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Abstract

Elite athletic competitions have separate male and female events due to men’s physical advantages in
strength, speed and endurance so that a protected female category with objective entry criteria is required.
Prior to puberty, there is no sex difference in circulating testosterone concentrations or athletic
performance but from puberty onwards sex difference in athletic performance emerges as circulating
testosterone concentrations rise in men because testes produce 30 times more testosterone than before
puberty with circulating testosterone exceeding 15-fold those of women at any age. There is a wide sex
difference in circulating testosterone concentrations and reproducible dose-response relationship between
circulating testosterone and muscle mass and strength as well as circulating hemoglobin in both men and
women. These dichotomies largely accounts for the sex differences in muscle mass and strength and
circulating hemoglobin levels resulting in at least an 8-12% ergogenic advantage in men. Suppression of
elevated circulating testosterone of hyperandrogenic athletes results in negative effects on performance,
which are reversed when suppression ceases. Based on the non-overlapping, bimodal distribution of
circulating testosterone concentration (measured by liquid chromatography-mass spectrometry) and
making allowance for women with mild hyperandrogenism including that of polycystic ovarian syndrome,
who are over-represented in elite athletics, the appropriate eligibility criterion for female athletic events
should be a circulating testosterone of less than 5.0 nmol/L. This would include all women other than those
with untreated hyperandrogenic disorders of sexual development (DSD), testosterone-treated female-to-

male (F2M) transgender, noncompliant male-to-female (M2F) transgender or androgen doping.
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1. Background

Virtually all elite sports are segregated into male and female competitions. The main justification is to allow
women a chance to win, as women have major disadvantages against men who are, on average, taller,
stronger, faster and have greater endurance due to their larger, stronger muscles and bones as well as a higher
circulating hemoglobin. Hence, elite female competition forms a protected category with entry that must be
restricted by an objective eligibility criterion related by necessity to the relevant sex-specific physical
advantages. The practical need to establish an eligibility criterion for elite female athletic competition led the
International Association of Athletic Federations (IAAF) to establish a rule in 2011, endorsed by the
International Olympic Federation (I0C) in 2012, for hyperandrogenic women. The first IAAF regulation stated
that for athletes to be eligible to complete in female events, the athlete must be legally recognised as a female
and, unless she has complete androgen insensitivity, maintain serum testosterone less than 10 nmol/L. That
IAAF eligibility rule was challenged by an athlete to the Court for Arbitration in Sports (CAS) which ruled in 2015
that, although an eligibility criterion was justified, the scientific grounds for the original IAAF rule was
considered insufficient, notably in the extent of the competitive advantage enjoyed by hyperandrogenic
athletes who had circulating testosterone greater than 10 nmo/L. The CAS suspended the hyperandrogenism
eligibility rule pending receipt of such evidence. In that context, the present paper reviews the available
evidence on the hormonal basis for sex differences in athletic performance. It concludes that the evidence
justified a revised eligibility criterion of a threshold circulating testosterone concentration of 5 nmol/L

(measured by a mass spectrometry method).

2. Sex, Fairness and Segregation in Sport

If sport is defined as the organized playing of competitive games according to rules (1), fixed rules are
fundamental in representing the boundaries of fair sporting competition. Rule breaking, whether by
breaching eligibility or competition rules, such as use of banned drugs, illegal equipment or match fixing,
creates unfair competitive advantages that violates fair play. Cheating constitutes a fraud against not just
competitors but also spectators, sponsors, the sport and the public. In the absence of genuine fair
competition, elite sport would lose its wide popular appeal and ability to captivate and inspire with the

authentic attraction of genuine contest between highly trained athletes.

Nevertheless, fairness is an elusive, subjective concept with malleable boundaries that may change over
time as social concepts of fairness evolve. For example, until the late 19*" century when organized sports
trainers emerged, training itself was considered a breach of fairness since competition was envisaged at
that time as a contest based solely on natural endowments. Similarly, sports once distinguished between

amateurs and professionals. The concept of fairness has deep and complex philosophical roots mainly
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focused on notions of distributive justice. These considerations impact on sport through the universal
application of anti-discrimination and human rights legislation. Less attention is given to the philosophical
basis of fair competition in elite sport where the objectives are not egalitarian but aim to discover a
hierarchy of achievement derived from a mixture of unequal natural talent and individual training effort.
Excellent, insightful discussion of the legal and moral complexities of sex and fair competition in elite sports

from a legal scholar and former elite female athlete is available (2).

The terms sex and gender are often confused and used as if interchangeable. Sex is an objective, specific
biological term with distinct, fixed facets, notably genetic, chromosomal, gonadal, hormonal and
phenotypic (including genital) sex, each of which has a characteristic defined binary form. While all facets
of biological sex are almost always aligned so that assignment of sex at birth is straightforward, rare
instances where any two or more facets of biological sex conflict constitute an intersex state, now referred
to as Disorders (or Differences) of Sex Development (DSD)(3). By contrast, gender is a subjective, malleable,
self-identified social construct which defines a person’s individual gender role and orientation. Prompted
by biological, personal and societal factors, volitional expression of gender can take on virtually any form
limited only by the imagination with some individuals asserting they have not just a single natal gender but
two genders, none, a distinct third gender or gender that varies (fluidly) from time to time. Hence, while
gender is usually consistent with biological sex as assigned at birth, in a few it can differ during life. For
example, if gender were the basis for eligibility for female sports, an athlete could conceivably be eligible to
compete at the same Olympics in both female and male events. These features render the unassailable

personal assertion of gender identity incapable of forming a fair, consistent sex classification in elite sport.

The strongest justification for sex classification in elite sport is that after puberty men produce 20 times
more testosterone than women (4-7) resulting in circulating testosterone concentrations 15 times higher
than in children or women of any age. Age-grade competitive sporting records show no sex-related
advantages prior to puberty onwards, whereas from the age of male puberty onwards there is a strong and
ongoing male advantage (8). The striking male post-pubertal increase in circulating testosterone provides a
major, ongoing, cumulative and durable physical advantage in sporting contests by creating larger and
stronger bones, greater muscle mass and strength, and higher circulating hemoglobin as well as possible
psychological (behavioural) differences. In concert, these render women, on average, unable to compete

effectively against men in power-based or endurance-based sports.

Sex classification in sport therefore requires proof of eligibility as only women should compete in the
protected (female) category. This deceptively simple requirement for fairness is taken for granted by peer
female competitors who regard participation by males, or athletes with physical features closely

resembling males, as unfair. This makes policing of eligibility inescapable for sports to avoid unfair male
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participation in female events. Yet, such policing inevitably intrudes into highly personal matters so that it
must be achieved with respect for dignity and privacy demanding use of the least invasive, scientifically
reliable means. Unsurprisingly this dilemma has always been highly contentious since it first entered
international elite sports in the early 20%" century and it has become increasingly prominent and
contentious in recent decades; nevertheless, the requirement to maintain fair play in female events will not
disappear as long as separate female competitions exist. Over recent decades there has been progressively
better understanding of the complex biology of genetic sex determination and the impact of pubertal
sexual maturation in establishing phenotypic sexual dichotomy in physical capabilities. These sex
dichotomous physical features form the basis of, but remain quite distinct from, adult gender roles and
identity. Over the last century as knowledge grew the attempts to formalize a scientific basis for the
unavoidable necessity of policing eligibility for the female category have been continually challenged. Most
recently, the increasing assertion of gender self-identification as a social criterion has further challenged
the hegemony of biology for determining “sports sex”, Coleman’s apt term (2). Allowing subjective gender
self-identification to become the sole criterion of sports sex would allow for gaming and perceptions of
systematic unfairness to grow. The case for women’s sports being defined by sex rather than gender,
including the consequences of acceding to gender-based classification have been outlined (9) in arguing the

importance of proper medical management of athletes intending to compete in female events.

