIGURE 16.11

Segmentation comparison of the mosaic image in Figure 16.5(a) with a pixel-based strategy (a) and the

tessera-based strategy presented in Section 16.3 (b). Both pixel- and tile-based segmentations make use of an

unsupervised K-means classification algorithm, the first one with 3 classes, and the second one only with 2

classes since the mortar is already extracted.

Hence a vector of three intensity colors (Rn, Gn, Bn) is enough to describe the color of tessera n. This

color can be easily estimated by computing the mean intensity of pixels belonging to the tessera.

• The mortar intensity, mainly middle gray, is not uniform throughout the image because of shadows due to

non-flat mosaic surfaces and snapshot acquisition angle. However, the network intensity should appear

the same everywhere in the image. Hence, all pixels belonging to the mortar network is coded by the

same color vector (Rb, Gb, Bb), b stands for background. This value can be estimated by computing

the mean intensity of network.

Coding file structure

The cms (“Compressed MoSaic”) format is structured as follows (see Figure 16.13) :

• Header: The header is made of

1. The original image size in pixels (2× 2 bytes).

2. The number N of tesserae in the image (2 bytes).

3. The mean color values (Rb, Gb, Bb) of the network (3 bytes).

Hence, nine bytes are necessary to code the header. Other information such as the name of the original

image or a comment can be added.

• Body: each tessera n has the following code structure

1. Tessera header contains the number of pixels Nn of the contour (1 byte), and the mean color values

(Rn, Gn, Bn) of the tessera (3 bytes).
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(a) (b) (c)

FIGURE 16.12

K-means segmentation of a mosaic representing a bird (a) with the pixel-based (b) and the tile-based (c)

strategies.

FIGURE 16.13

Sketch of the cms file format to compress images of ancient mosaics (without Huffman coding).

2. Tessera body codes the closed-contour using the coordinates (l1,c1) of the first pixel (4 bytes) and

Freeman chain code (or whatever code) for the subsequent Nn − 1 pixels. If no Huffman coding

technic is applied, only 3 bits per contour pixels are necessary.

Counting the number of bytes necessary to code a tessera n gives: 8 + (Nn−1) 3
8

rounded to the ceil

value. The last byte is filled in to start the next tessera coding on a new byte. Hence, 21 bytes are needed

to code a tessera with Nn = 34.

Mosaic image reconstruction from the compressed file is done by reconstructing the image background

using the network color intensity, on which each tessera with its own color is superposed. The order tesserae

are saved or read in the body of the cms file has no influence on the reconstruction quality, but can be changed

for a desired application. For example, one can think organizing tesserae by grouping tiles in the file according

to the semantic object they belong to (e.g., human, animal, etc.). Hence reconstruction will progressively show

the different objects present in the mosaic scene. Tesserae dedicated to the background, mainly of uniform

color as illustrated in Figures 16.5(a), 16.10(a) and 16.12(a), can be saved at the end of the file since their

semantic meaning is, in general, less interesting than the one from objects tesserae. Specific organization

of tesserae within the file can also be of interest for mosaic database indexing and text- or content-based

retrieval, see Section 16.6. Hence, we get a compact and easy-to-handle lossy-compressed representation of

mosaic image. The compression of a mosaic image and its reconstruction from a cms file are summed up in

Algorithms 1 and 2.

Experimental results

To evaluate the compression algorithm, we process on the Deer mosaic image in Figure 16.10(a). The

decoding result is shown in Figure 16.14 and must to be compared with the original image. Pixels attributed
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Algorithm 1 cms format coding.

Require: Mosaic image I .

Ensure: Tessera-oriented coding of I in file f.

Tessera extraction (cf. Section 16.3).

for n = 1, . . . , N do

Write the number of contour pixels Nn ← f.

Write the mean color value Vn ← f.

Write the first contour pixel coordinates ln, cn ← f.

for i = 2, . . . , Nn do

Compute chain code direction for pixel i.

Write direction← f.

end for

end for

Algorithm 2 cms format decoding.

