Stephane Noselli

Stephane Noselli
University of Nice Sophia Antipolis | UNS · institut de Biologie Valrose (iBV)

PhD

About

105
Publications
12,267
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,219
Citations
Additional affiliations
January 2008 - January 2016
University of Nice Sophia Antipolis
Position
  • Principal Investigator
July 2000 - present
University of Nice-Sophia Antipolis - CNRS
Position
  • Principal Investigator
January 2000 - present
University of Nice Sophia Antipolis
Position
  • Director, Institut de Biologie Valrose

Publications

Publications (105)
Article
Full-text available
Basement Membranes (BM) are extracellular matrices assembled into complex and highly organized networks essential for organ morphogenesis and function. However, little is known about the tissue origin of BM components and their dynamics in vivo . Here, we unravel the assembly and role of the BM main component, Collagen type IV (ColIV), in Drosophil...
Article
Full-text available
Left-Right (LR) asymmetry is essential for organ positioning, shape and function. Myosin 1D (Myo1D) has emerged as an evolutionary conserved chirality determinant in both Drosophila and vertebrates. However, the molecular interplay between Myo1D and the actin cytoskeleton underlying symmetry breaking remains poorly understood. To address this quest...
Article
Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of deve...
Preprint
Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of deve...
Preprint
Full-text available
Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of deve...
Article
Full-text available
The emergence of asymmetry from an initially symmetrical state is a universal transition in nature. Living organisms show asymmetries at the molecular, cellular, tissular, and organismal level. However, whether and how multilevel asymmetries are related remains unclear. In this study, we show that Drosophila myosin 1D (Myo1D) and myosin 1C (Myo1C)...
Article
Full-text available
Understanding how different cell types acquire their motile behaviour is central to many normal and pathological processes. Drosophila border cells represent a powerful model to address this question and to specifically decipher the mechanisms controlling collective cell migration. Here, we identify the Drosophila Insulin/Insulin-like growth factor...
Article
Full-text available
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry c...
Article
Graphical Abstract Highlights d The unconventional myosin 1D is required for vertebrate left-right asymmetry d Loss of myo1d causes aberrant leftward flow and laterality defects in Xenopus d The function of myosin1D is mediated through the planar cell polarity pathway d Myosin 1D links laterality in arthropods and chordates In Brief Tingler et al....
Preprint
The establishment of Left/Right (LR) asymmetry is fundamental to animal development. While the pathways governing antero-posterior and dorso-ventral patterning are well conserved among different phyla, divergent mechanisms have been implicated in the specification of LR asymmetry in vertebrates and invertebrates. A cilia-driven, directional fluid f...
Article
Full-text available
In segmented tissues, anterior and posterior compartments represent independent morphogenetic domains, which are made of distinct lineages separated by boundaries. During dorsal closure of the Drosophila embryo, specific “mixer cells” (MCs) are reprogrammed in a JNK-dependent manner to express the posterior determinant engrailed (en) and cross the...
Article
Full-text available
Tissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing. In this process...
Data
Microarray analysis of the JNK response during DC. A) In situ hybridizations of stage 13 embryos showing dpp expression in the three conditions used to prepare the RNAs for microarray analysis: WT (w1118; top), GOF (69B-GAL4 > hepact; middle) and LOF (hep1/hepr75; bottom). Activation of the JNK pathway in the ectoderm with 69B-GAL4 leads to a later...
Data
Anterior-posterior expression of the twelve LE genes. FISH-IF (first and third columns) and mRNA signal quantifications at the LE (second and fourth columns) are shown for each LE gene. mRNA staining is in red and anti-En immuno-fluorescence is in green. Bar diagram: average mRNA signal intensities at the LE in each segment, expressed as fluorescen...
Data
Segmental expression of the twelve LE genes. FISH-IF (columns 1, 2, 4 and 5) and mRNA signal quantifications at the LE (columns 3 and 6) are shown for each LE gene. mRNA staining is shown in red alone (columns 1 and 4) or merged with anti-En immuno-staining (in green)(columns 2 and 5). Bar diagram: average mRNA signal intensities at the LE in the t...
Data
arm-GFP (left) and AbdBD18,arm-GFP (right) live embryos. Frames were taken every 20 minutes. (AVI)
Data
Over-represented Gene Ontology (GO) terms in the list of JNK up-regulated genes in the GOF screen (using DAVID). (DOCX)
Data
abd-A and Abd-B posterior closure defects. A) Speed of closure (nm/s +/- s.e.m.) in the anterior and posterior regions of control (pink; n = 9) and Abd-B mutant (purple; n = 6) embryos during early DC (seam < 33%), mid DC (33% < seam > 66%) and late DC (seam > 66%). A strong reduction of the posterior closure speed was observed from mid DC (59%) to...
Data
Common genes of the GOF and LOF microarray screen with their corresponding fold change (FC). (DOCX)
Data
Regulation of scaf expression by en and the HOX genes. A) Quantification of scaf expression (expressed as fluorescent intensity; a.u. +/- s.e.m.) in the LE of en mutant embryos (n = 10, FISH-IF shown in Fig 4A). The anterior limit for quantification corresponds to the dorsal ridge abutting the head segments, whereas the posterior limit was set just...