Separate male and female events in sport is a dominant form of classification that is superimposed on
other graduated age group and weight (e.g. weightlifting, power lifting, wrestling, boxing, rowing)
classifications, which reflect differences in strength, power, speed to ensure fairness in terms of
opportunity to win and, additionally, safety in contact sports. Age and weight classifications rely on
objective criteria (birth date, weigh-in weight) for eligibility as necessarily should sex classification.
Nevertheless, some power sports dependent on explosive strength and power (eg throwing events,
sprinting) do not segregate weight classes, while other sports where height is an advantage (eg basketball,
jockeys) do not have height classifications. These sports disproportionately attract athletes with greater
weight and/or power-to-weight ratio or advantageous stature, respectively. If sex classification were
eliminated such open or mixed competitions would be dominated almost exclusively by men. It therefore
seems highly unlikely that sex classification would ever be discarded despite calls on philosophical or

sociological grounds to end “gender” classification in sport (10).

3. Sex difference in circulating testosterone levels

3.1 Testosterone biosynthesis, secretion and regulation in men and women

An androgen is a hormone capable of developing and maintaining masculine characteristics in reproductive

tissues (notably the genital tract, and other tissues and organs associated with secondary sexual
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characteristics and fertility) and contributing to the anabolic status of non-reproductive body tissues (11).
The two dominant bioactive androgens circulating in mature mammals, including humans -- testosterone
and its more potent metabolite, dihydrotestosterone (DHT) -- account for the development and maintenance
of all androgen-dependent characteristics, and their circulating levels in men and non-pregnant women arise

from steroids synthesized de novo in the testes, ovary or adrenals (12).

The sexually undifferentiated gonads in the embryo develop into either ovaries or testes according to
whether a y chromosome (or at least the sry gene) is present. After birth and until puberty commences,
circulating testosterone concentrations are essentially the same in boys and girls, other than briefly in the
neonatal period of boys when higher levels prevail. The onset of male puberty, a brain-driven process
triggered by a still mysterious hypothalamic or higher cerebral mechanism (13), initiates the hormonal
cascade of puberty. In males this leads to enhanced pituitary luteinizing hormone (LH) secretion that
stimulates the 500 million Leydig cells in the testes to secrete 3-10 mg (mean 7 mg) of testosterone daily (4,
6, 7, 14, 15). This creates a very high local concentration of testosterone within the testis as well as a steep
downhill concentration gradient into the bloodstream that maintains circulating testosterone levels at adult
male levels, which are tightly regulated by strong negative hypothalamic feedback of circulating
testosterone. However, in the absence of testes these mechanisms do not occur in females. In girls, serum
testosterone increases during puberty (16), peaking at age 20-25 years before declining gradually with age (17,
18) but it remains less than 2 nmol/L at all ages, as determined by a reliable method (see below). In adult
women, circulating testosterone is derived from three roughly equal sources — direct secretion from the adrenal
gland or the ovary as well as indirectly from extra-glandular conversion (in liver, kidney, muscle, fat, skin) from
testosterone precursors secreted by the adrenal and ovary. However, in combination these different sources
produce about 0.25 mg of testosterone daily so that throughout life women maintain circulating testosterone
levels of less than 2 nmol/L. Circulating testosterone concentrations in women are subject to little dynamic
physiological regulation. As a result, circulating testosterone concentrations in healthy pre-menopausal
women are stable (non-fluctuating) and not subject to strong negative feedback by exogenous testosterone
like men. Even the small rise (50%) at the time of the mid-cycle LH surge triggering ovulation (19), remains
within the physiological range for pre-menopausal females. In summary, only when circulating testosterone
concentrations in male adolescents rises above the circulating pre-pubertal concentrations does the
virilisation characteristic of men commence, progress and remain throughout adult life at least until old age

(18).

3.2 Male and female reference ranges for circulating testosterone

A reliable threshold for circulating testosterone must be set using measurement by the reference method of
liquid (or gas) chromatography-mass spectrometry (LC-MS) rather than using one of the various available

commercial testosterone immunoassays. The necessary reliance on steroid mass spectrometry for clinical
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applications in endocrinology, reproductive medicine and sports medicine is widely recognized. It has been
standard for decades in anti-doping science (20) and the growing consensus is that it is required for high
quality clinical research and practice recognized by cognate professional societies (21, 22) and editorials in
leading clinical endocrinology (23) and reproductive medicine (24) journals. The inherently limited specificity
of testosterone immunoassays arises from antibody cross-reactivity with structurally related steroids (such as
precursors and metabolites) other than the intended target. As a result, all steroid immunoassays including
for testosterone display method-specific bias whereby, for example, the lower limit of a testosterone
reference range in healthy young men varies from 7.3 to 12.6 nmol/L according to the immunoassay used, so
that no consensus definition of a lower limit could be obtained independent of the commercial immunoassay
method used (25). Further, testosterone immunoassays are optimized for circulating levels in men but display
increasing inaccuracy at the lower, by an order of magnitude, circulating testosterone concentrations in
women or children. In contrast to immunoassays, LC-MS based methods are highly specific and do not
depend on proprietary antibodies. Using LC-MS-based measurements, method-specific bias can be avoided
and a fixed consensus lower reference limit defined (see table 1). Hence, for the precision required in
sports medicine, whether for eligibility criteria or anti-doping applications, testosterone in serum must be

measured by LC-MS methods.

Prior to puberty, levels of circulating testosterone as determined by LC-MS are the same in boys and girls
(16) as well as remaining lower than 2 nmol/L in women of all ages. However, from the onset of male
puberty the testes secrete 20 times more testosterone resulting in circulating testosterone levels that are
15 times greater in healthy young men than age similar women. Using LC-MS measurement, circulating
testosterone in adults has a strikingly, non-overlapping bimodal distribution with wide and complete
separation between men and women. Table 1 summarises data from appropriate reported studies using
MS-based methods to measure serum testosterone in healthy men and women. Based on a number-
weighted pooling with conventional 95% two-sided confidence limits of the eight available studies using LC-
MS measurements of serum testosterone, the limits of the reference range for healthy young men (18 to
40 years) is 7.7 nmol/L to 29.4 nmol/L. Similarly, summarising the nine available studies for healthy
menstruating women under 40 years, the 95% (two sided) reference range is 0 to 1.7 nmol/L. These
reference limits neglect factors such as oral contraceptive use (26, 27), menstrual phase (19), SHBG (28,
29), overweight (30, 31), fasting and smoking (32), as well as diet (31) and physical activity (33, 34) in
women and men, all of which have small effects on circulating testosterone but without materially
influencing the divergence between the non-overlapping bimodal distribution of male and female

reference ranges of circulating testosterone.