Require: Compressed file f.

Ensure: Tessera-oriented decoding of file f into image I .

Read file header→ L, C, N, Rb, Gb, Bb.

Create an image I with dimensions L× C and background color (Rb, Gb, Bb).

for n = 1, . . . , N do

Read tessera header→ Nn, Rn, Gn, Bn, ln, cn.

Set pixel (ln, cn) with color (Rn, Gn, Bn).

for i = 2, . . . , Nn do

Compute coordinates (li, ci).

Set pixel (li, ci) with color (Rn, Gn, Bn).

end for

Fill in the closed contour with color (Rn, Gn, Bn).

end for

FIGURE 16.14

Result of coding/decoding of the Deer image in Figure 16.10(a).
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to the network represent 27.5% of the total number of pixels in the image (255 × 394). The number of

tesserae detected is 314. The image produces a cms file size of 8766 bytes, which gives a compression

factor of about 11.5 with respect to a raw coding of pixels (e.g., ppm file format). The compression ratio

depends on the mean tessera size in the mosaic image. The bigger the tiles, the higher the compression ratio

is expected to be.

From a qualitative point of view, some remarks can be pointed out. As expected the shape of the network

and tesserae is kept very similar to the original ones. The mean colors used to describe network and tesserae

intensities makes the decoded image appears pastel with respect to the original one, since artifacts such as

shadow or dirties are cleaned. Nevertheless the global aspect of the mosaic is respected and of sufficient

quality to understand the scene content. Lacunas and missing patches are not taken into account by the actual

algorithm. It considers holes as tesserae but should better associate them to the mortar network since we

observe the preparatory layer mortar appears behind. One solution is to fuse the network with tesserae that

show mean color close to the mean network color.

16.5 Guidelines Estimation for Mosaic Structure Retrieval

Ancient mosaicists avoided to align their tiles according to rectangular grids. Indeed, such grids emphasize

only horizontal and vertical lines and may distract the observer from seeing the overall picture. Hence, they

placed tiles in order to emphasis the strong edges of the subject to be represented, influencing the overall

perception of the mosaic [5]. Hence, organization and positioning of tesserae are interesting information for

experts since they emphasize the main directional guidelines chosen by the artist (characteristic of the style).

This information is of crucial interest for mosaic dedicated applications such as content-based retrieval of

semantic elements or region-based mosaic image coding.

To get directional guidelines, one can first think using the principal axes of an ellipse-equivalent shape of

each tessera, using well-known formulae based on geometrical moments (minor and majors axes). However,

ancient mosaic tesserae are not box- neither regular-shaped and principal axes quickly appear not enough

robust. One major drawback of such method is that it does not take into account information of neighboring

tesserae, which is of great importance for regularization and for recovering the main guidelines that emphasize

the “general flow” of a mosaic.

Hence, an energy-based contextual algorithm for retrieving main directional guidelines in a mosaic has

been proposed [8]. The energy to be minimized is constructed by using two key-features: the mean-gray value

and borders directions of each tessera. The optimization is done either by gradient descent or by simulated

annealing.

Methodology

Each tessera n is represented by

• Its barycenter (xn, yn) computed on the support Ωn of n.

• The list of its neighboring tesserae: Vn = {vn,1, . . . , vn,Tn
}. A neighbor is a tessera that shares at

least one pixel of mortar network with n.

It should be noted that the number of neighbors Tn is different from one tile to the other since tesserae are not

organized according to a regular grid. Each tessera n is characterized by an energy of configuration which

links itself to each of its neighbor vn,t ∈ Vn. This energy, denoted by En,t with t ∈ [1, . . . , Tn], is the

sum of two complementary terms:
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FIGURE 16.15

Plot of the regularized and normalized histogram of the contour orientation of one tile from the boar mosaic

image in Figure 16.5(a).

• The first term Q is based on the mean-gray value of tesserae. It is proportional to the sum of the difference

of gray-level means (1) between n and vn,t, and (2) between n and the symmetrical tessera of vn,t with

respect to n. This feature favors alinement of tesserae with low contrast, which is a characteristic of

directional guidelines.