Data
Over-represented Gene Ontology (GO) terms in the list of JNK down-regulated genes of the GOF screen (using DAVID). (DOCX)
Data
Description of the 31 JNK target genes. (DOCX)
Article
Full-text available
The extracellular matrix plays an essential role for stem cell differentiation and niche homeostasis. Yet, the origin and mechanism of assembly of the stem cell niche microenvironment remain poorly characterized. Here, we uncover an association between the niche and blood cells, leading to the formation of the Drosophila ovarian germline stem cell...
Article
Full-text available
Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachs...
Article
Full-text available
Differentiating left and right hand sides during embryogenesis represents a major event in body patterning. Left-Right (L/R) asymmetry in bilateria is essential for handed positioning, morphogenesis and ultimately the function of organs (including the brain), with defective L/R asymmetry leading to severe pathologies in human. How and when symmetry...
Article
Full-text available
When exposed to nutrient challenge, organisms have to adapt their physiology in order to balance reproduction with adult fitness. In mammals, ovarian follicles enter a massive growth phase during which they become highly dependent on gonadotrophic factors and nutrients. Somatic tissues play a crucial role in integrating these signals, controlling o...
Article
Full-text available
Drosophila is a classical model to study body patterning, however Left-Right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdomin...
Article
Full-text available
Molecular motors transport various cargoes including vesicles, proteins and mRNAs, to distinct intracellular compartments. A significant challenge in the field of nanotechnology is to improve drug nuclear delivery by engineering nanocarriers transported by cytoskeletal motors. However, suitable in vivo models to assay transport and delivery efficie...
Data
Molecular motors transport various cargoes including vesicles, proteins and mRNAs, to distinct intracellular compartments. A significant challenge in the field of nanotechnology is to improve drug nuclear delivery by engineering nanocarriers transported by cytoskeletal motors. However, suitable in vivo models to assay transport and delivery efficie...
Article
In Drosophila, left/right (LR) asymmetry is apparent in the directional looping of the gut and male genitalia. The dextral orientation of the organs depends on the activity of a single gene, MyosinID (myoID), whose mutation leads to a fully inverted LR axis, thus revealing the activity of a recessive sinistral pathway. Here, we present the identifi...
Article
Border Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being cr...
Article
Full-text available
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct a...
Article
Full-text available
What triggers a differentiated cell to naturally change its cell fate? Cell reprogramming is a rare and intriguing phenomenon, from a developmental point of view. It has been mostly involved in boundary sharpening during development, tissue regeneration and cancer. Developmental models of the understanding of pathology-related cell reprogramming ar...
Article
Full-text available
The transition from immotile epithelial cells to migrating cells occurs in all organisms during normal embryonic development, as well as during tumour metastasis. During Drosophila oogenesis, border cells (BCs) are recruited and delaminate from the follicular epithelium. This process is triggered by the polar cells (PCs), which secrete the cytokine...
Article
Full-text available
During embryogenesis, drosophila embryos undergo epithelial folding and unfolding, which leads to a hole in the dorsal epidermis, transiently covered by an extraembryonic tissue called the amnioserosa. Dorsal closure (DC) consists of the migration of lateral epidermis towards the midline, covering the amnioserosa. It has been extensively studied si...
Article
Full-text available
Thorax closure in Drosophila is a process during adult morphogenesis in which the anterior ends of the presumptive notum of the two wing imaginal discs fuse to make a seamless thorax. Similar to dorsal closure during embryogenesis, this process is regulated by plegic and JNK signaling pathways. Despite the fact that Peripodial Membrane (PM) cells d...
Article
Full-text available
Handed asymmetry in organ shape and positioning is a common feature among bilateria, yet little is known about the morphogenetic mechanisms underlying left-right (LR) organogenesis. We utilize the directional 360° clockwise rotation of genitalia in Drosophila to study LR-dependent organ looping. Using time-lapse imaging, we show that rotation of ge...
Article
Full-text available
A recent study reports a novel and conserved function for the I-BAR protein MIM in guiding cell migration: MIM has an anti-endocytic activity that moderates intracellular signalling of guidance cues by sequestration of cortactin.
Article
Full-text available
In Drosophila melanogaster, dorsal closure is a model of tissue morphogenesis leading to the dorsal migration and sealing of the embryonic ectoderm. The activation of the JNK signal transduction pathway, specifically in the leading edge cells, is essential to this process. In a genome-wide microarray screen, we identified new JNK target genes durin...
Data