In creating a threshold for eligibility for female events it is also necessary to make allowance for

hyperandrogenic women including women with polycystic ovary syndrome (PCOS) and non-classical
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adrenal hyperplasia. PCOS is a relatively common disorder among women of reproductive ages with a
prevalence of 6-10%, depending on the diagnostic criteria used (35), in which mild hyperandrogenism is a
key clinical feature and has higher than expected prevalence among elite female athletes (26, 36-38). Non-
classical adrenal hyperplasia is a milder and later (adult) onset variant of classical congenital adrenal
hyperplasia (39) with a much higher but still rare population prevalence (1:1000 vs 1:16,000 for the classical
variant (40). Table 2 summarises clinical studies (n=16, 240 women) reporting serum testosterone
concentrations measured by LC-MS in samples from women with PCOS. The pooled data reveals that the
upper limit of serum testosterone in women with PCOS is 3.1 nmol/L (95% confidence interval, one sided)
or 4.8 nmol/L (using a 99.99% confidence interval, one sided) (table 3). Hence a conservative threshold for
circulating testosterone of 5 nmol/L measured by LC-MS would identify fewer than 1:10,000 women with
PCOS as false positives, based on circulating testosterone measurement alone. Circulating testosterone
higher than this threshold is likely to be due to testosterone-secreting adrenal or ovarian tumors,

intersex/DSD, badly controlled or non-compliant M2F transgender athletes or testosterone doping.

3.3 The physiological effects of testosterone depend on the circulating testosterone, not its source

(endogenous or exogenous)

Testosterone, whether of natural endogenous or manufactured exogenous source, has an identical chemical
structure and biological effects, aside from minor differences in isotopic composition which are biologically
insignificant. Regardless of its source, at equivalent doses and circulating levels, exogenous testosterone
exerts the same biological and clinical effects on every known androgen-responsive tissue or organ, apart
from effects on spermatogenesis, which as discussed below is only a matter of degree. Consequently,
exogenous testosterone is a fully effective substitute for endogenous testosterone in therapeutic use,
countering the effects of testosterone deficiency due to hypogonadism (reproductive system disorders). Any
purported differences between endogenous and exogenous testosterone are, like the differences between
men and women, due to corresponding differences in the endogenous production rate or exogenous dose.
Such differences in effective exposure lead to corresponding differences in circulating testosterone levels

and its effects according to the dose-response curves for testosterone.

Like all hormones and drugs, over their effective range of biological activity the dose-response relationship
for testosterone is usually a sigmoidal curve with lower and upper plateaus joined by a monotonically rising
middle region, which may be linear in the natural scale but more often log-linear (linear on the log or similar
transformed scale). In the middle portion of the typical sigmoidal dose-response curve for the same increase
in testosterone dose (or concentration), the response would be increased in simple proportional (ie linear)
but more often on a logarithmic scale. By contrast, at the lower and upper plateaus of dose or concentrations,
changes in testosterone exposure may evoke minimal or no response on the endpoint. For example, in

women of any age circulating testosterone concentrations are along the lower plateau of the dose-response
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curve, so that increases in circulating testosterone concentrations within that lower plateau may have
minimal or no effect. In female athletes with the mild hyperandrogenism of PCOS, higher performance has
been shown (38) with their muscle mass and power performance correlating with androgen levels (26).
However, beyond these effects where endogenous testosterone concentrations are in the high-normal adult
female range, it is only when the increases in circulating testosterone concentrations substantially and
consistently exceed those prevailing in childhood (<2 nmol/L) and among women including those with PCOS
(<5 nmol/L) that the effects would replicate rising testosterone concentrations of boy’s in mid- to late
puberty (typically >8 nmol/l) which cause the masculinizing effects of increased muscle, bone and
hemoglobin characteristics of men. As shown above, the circulating testosterone of most women never
reaches consistently above 5 nmol/L, a level which boys must sustain for some time to exhibit the

masculinizing effects of male puberty.

Secondarily, the effects of testosterone are modulated in a form of fine tuning by the patterns of exposure,
such as whether the circulating testosterone is delivered in the un-physiological steady-state format (e.g.
guasi-steady state delivery by implant or transdermal products) or by the peak-and-trough delivery of
injections as opposed to the natural state of endogenous fluctuations in serum testosterone around the
average adult male levels. However, these latter pattern effects are subtle and the dominant effect remains
that of dose and average testosterone concentrations in blood, however they arise. Furthermore, there is
evidence that the androgen sensitivity of responsive tissues differ and may be optimal at different circulating

testosterone concentrations (41).

Male sexual function is maintained by endogenous testosterone at adult male circulating concentrations.
These effects can be replicated by exogenous testosterone if and only if it achieves comparable circulating
testosterone concentrations. For example, in a well-controlled prospective study of older men with prostate
cancer (42), androgen deprivation achieving castrate levels of circulating testosterone sustained over 12
months markedly suppressed sexual desire and function, whereas those effects did not occur in age-matched
men having non-hormonal treatment for prostate cancer or those without prostate cancer. In healthy
younger men whose endogenous testosterone is fully suppressed, their sexual function completely recovers
when circulating testosterone was restored to the physiological male range by administration of exogenous
testosterone (43). Similar effects were also observed in healthy, middle-aged men in whom male sexual
function was fully maintained (compared with placebo) during 2 years of treatment with an exogenous
androgen (DHT) despite it causing sustained, complete suppression of endogenous testosterone (44). This
further supports the key interpretation that the biological effects of exogenous or endogenous testosterone

are the same at comparable circulating levels.

Clinically, exogenous testosterone replicates fully all effects of endogenous testosterone on every

reproductive and non-reproductive organ or tissue, with the sole exception of the testis. Sperm production
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in the testis requires a very high concentration of testosterone (typically 100 times greater than in the general
bloodstream), which is produced in nature only by the action of the pituitary hormone LH. LH stimulates the
Leydig cells in the interstitial space of the testis between seminiferous tubules to produce high intra-testicular
concentrations of testosterone, which are necessary and sufficient to initiate and maintain sperm production
in the adjacent seminiferous tubules. This high concentration of testosterone also provides a downbhill
gradient to supply the rest of the body, where circulating testosterone acts on androgen-responsive tissues
to maintain masculine patterns of androgenization. When exogenous testosterone (or any other androgen)
is administered to men, pituitary LH is suppressed by negative feedback and the sperm production halts for
as long as exogenous testosterone or androgen exposure continues, after which it recovers (45). However,
even the reduction in spermatogenesis and testis size when men are treated with exogenous testosterone is
only a matter of degree. It is well established in rodents (46, 47) that spermatogenesis is induced by
exogenous testosterone if the testosterone concentrations in the testis are high enough to replicate what
occurs naturally via LH stimulation (48). However, direct replication that high dose testosterone also initiates
and maintains spermatogenesis in humans is not feasible as these testosterone doses are 10-100 times
higher than could be safely given to humans. Nevertheless, confirmatory evidence in humans is available
from rare cases of men with an activating mutation of the CG/LH receptor (49, 50). This mutation causes
autonomous testicular testosterone secretion leading to precocious puberty arising from the premature
adult male circulating testosterone concentrations which lead to complete suppression of circulating
gonadotropin (LH, FSH) secretion. In this illustrative case the testis was exposed to non-physiologically high
testosterone concentrations (but without any gonadotropin stimulation) which induced sperm production
and allowed for natural paternity (49). This indicates that even for spermatogenesis, exogenous testosterone
can replicate all biological effects of endogenous testosterone in accordance with the relevant dose-response

characteristics.