• The second term R is based on the orientation of tessera contours. We compute the histogram of the

orientation of segments constituting the contour of tessera n. This histogram is regularized using a

Gaussian kernel, result of which is illustrated in Figure 16.15. It should be noted that the two modes of

the histogram, at approximatively 900 each other, correspond to the two ambiguous orthogonal main

directions of a square-shaped tile. It is then possible to estimate the p.d.f. at angle αn,t given by the

barycenter of n and the one of vn,t.

Terms Q and R are normalized to belong to range [0, 1]. We can then initialize the “main direction” of a tile

(i.e., the direction of the neighboring tessera which gives the highest Q + R value):

tn,max = arg max
t∈[1,...,Tn]

En,t (16.1)

The energy of a tessera is then defined as Cn = (2− En,tn,max
) + λ Vn, with λ a weighting factor

set manually. Term Vn is defined as

Vn =
1

Tn

Tn
∑

t=1

∣

∣αn,tn,max
− αt,tt,max

∣

∣ (16.2)

which is the normalized sum of absolute difference between the main direction of tile n and the main direction

of its neighbor t.

The next step to to minimize the mosaic energy, defined as the sum of Cn for all tesserae in the mosaic.

This is done by selecting the tessera n which gives the highest value for Vn. To reduce the contribution of

this tessera, we try another main direction and recompute the mosaic energy. At that point, two strategies

have been tested:
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• Deterministic framework (Gradient Descent): if the mosaic energy reduces then the new main direction is

validated, otherwise another main direction is tested. When all directions for this tile have been tested, we

repeat the process for the next tile with high Vn value.

• Stochastic framework (Simulated Annealing): a configuration which gives a higher mosaic energy can

be validated according to the simulated annealing principle [24]. This strategy allows to search for the

global minimum, which can not be reached with previous strategy since the mosaic energy function is not

convex.

The process is iterated until the mosaic energy is almost constant. The cartography of tessera orientation is

made of the main direction of each tile at the last iteration.

Figure 16.16 illustrates the application of the tessera orientation methodology on the detail of the boar

image in Figure 16.5(a). From the initial configuration of tesserae (a) we get the final configuration (b) using

Simulated Annealing (SA) for optimization. Figure 16.16(c) shows the evolution of the computed energy

during iterations of both gradient descent (GD) algorithm and simulated annealing one. As expected, SA

reaches a lower minimum than GD but to the detriment of numerous additional iterations (approximately 150

for SA versus 50 for GD). Indeed, GD searches for a local minimum and is highly dependent on the initial

configuration, whereas SA is expected to reach the global minimum due to its stochastic nature.

The tessera cartography obtained with SA optimization is really satisfying when visually compared to the

main directional guidelines of the mosaic. This is especially true for regions at the borders between classes.

A second example of cartography is proposed in Figure 16.17, after both simulated annealing and gradient

descent optimizations. Results are very similar except for some guidelines where SA gives a better result.

Once again, the tessera orientation estimation methodology, which makes use of contextual information, gives

regularized results that emphasize the mosaic guidelines. Nevertheless, confusions can be found on areas

with homogeneous colors and where tesserae are square-like shaped. Indeed, for those kinds of tesserae two

orthogonal directions are equally probable, which generally gives ambiguous results. However, these areas of

uniform color are of limited interest for object-based scene applications, such as mosaic pattern recognition.

Finally, Figure 16.18 shows a failure case in tessera orientation estimation. Indeed, the result will not allow

to find the main directional guidelines in the mosaic, that can be more easily observed in Figure 16.12(a). The

main reason comes from an over-detection of tesserae from the extraction step. This behavior is observed on

mosaics built with tesserae of different sizes (e.g. large tesserae for the background and small ones for objects

or details). Hence the shape of extracted tiles does not correspond to the shape of tesserae and the orientation

is corrupted, showing no particular guideline in the mosaic.