JNK activity controls mixer cell formation and En expression. (A) Expression of endogenous Ptc and En proteins in a hepr75/hep1 mutant embryo. Note that in these mutant embryos the mixer cell expresses Ptc but not En in contrast to wild type embryos. Ptc, green; DAPI, turquoise; En, red. Scale bars: 5 µm. (B) Embryos overexpressing the JNK phosphat...
Data
JNK down-regulation in the anterior compartment inhibits cell intercalation. Confocal still images from Video S4 showing an embryo expressing BskDN in the anterior compartment. Genotype: ptc-gal4, UAS-bskDN, UAS-RFP; βcatenin-GFP. βCatenin-GFP, white; RFP, green. Colour code as in Figure 1B. Scale bars: 10 µm. (2.31 MB TIF)
Data
JNK overactivation induces ectopic mixer cells and intercalation. Confocal time-lapse imaging of an embryo expressing the JNKK Hep in the anterior compartment from Video S5. Genotype: ptc-gal4, UAS-hep; βcatenin-GFP. βCatenin-GFP, green. Colour code as in Figure 4A. Scale bars: 10 µm. (2.41 MB TIF)
Data
Timing and standard deviations of closure and cell intercalation described in Figure 1E . (0.04 MB DOC)
Data
Dorsal closure of a wild type embryo. Confocal time-lapse images are taken from an embryo expressing ubiquitous αCatenin-GFP (green) and h-Actin-CFP (red) in the posterior compartment. Genotype: βcatenin-GFP; en-gal4, UAS-h-actin-CFP. (6.40 MB MOV)
Data
Expression of cellular markers in the mixer cells. (A, B) Pattern of Ena (A), Ptc (B), puc-lacZ, and En expression at three different stages of cell mixing: before anterior-to-posterior mixer cell shifting (top panels); after the onset of mixer cell shifting and cell intercalation (middle panels); end of cell mixing and intercalation (bottom panels...
Data
Time-course of Engrailed expression in the mixer cells. Examples of En stainings used for the quantification of the relative amounts of En in the mixer cells compared to neighbouring bona fide En cells. The bottom panel shows a scheme of the intercalation stages (mixer cell, yellow; PI, red; AI, green; posterior, orange; anterior, light green).Ena,...
Data
Expression pattern of the en-gal4 driver. Still images of an A4 segment of a βcatenin-GFP,en-gal4 > UAS-lamin-GFP live embryo, from early stage 15 to stage 16. (A) Normal image. (B) False colouring (red) of the dorsal row of En cells. (C) Increasing the brightness allows the visualization of lamin-GFP weak expression in the mixer cells (red arrows)...
Data
Dynamics of cell mixing and intercalations at the segment boundaries. Summary cartoon showing the spatial and temporal dynamics of mixer cell shifting and cell intercalations at the segment boundaries. (2.73 MB MOV)
Data
Absence of intercalation in an embryo defective for JNK signalling in the anterior compartment. Confocal time-lapse imaging of an embryo expressing a dominant negative form of Bsk in the anterior compartment. Genotype: ptc-gal4, UAS-bskDN; βcatenin-GFP. βcatenin-GFP, green. Colour code as in Figure 4A. Scale bars: 10 µm. (0.82 MB MOV)
Data
Excessive intercalations in an embryo overexpressing JNKK in the anterior compartment. Confocal time-lapse imaging of an embryo overexpressing the JNKK Hep in the anterior compartment. Genotype: ptc-gal4, UAS-hep, UAS-RFP; βcatenin-GFP. βCatenin-GFP, white; RFP, green. Colour code as in Figure 4A. Scale bars: 10 µm. (0.56 MB MOV)
Data
High magnification of segment boundary remodelling in a wild type embryo. High magnification of the A3–A4 segment boundary during dorsal closure showing mixer cell shifting and cell intercalations. Confocal time-lapse images are taken from an embryo expressing ubiquitous βCatenin-GFP (green) and Actin-CFP (red) in the posterior compartment. Genotyp...
Data
Absence of intercalation in an embryo overexpressing Wg in the anterior compartment. Confocal time-lapse imaging of an embryo overexpressing Wg in the anterior compartment. Putative most anterior cells of segments A2 to A6 are coloured in green to show that no intercalation occurs in the entire bracketed region. Genotype: ptc-gal4, UAS-wg; βcatenin...
Article
Full-text available
Author Summary Multicellular organisms are assembled from different cell types, each following a particular fate depending on their history and location. During development, cells are organized into compartments, which are essential for the correct formation of organs. Within the compartments, cells follow two general rules: (i) cells that have acq...
Article
JNK-mediated closure of the Drosophila dorsal epidermis during embryogenesis is a well-characterised model for morphogenesis. However, little is known about how JNK signalling modifies particular cellular behaviours such as intracellular transport. Here we demonstrate that the gene encoding the small GTPase Rab30 is a new JNK transcriptional target...
Article
Full-text available
We propose a Partial Differential Equation Model for epidermal wound healing and Dorsal Closure in Drosophila embryos. We implement a numerical simulation of this model and compare the predicted evolution with the one observed experimentally.
Article
Full-text available
Small GTPases of the Ras-like (Ral) family are crucial for signalling functions in both normal and cancer cells; however, their role in a developing organism is poorly understood. Here, we identify the Drosophila Ral homologue RalA as a new key regulator of polar-cell differentiation during oogenesis. Polar cells have a crucial role in patterning t...
Article
Full-text available
Seminal studies of left-right (L/R) patterning in vertebrate models have led to the discovery of roles for the nodal pathway, ion flows and cilia in this process. Although the molecular mechanisms underlying L/R asymmetries seen in protostomes are less well understood, recent work using Drosophila melanogaster as a novel genetic model system to stu...