The most realistic view is that increasing circulating testosterone from the childhood or female range to the
adult male range will have the same physiological effects whether the source of the additional testosterone
is endogenous or exogenous. This is strongly supported by well-established knowledge about the relationship
of circulating testosterone concentrations with the timing and manifestations of male puberty. The
characteristic clinical features of masculinisation (muscle growth, increased height, increased hemoglobin,
body hair distribution, voice change etc) appear only if and when circulating testosterone concentrations rise
into the range of males at mid-puberty which are higher than in women at any age even after the rise in
circulating testosterone in female puberty. If and only if the pubertal rise in circulating testosterone fails,
the males affected are clinically considered hypogonadal. Such a failure of male puberty may occur for
genetic reasons (arising from mutations that inactivate any of the cascade of proteins whose activity is critical
in the hypothalamus to trigger male puberty) or as a result of acquired conditions, caused by pathological

disorders of the hypothalamus or pituitary or functional defects arising from severe deficits of energy or

Page 11 of 51



356
357
358
359
360
361

362

363
364
365
366
367
368
369
370

371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387

388
389
390

nutrition (eg extreme overtraining, undernutrition), the latter being comparable with hypothalamic
amenorrhea or anorexia nervosa in female athletes/ballet dancers. If male puberty fails, testosterone
replacement therapy is fully effective in replicating the all the distinctive masculine features apart from

spermatogenesis.

3.4 Elevated circulating testosterone concentration caused by DSDs

Rare genetic intersex conditions known as DSDs can lead to markedly increased circulating testosterone in
women and, when coupled with ambiguous genitalia at birth, appearing as undervirilized male, or virilized
females. This can cause athletes who were raised and identify as women to have circulating testosterone
levels comparable with men and much exceeding that of non-DSD (and non-doped) women, including those
with PCOS. Key congenital disorders in this category are 46 XY DSDs namely 5a reductase deficiency (51),
17B-hydroxysteroid dehydrogenase type 3 deficiency (52), androgen insensitivity (53, 54) as well as
congenital adrenal hyperplasia (55), which is a 46 XX DSD. There is evidence that the first three conditions,
components of 46 XY DSDs, are 140 times more prevalent among elite female athletes than expected in the

general population (56).

Genetic 5a reductase deficiency is due to an inactivating mutation in the 5a reductase type Il enzyme (51).
This leads to a deficit of DHT during fetal life when DHT is required for converting the sex-undifferentiated
embryonic and fetal tissue to form the sex-differentiated masculine form external genitalia. Although genetic
males (46 XY) with 5a reductase deficiency will develop testes, they usually remain undescended and labial
fusion to form a scrotum and phallic growth does not occur. Hence at birth the external genitalia may appear
feminine, leading to a female assigned natal sex. Thus, individuals with 5a reductase deficiency may have
male chromosomal sex (46 XY), gonadal sex (testes), and hormonal sex (adult male testosterone
concentrations), but such severely under-virilized genitalia that affected individuals may be raised from birth
as females rather than as under-virilized males. However, from the onset of male puberty, testicular Leydig
cells start producing large amounts of testosterone, and the steep rise in circulating testosterone to adult
male levels (with the permissive role of 5a reductase activity) leads to masculine virilisation, including male
patterns of muscle and bone growth, hemoglobin levels and other masculine body habitus features (hair
growth pattern, voice change), as well as phallic growth (56). Such changes of male puberty prompt around
half affected individuals who had female sex assigned at birth and developed as girls prior to puberty to adopt
a male gender identity and role (57). Sperm are formed in the testes so that, using in vitro fertilization, these

individuals may father children (58).

Seventeen B-hydroxysteroid dehydrogenase type 3 deficiency (52) has a similar natural history to 5a
reductase deficiency. This disorder is due to inactivating mutations in a steroidogenic enzyme expressed only

in the testis and which is essential for testosterone formation in the fetus. In the absence of a functional
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enzyme, the testis makes little testosterone but instead secretes large amounts of androstenedione, the
steroid immediately prior to the enzymatic block. In the circulation, the excess of androstenedione is
converted to testosterone (mainly by the enzyme AKR1C3(12)). Although the circulating testosterone is then
converted to circulating DHT, insufficient DHT is formed locally within the urogenital sinus to virilise genitalia
at birth. This causes the same severe under-virilisation of the external genitalia of genetically male
individuals, leading to ambiguous genitalia at birth despite male chromosomal, gonadal and hormonal sex.
When puberty arrives, the testes start producing the adult male testosterone output this leads to marked
virilisation and subsequent assumption of a male gender identity by some affected individuals, conflicting

with a female assigned natal sex and childhood upbringing.

Androgen insensitivity, which arises from mutation in the androgen receptor (AR), poses different but
complex challenges for eligibility for female athletic events. As the AR is located on the X chromosome,
genetic males (46 XY) are hemizygous, so that an inactivating mutation in the AR can be partially or fully
insensitive to androgen action. Affected individuals have male internal genitalia (testes in the inguinal canal
or abdomen with Wolffian ducts) and consequently adult male circulating testosterone concentrations after
puberty. These non-lethal mutations have a wide spectrum of functional effects, ranging from full resistance
to all androgen action in complete androgen insensitivity syndrome (CAIS) where individuals have a full
female phenotype with normal female external genitalia, to partial androgen insensitivity syndrome (PAIS)
where some androgen action is still exerted leading to various degrees of ambiguous genitalia, or to mild
androgen insensitivity which produces a very mild, under-virilised male phenotype (normal male genital and
somatic development but with little body hair and no male pattern balding) (53). Testosterone (and
dihydrotestosterone) have no consistent effect of inducing normal nitrogen retention (anabolic) responses
in patients with CAIS (59-62) although some reduced androgen responsiveness is retained by patients with
PAIS (60, 63-66). Athletes with CAIS can fairly compete as females because the circulating testosterone,
although at adult male levels, has no physiological effect so that, in terms of androgen action and the ensuing
physical somatic advantages of male sex, affected individuals are indistinguishable from females and gain no
benefits of the sex difference arising from unimpeded testosterone action. A more complex issue arises with
athletes having PAIS reflecting the degree of incomplete impairment of AR function. Residual androgen
action in such AR mutations is harder to characterise quantitatively as there is no standardized, objective in
vitro test to quantify AR functionality. Hence, although individuals with PAIS may have adult male circulating
testosterone concentrations but variable androgen sensitivity, at present this requires a case-by-case
evaluation, primarily based on the degree of virilisation. The current best available clinical approach to
determining the functional impact (degree of functionality/sensitivity) of an AR mutation is based on the
degree of somatic, primarily genital, virilisation assessed according to the Quigley classification of grade of

androgen sensitivity (67).