16.6 Open Issues and Research Directions in Mosaic Image Analysis

In this Chapter, an overview of image processing methods for images of ancient mosaics has been proposed.

The analysis of such images is a difficult task due to many reasons, among them the irregularity of shapes, the

particular organization of tesserae and the degradation of tiles due to their oldness. Also, the way snapshot

acquisition is performed has a crucial impact on the subsequent processings.

A few works only are reported in the literature regarding the numerous problems that experts (museum

curators, archeologists, art historians, etc.) face about possibly virtual restoration/lifting, conservation and

cataloging of ancient mosaics. Each artwork style and period requires the development of dedicated processing

methods to take into account a priori information of materials, shape, color, etc. An interesting point of view
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(a) Configuration at initialization (b) Configuration after SA

(c) Energy evolution for GD and SA

FIGURE 16.16

Cartography of tesserae orientation. Each tessera is characterized by its center of mass (circle) and its

orientation (segment crossing the circle).
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(a) Configuration after SA (b) Configuration after GD

FIGURE 16.17

Another example of tesserae orientation cartography with (a) simulated annealing optimization and (b)

gradient descent optimization.

FIGURE 16.18

Result of guidelines detection for the “bird” mosaic in Figure 16.12(a).
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FIGURE 16.19

Example of querying a distant mosaic catalog by keyword.

on the problem is to consider, within the processings, that a mosaic is a collection of tiles and not only a series

of image pixels. If this tessera-oriented strategy seems suited in numerous cases, improvement regarding the

robustness of tesserae extraction are still required, especially when mosaic tiles show a large difference in

size and a high level of degradation.

The algorithms described within Sections 16.3 to 16.5 are only a few basic, but crucial, steps toward

complete applications expected by experts such as (i) ancient mosaic restoration with virtual “inpainting”

tools taking into account main guidelines and tesserae shapes, and (ii) multi-site and distant catalog browsing

with “intelligent” retrieval capabilities of semantic objects. A simple html interface has been designed to

illustrate the possible use of basic modules for browsing, in situ, a distant database of Roman-style mosaics. A

simple query using textual keywords like “human”, “face” or “animal” allows to visualize the corresponding

mosaics in a distant database. Figure 16.19 shows an example of this application with the word “bird” as

query. Of course, one goal of the project is to replace keywords by self-content indexing using semantic

objects extraction and characterization, based on segmentation, main guidelines estimation and connected

components labeling algorithms [22]. The mosaic coding strategy exposed above can be used to construct a

tile-oriented CBIR application. If the CBIR can work directly on the coded stream (without reconstruction),

one can expect to reduce drastically the RAM and/or hard disk memory requirements.

The problem of quality of processings for segmentation and lossy coding has not been addressed in this

Chapter. Particular attention should be paid to this issue in order to quantify the effectiveness of the approach.

To that goal, specific quality metrics for tesserae shape and color have to be defined with experts and evaluated

against image resolution. Cumulative error impact should then be analyzed along the complete processing

chain to evaluate the level of accuracy for the targeted application. Note that fully automatic tools are not

always required and applications piloted by users can be of interest.

An interesting open issue is the construction of an invariant representation of semantic mosaic objects

which is robust to the tiling organisation of shapes. Such a module will help CBIR systems to retrieve mosaic
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objects independently of their orientation, pose and size in the scenes. Dedicated registration algorithms

to reconstruct a complete mosaic scene from a set of sub-images can also be of interest in case of in situ

acquisition of a large mosaic for example.

Finally, one very promising research direction is to develop new image processing methods to automati-

cally learn ancient mosaicists’ way of working and style (e.g., tessera color and size, organisation, guidelines,

etc.). These tools could first be used to virtually fill in missing patches or restore deteriorated patches in

a mosaic scene, using tessera-dedicated inpainting methods. They could also be exploited for emulating a

mosaic artwork style from a raster input image using computer-aided algorithms, cf. [6] for an overview of

digital mosaic creation.
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