Congenital adrenal hyperplasia (CAH) is a relatively common defect in adrenal steroidogenesis in the
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enzymatic pathway leading to synthesis of cortisol, aldosterone and sex steroid precursors. The disease
varies in severity from life-threatening (adrenal failure) to mild (hirsutism and menstrual irregularity), or even
asymptomatic and undiagnosed. The most common mutations causing CAH occur in the 21 hydroxylase
enzyme, accounting for 95% of cases (55). The defect leads to a bottleneck, creating a major backing up of
precursor steroids which then overflow into other steroid pathways, leading to diagnostic high levels of 17
hydroxyprogesterone and, in female patients, excessive circulating testosterone or other adrenal-source
androgen precursors (eg androstenedione, DHEA) which may be converted to testosterone in tissues. A
common clinical problem with management of CAH is that glucocorticoid/mineralocorticoid treatment is not
always fully effective partly due to variable compliance, which may leave high circulating testosterone,
including well into or even above the normal male range (68). It is unlikely that mild non-classical congenital
adrenal hyperplasia is a major contributor to the mild hyperandrogenism prevalent among elite female
athletes. The prevalence of PCOS (6-16%) is about 100 times higher than mild non-classical congenital adrenal
hyperplasia (0.1%, (40)) while a disproportionately high number of elite female athletes (especially in power
sports) have PCOS (36). In one study of hyperandrogenic female athletes, even mild NCAH was ruled out by
normal 17 hydroxyprogesterone (26) and in another (38) reported serum androstenedione and cortisol did

not differ from controls, ruling out significant congenital adrenal hyperplasia..

4. Sex difference in muscle, hemoglobin, bone and athletic performance relating to adult

circulating testosterone concentrations

Following puberty, testosterone production increases (16) but remains below 2 nmol/L in women whereas
in men testosterone production increases 20-fold (from 0.3 mg a day to 7 mg a day) leading to a 15-fold
higher circulating testosterone concentrations (15 vs 1 nmol/L). The greater magnitude of sex difference in
testosterone production (20 fold) compared with circulating levels (15 fold) is due to women’s higher
circulating SHBG, which retards testosterone clearance creating a slower circulating half-time of
testosterone. This order of magnitude difference in circulating testosterone concentrations is the key factor

to men’s superior athletic performance due to androgen effects principally on muscle, bone and hemoglobin.

4.1 Muscle

4.1.1 Biology:

It has been known since ancient times that castration influences muscle function. Modern knowledge of the
molecular and cellular basis for androgen effects on skeletal muscle involves effects due to androgen
(testosterone, DHT) binding to the androgen receptor which then releases chaperone proteins, dimerizes
and translocates into the nucleus to bind to androgen response elements in the promoter DNA of androgen

sensitive genes. This leads to increases in (a) muscle fibre numbers and size, (b) muscle satellite cell numbers,
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(c) numbers of myonuclei, and (d) size of motor neurons (69). Additionally there is experimental evidence
that testosterone increases skeletal muscle myostatin expression (70), mitochondrial biogenesis (71),
myoglobin expression (72) and insulin-like growth factor (IGF-I) content (73) which may augment energetic

and power generation of skeletal muscular activity.

Customized genetic mouse models can provide unique physiological insight in targeting specific molecules or
their receptors to provide experimental insight into mammalian physiology which is unobtainable by human
experimentation. The tight evolutionary conservation of the mammalian reproductive system explains why
genetic mouse models have provided consistent, high fidelity replication of the human reproductive system
(74, 75). Genetic males (46XY) with androgen insensitivity displaying similar features occur through
spontaneously occurring inactivating AR mutations in all mammalian species studied including human, where
they are known as women with CAIS. The converse, genetic females (46XX) resistant to all androgen action,
cannot occur naturally in humans or other mammals. This is because fully androgen resistant females must
have both X chromosomes carrying an inactivated AR. In turn this requires acquiring one X chromosome from
their father. However, the potential fathers are sterile as hemizygous males bearing a single copy an X
chromosome with an inactive AR produce no sperm, as a functional AR is biologically indispensable for
making sperm in any mammal. However, androgen resistant females can be bred by genetic engineering
using the Cre-Lox system (76). An important finding from such studies is that androgen-resistant female mice
have essentially the same muscle mass and function compared with wild-type androgen sensitive females
bearing normal AR whereas androgen-resistant male mice have smaller and weaker muscle mass and
function than wild-type males but are comparable instead with the muscle of wild-type females (77). This
indicates that androgen action, represented by circulating testosterone, is the key determinant of the higher
muscle mass and strength characteristic of males compared with females. Furthermore, endogenous
circulating testosterone has minimal effects on skeletal muscle mass and strength in female mice. Although
these experiments cannot be replicated in humans, their key insight is that the higher circulating testosterone
in males is the determinant of the male’s greater muscle mass and function compared with females.
Nevertheless, there is also evidence that hyperandrogenic women, mostly with PCOS, have increased muscle
mass and strength that correlates with mildly increased circulating testosterone in the high-normal female

range (26, 38).

4.1.2 Observational data:

There is a clear sex difference in both muscle mass and strength (78-80) even adjusting for sex differences in
height and weight (80, 81). On average, women have 50-60% of men's upper arm muscle cross-sectional
area (CSA) and 65-70% of men's thigh muscle CSA; and women have 50-60% of men's upper limb strength
and 60-80% of men's leg strength (82). Young men have on average a skeletal muscle mass of over 12kg

greater than age-matched women at any given body weight (80, 81). While numerous genes and
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environmental factors (including genetics, physical activity and diet) may contribute to muscle mass, the
major cause of the sex difference in muscle mass and strength is the sex difference in circulating

testosterone.

Age-grade competitive sports records show minimal or no female disadvantage prior to puberty, whereas
from the age of male puberty onwards there is a strong and ongoing male advantage. Corresponding to the
endogenous circulating testosterone increasing in males after puberty to 15-20 nmol/L (sharply diverging
from the circulating levels that remain <2 nmol/L in females), male athletic performances go from being equal
on average to those of age-matched females to 10-12% better in running and swimming events, and 20%
better in jumping events (8) (figure 1). Corroborative findings are provided by a Norwegian study that
examined performance of adolescents in certain athletic events but without reference to contemporaneous
circulating testosterone concentrations (83). The striking post-pubertal increase in male circulating
testosterone provides a major, ongoing, cumulative and durable advantage in sporting contests by creating
at least greater muscle mass and strength such that these sex differences render women unable to compete

effectively against men, especially (but not only) in power sports.

These findings are supported by studies of non-athletic women showing that muscle mass is increased in
proportion to circulating testosterone in women with mildly elevated testosterone levels due to PCOS (84,
85), a condition which is more prevalent among elite female athletes who exhibit these features (26, 36, 38),
often undiagnosed (37), but which may provide an ergogenic advantage (38), consistent with the graded

effects of circulating testosterone on explosive performance in men and women (86).

Studies of elite female athletes further corroborate these findings. One study demonstrates dose-response
effects of better performance in some (400m, 400m hurdles, 800 m running, hammer throw, pole vault) but
not all athletic events correlated with significantly higher endogenous testosterone in female, but not male,
athletes. Even within the low circulating testosterone levels prevailing within the normal female range, in
these events there was a significant advantage of 1.8% to 4.5% among those in the highest compared with
the lowest tertile of endogenous testosterone (27). A further study of elite female athletes corroborates and
extends these observations in that endogenous androgens are associated with a more anabolic body
composition as well as enhanced muscular performance (26). In this study 106 Swedish Olympic female
athletes were compared with 117 age- and weight (BMI)-matched sedentary control women for their muscle
and bone mass (by dual energy X-ray absorptiometry, DEXA), their muscular strength (squat and
countermovement jumps), and testosterone and DHT, as well as androgen precursors (DHEA,
androstenedione) and urinary androgen glucuronide metabolites (androsterone, etiocholanolone, 3 and 17
3a-diols) measured by liquid chromatography-mass spectrometry (26). The athletes displayed higher muscle
(and bone) mass than the sedentary control women, with strength tests correlating strongly with muscle
mass whether in total or just in the legs. In turn, muscle mass and strength were correlated with androgens

and androgen precursors. Considering that such studies may be confounded by factors such as menstrual
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phase and dysfunction, and heterogeneous sports disciplines, which weaken the power of the study, these

findings can be regarded as quite robust.

4.1.3 Interventional data:

Dose-response studies show that, in men whose endogenous testosterone is fully suppressed, add-back
administration of increasing doses of testosterone that produce graded increases in circulating testosterone,
causes a dose-dependent (whether expressed according to testosterone dose or circulating levels) increase
in muscle mass (measured as lean body mass) and strength (41, 87). Taken together, these studies prove that
testosterone doses leading to circulating concentrations from well below to well above the normal male
range have unequivocal dose-dependent effects on muscle mass and strength. These data strongly and
consistently suggest that the sex difference in lean body mass (muscle) is largely, if not exclusively, due to
the differences in circulating testosterone between men and women. These findings have strong implications

for power-dependent sport performance and largely explain the potent efficacy of androgen doping in sport.

The key findings providing conclusive evidence that testosterone has prominent dose-response effects in
men are reported in studies by Bhasin et al that proved a monotonic dose-response, extending from sub- to
supra-physiological range for men for testosterone effects on muscle mass, size and strength in healthy
young men, findings that have been replicated and confirmed by an independent group (41). Both sets of
studies used a common design of fully suppressing all endogenous testosterone (to castrate levels) for the
full duration of the experiment by administering a GnRH analog. In the Bhasin studies, participants were then
randomized to five groups who received weekly injections of 25 mg, 50 mg, 125 mg, 300 mg or 600 mg of
testosterone enanthate for 20 weeks. In effect this was two sub- and two supra-physiological testosterone
doses. In these studies, the lowest testosterone dose produced a mean serum testosterone of 253 ng/dl (8.8
nmol/L) in younger men and 176 ng/dl (6.1 nmol/L) in older men. The studies showed a consistent dose-
response for muscle mass and strength that was clearly related to testosterone dose and consequential blood

testosterone concentrations (upper panel, figure 2).

The study of Finkelstein et al involved the same design and involved 400 healthy men aged 20 to 50 years of
age who had complete suppression of endogenous testosterone for the 16 weeks of the study with
testosterone added back using daily doses of 0, 1.25 g, 2.5 g, 5 g or 10 g of a topical 1% testosterone gel (41).
This again created a graded dose-response curve for serum testosterone and for muscle mass and strength.
The inclusion of a zero (placebo) dose allowed differentiation between the zero and lowest testosterone
dose. The placebo (zero) dose produced a serum testosterone of 0.7 nmol/L, the typical mean for castrated
men, childhood, and women of any age. Meanwhile the lowest testosterone dose (1.25 g gel per day)
produced a serum testosterone of 6.9 nmol/L, which is equivalent to that of a male in early to mid-puberty.
A key finding for this review is that, from this study of men, the increase in serum testosterone from mean
of normal female concentration (0.9 nmol/L) to supra-physiological female concentrations (6.9 nmol/L)

produced significant increases of 2.3% for total body lean (muscle) mass, 3.0% for thigh muscle area, and
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5.5% increase in leg press strength (digitised data pooling both cohorts from lower panel, figure 2).

Studies of the ergogenic effects of supra-physiological concentrations of circulating testosterone require
studies administering graded doses of exogenous testosterone for months. Due to ethical concerns
regarding risks of unwanted virilisation and hormone-dependent cancers, however, few studies have
administered supra-physiological testosterone doses to healthy women. One well designed, randomized
placebo-controlled study of postmenopausal women investigated the effects of different testosterone doses
on muscle mass and performance and physical function (88). Sixty-two women (mean age 53) all had a
standard estrogen-replacement dose administered during a 12 week run-in period (to eliminate any
hypothetical confounding effects of estrogen deficiency), after which they were randomized to one of five
groups receiving weekly injections of testosterone enanthate (doses: 0, 3 mg, 6.25 mg, 12.5 mg, and 25 mg
respectively) for 24 weeks. The increasing doses of testosterone produced an expected dose-response in
serum testosterone concentrations (by LC-MS) with the highest testosterone dose (25 mg/week) produced
a mean nadir concentration of 7.3 nmol/L. The women whose testosterone concentrations were increased
to 7.3 nmol/L achieved significant increases in muscle mass and strength (table 4), ranging from 4.4% for
muscle (lean) mass to between 12% and 26% for measures of muscle strength (chest and leg press, loaded
stair climb). As muscle strength measurement is effort-dependent, the placebo-controlled design of the
Huang study support the further interpretation that the highest dose of testosterone also had prominent
mental motivational effects in the effort-dependent tests of muscle strength. These findings provide salient
direct evidence of the ergogenic effects of hyperandrogenism in female athletes confirming that at least up
to average circulating testosterone concentrations of 7.3 nmol/L, women display a similar dose-response

relationship as do men for supra-physiological testosterone with significant gains in muscle mass and power.

These effects of testosterone administration on circulating testosterone concentrations in females may be
compared with the effects in males from the Finkelstein and Bhasin studies. In men, the lowest testosterone
dose (1.25 g/day) increased mean serum testosterone to 6.9 nmol/L equivalent to early to mid-male puberty
resulting in significant increases of total body lean (muscle) mass (2.3%), thigh muscle area (3.0%), and leg
press strength (5.5%) compared with the placebo dose which resulted in a serum testosterone of 0.7 nmol/L.
In the Huang study (figure 3), muscle mass and strength in postmenopausal women displayed a flat response
at the 3 lower doses, when circulating testosterone concentrations remain below 5 nmol/L, and displayed a
significant increase only when the mean circulating testosterone concentration produced by the highest
testosterone dose first increased circulating testosterone concentrations above 5 nmol/L. This pattern, flat
at lower doses and rising at highest dose, represents the lower plateau and the earliest rising portion,

respectively, of the sigmoidal dose-response curve of testosterone for muscle.

Data corroborating the Huang study results comes from another well-controlled study in which post-

menopausal women who were administered methyl testosterone following a run-in period of estrogen
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replacement displayed a significant increase in lean (muscle) mass as well as upper and lower limb power

during a 16-week double-blind, parallel group study (89).

Similarly, two prospective studies of the first 12 months treatment of transmen (F2M transgender) shows a
consistent major increase in muscle mass and strength due to testosterone administration. In one study
testosterone treatment of 17 transmen achieving adult male circulating testosterone levels (mean 31 nmol/L)
increased muscle mass by 19.2% (90) whereas, conversely, testosterone suppression (using an estrogen-
based treatment regimen) in 20 transwomen reduced circulating testosterone levels from adult male range
to adult female range led to a 9.4% reduction in muscle mass (measured as cross-sectional area). In a second
study, 23 transmen administered adult male testosterone doses also produced striking increases in total body
muscle size and limb muscle size (by 6.5-16.6%) and grip strength (by 18%) compared with age-matched

untreated control women (91).

4.1.4 Effects on athletic performance:

In summary, muscle growth, and the increase in strength and power it brings, has an obvious performance-
enhancing effect, in particular in sports that depend on strength and (explosive) power, such as track and
field events (83, 86). There is convincing evidence that the sex differences in muscle mass are sufficient to
account for the increased strength and aerobic performance of men compared with women and are in
keeping with the differences in world records between the sexes (92). The basis for the sex difference in
muscle mass and strength is the sex difference in circulating testosterone as clearly shown (for example) by
(a) the enhanced athletic performance of men compared with pre-pubertal boys and women (8); (b) the close
correspondence of muscle growth (muscle size) with muscle strength in ascending dose studies in men by
Bhasin et al (87, 93-95) and Finkelstein et al (41) and in postmenopausal women by Huang et al (88) (c) the
effect of male castration in reducing muscle size and strength, effects which are fully rectified by testosterone
replacement; and (d) the striking efficacy of androgen doping on the sports performances of GDR female

athletes (96).

4.2 Hemoglobin

4.2.1 Biology
It is well known that circulating hemoglobin is androgen-dependent and consequently higher in men than in
women; however, the physiological mechanism by which androgens like testosterone boosts circulating
hemoglobin is not fully understood (97). Testosterone increases secretion of and sensitivity to erythropoietin,
the main trophic hormone for erythrocyte production and thereby hemoglobin synthesis as well as
suppressing hepcidin (98), a crucial iron regulatory protein that governs the body’s iron economy. Hepcidin

has to balance the need for iron absorption from foods (the only source of iron required for body’s iron-
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containing proteins) against the risk that the body has no mechanism to shed excess iron which can be toxic.
Adequate iron availability is essential for normal erythropoiesis and synthesis of key heme, iron-containing
oxygen-transporting proteins such as hemoglobin and myoglobin (99) as well as other iron-dependent
proteins such as cytochromes and DNA synthesis and repair enzymes. Experimental evidence in mice shows
that testosterone increases myoglobin content of muscle with potential for augmenting aerobic exercise

performance (72), but this has not been evaluated in humans.

Increasing the amount of hemoglobin in the blood has the biological effect of increasing oxygen transport
from lungs to tissues, where the increasing availability of oxygen enhances aerobic energy expenditure. This
is exploited to its greatest effect in endurance sports (1). The experiments of Ekblom in 1972 (see redrawn
figure 4) demonstrated strong linear relationships between changes in hemoglobin (due to withdrawal or re-
transfusion of 1, 2 or 3 units (400 mL) of blood) and aerobic capacity, established by repeated testing of
maximal exercise-induced oxygen consumption before and after each procedure (100). As already noted,
circulating hemoglobin levels are on average 12% higher in men than women (101). It may be estimated that
as a result the average maximal oxygen transfer will be about 10% greater in men than in women, which has

a direct impact on their respective athletic capacities.

4.2.2 Observational data:
Circulating hemoglobin levels are on average 12% higher in men than in women (101), likely to be due to the
sex difference in average circulating testosterone concentrations. This interpretation is supported by the
fact that male castration (eg for advanced prostate cancer) (102) and androgen deficiency due to
reproductive system disorders (103) reduce circulating hemoglobin in men, eliminates the sex difference
whereas testosterone replacement therapy restores circulating hemoglobin to adult male levels (97, 103,

104).

Women with CAH require glucocorticoid replacement therapy but exhibit widely varying levels of hormonal
control (55). An unusually informative observational study provides unique insight into testosterone effects
on circulating hemoglobin in otherwise healthy women (68). The degree of poor control is associated with
increasing levels of circulating testosterone ranging from normal female concentrations up to 36 nmol/L and
these correlates closely (r=0.56) with circulating hemoglobin (figure 5). Interpolating from the dose-response
regression, increases in circulating testosterone measured by LC-MS from 0.9 nmol/L to 5 nmol/L, 7 nmol/L,
10 nmol/L and 19 nmol/L were associated with a strong dose-response relationship of increased circulating
hemoglobin by 6.5%, 7.8%, 8.9% and 11%, respectively. An 11% increase in circulating hemoglobin translates
to a 10% difference in maximal oxygen transfer (100), which may account for virtually all the 12% sex
difference in male and female circulating hemoglobin (101). To put this into context, any drug that achieved
such increases in hemoglobin would be prohibited in sport for blood doping, as this difference is sufficient to

have ergogenic effects. That is even regardless of any testosterone effects on muscle mass or strength for
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which data were not available in that study. Conversely, among elite female athletes with circulating
testosterone in the healthy pre-menopausal female range, circulating hemoglobin does not correlate with
athletic performance (27). In women with the mild hyperandrogenism of PCOS circulating hemoglobin and
hematocrit are reported as not (105) or marginally increased (106), findings which may be influenced by the
fact that PCOS is associated with reduced or absent menstruation, thereby reducing the iron loss of regular

menstruation.

4.2.3 Interventional data:

In the Bhasin studies, in both young and older men the highest testosterone dose produced a 12% increase
in blood hemoglobin compared with the lowest dose reflecting a strong dose-response relationship (figure
6) (107). Analogous findings were reported for testosterone treatment effects in postmenopausal women
where the highest dose (25 mg weekly) of testosterone, which increased mean serum testosterone to 7.3

nmol/L, had the largest increase (3%) in blood hemoglobin and hematocrit (88).

Corroborative findings are available from studies of transmen (F2M transgender), natal females who receive
testosterone treatment at replacement doses to create adult male circulating testosterone concentrations,
who exhibit increases in circulating hemoglobin to male levels (reviewed (108-110)). One prospective 12
month study of transgender (non-athlete) individuals reported that testosterone suppression (by an
estrogen-based regimen) to normal female levels in 20 (M2F) transwomen reduced hemoglobin by 14%,
whereas conversely testosterone treatment in 17 (F2M) transmen which created mean circulating

testosterone levels of 31 nmol/L increased hemoglobin levels by 15% (90).

If such an increase in hemoglobin were produced by any chemical substance, it would be considered doping,

according to the World Anti-Doping Code.

4.3 Bone
4.3.1 Biology:

There is extensive experimental evidence from genetic mouse models showing that the sex difference in
bone size, mass and function are due to the sex difference in circulating testosterone. These effects have
been reported from studies of global and tissue or cell-selective inactivation of AR or estrogen receptors (ER)
which show that androgen effects are mediated by both direct effects on the AR as well as indirect effects
mediated via aromatisation of testosterone to estradiol to act on ER (reviewed in (111)). Bone grows in length
due to epiphyseal chondral growth plates which provide cartilage forming the matrix for lengthening of long
bone which is terminated by estrogen-dependent mechanism that depends on aromatisation of testosterone
to estradiol. Similarly, bone width and density are increased through appositional growth from periosteal

and endosteal expansion which depend on bone loading and androgen exposure together with other factors.
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An important difference between androgen effects on bone compared with effects on muscle or hemoglobin

is that developmental bone effects of androgens are likely to be irreversible.
4.3.2 Observational data:

Men have distinctively greater bone size, strength and density than women of the same age. As with muscle,
sex differences are absent prior to puberty but then accrue progressively from the onset of male puberty due
to the sex difference in exposure to adult male circulating testosterone concentrations (reviewed in (111)).
Girl’s earlier onset of puberty and its growth spurt as well as earlier estrogen-dependent epiphyseal fusion
explains their shorter stature than boys. As a result, on average men are 7-8% taller with longer, denser and
stronger bones whereas women have shorter humerus and femur cross-sectional area being 65-75% and
85%, respectively, compared to men (82). These changes create an advantage of greater bone strength and
stronger fulcrum power from longer bones. In addition, whereas passing through puberty enhances boy’s
physical performance, the widening of the female pelvis during puberty, balancing the evolutionary demands
of obstetrics and locomotion (112, 113), retards the improvement in girl’s physical performance, possibly

driven by ovarian hormones rather than absence of testosterone (114, 115).

Sex differences in height have been the most thoroughly investigated measure of bone size as adult height
is a stable, easily quantified measure in large population samples. Extensive twin studies show that adult
height is highly heritable with predominantly additive genetic effects (116) which diverge in sex-specific
manner from the age of puberty onwards (117, 118), which effects are likely to be due to sex differences in

adult circulating testosterone concentrations.

Bone density (total and medullary cross-sectional area) is increased in women with CAH with variably
elevated serum testosterone (including into the male range) when it is only partially suppressed by
glucocorticoid treatment (119) although more effective glucocorticoid suppression lowers bone density

(120).
4.3.3 Interventional data:

Well designed, placebo-controlled direct interventional studies of supra-physiological androgen effects on
bone in females are few, rarely feasible and unlikely to be performed for ethical and practical reasons. Unlike
muscle which responds relatively rapidly to androgen effects so that muscle studies in humans can be
completed within 3-4 months (41, 87, 88, 95, 121), comparable bone studies would typically take a year or
more to reach plateau effects. Hence such direct investigational studies in otherwise healthy women would
risk side-effects of virilisation which may be only slowly and partly, if at all, reversible as well as potential

promotion of hormone-dependent cancers making such studies ethically and practically not feasible.

4.3.4 Effects on athletic performance:
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The major effects of men’s larger and stronger bones would be manifest via their taller stature as well as the
larger fulcrum with greater leverage for muscular limb power exerted in jumping, throwing or other explosive
power activities. The greater cortical bone density and thereby resistance to long bone fractures is unlikely
to be relevant to the athletic performance of young athletes in whom fractures during competition are
extremely rare and not expected to be linked to sex. On the other hand, stress fractures in athletes, mostly
involving the legs, are more frequent in females with the male protection attributable to their larger and

thicker bones (122).

4.4 Other androgen-sensitive sex dichotomous effects:

4.4.1 Biology and observational data:
Many if not most other aspects of physiology exhibit sex difference so that they may enhance the impact of
the male advantage in sports performance of the dominant determinants (muscle, hemoglobin). Examples
include sex differences in exercise-induced cardiac (123, 124) and lung (125) function and mitochondrial
biogenesis and energetics (71). However, the limited knowledge of the magnitude and hormonal
mechanisms involved, specifically the degree of androgen dependence of these mechanisms, means that it
is difficult to estimate their contribution, if any, towards the sex difference in athletic performance. The sex
difference in pulmonary function may be largely explained by the androgen-sensitive sex difference in height,
which is a strong predictor of lung capacity and function (125). Further physiological studies of the androgen

dependence of other physiological sex differences are awaited with interest.

Psychological differences between men and women on mental function (eg rotational orientation (126)) as
well as mood, motivation and behavioural effects may involve androgen sensitive effects during pre- and

perinatal as well as post-pubertal effects (127, 128).

4.4.2 Interventional data:
There is some limited direct evidence from well-designed, placebo-controlled trials that administration of
testosterone or other androgens at supra-physiological doses directly affect mood and behaviour, notably
inducing hypomania (129). In a randomized placebo-controlled study of testosterone administration in
postmenopausal women (88) with the highest dose (the only one causing circulating testosterone levels to
exceed female range), there was not only an increase in muscle mass (4.4%) but a strikingly greater increase
in muscle strength (12-26%) suggesting an enhanced mental motivational effect of testosterone on the

effort-dependent tests of muscle strength.

5. Alternative mechanisms proposed to explain sex differences
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Alternative explanations for the sex difference in muscle mass and strength, other than it being due to the
sex difference in post-pubertal circulating testosterone have been proposed. These include that sex
differences in athletic performance might instead be due to (a) sex differences in height because height is a
predictor of muscle mass (92), (b) genetic sex differences due to influence of unspecified Y chromosome

genes (130) and (c) sex differences in growth hormone (GH) secretion (92),

5.1 Effects of height

One proposal has been that, as men are taller than women, height differences may explain the sex
differences in muscle mass and function which explains some athletic success (92). Numerous factors
contributes to the regulation of adult muscle mass including genetics, race, adiposity, hormones, physical
activity (exercise/training), diet, birth order and bone size (including height) (reviewed in (131)). Among the
non-hormonal factors, genetics explains a large proportion (about 50-60% from pooled twin studies (132))
of the variability in muscle mass and strength (133, 134) and may be explained in turn by the equally high
genetic contributions to circulating testosterone (28, 29). Some factors influencing muscle mass and strength
such as physical activity, adiposity and bone size are also partly androgen dependent. Prior to puberty there
is no sex difference in skeletal features including height (135, 136). However, with the onset of puberty, girls
aged 11 and 12 years old are transiently taller than peer-aged boys due to their earlier onset of the female
pubertal growth spurt but from age of 14 years onward the taller stature in males emerges and stabilises
(117). Hence, like muscle mass, sex differences in bone size (including length, density and height) arise after
male puberty establishes the marked dichotomy between men and women in adult circulating testosterone
concentrations. Taller height is advantageous in some sports (basketball, some football codes, combat
sports) but in others (jockeys, cycling, gymnastics, weightlifting, bodybuilding) short stature provides a
greater power/strength-to-weight ratio as well as superior rotational balance, speed and agility. Yet the male
advantages in speed, strength and endurance apply regardless of whether height is advantageous or not.
Hence the sex difference in height, where they exist, are largely dependent on post-pubertal differences in

circulating testosterone when sex differences in height are first expressed.

5.2 Genetic effects of Y chromosome

It has also been proposed that the sex difference in athletic performance may be due to genetic effects of an
unspecified Y chromosome gene(s) that may dictate taller stature (130) as height is correlated with men’s
greater muscle mass. The small human Y chromosome has few functional genes and none with a known
effect on height other than the short stature homeobox gene (SHOX) gene, located in the pseudoautosomal
regions of the tip of the short arms of X and Y chromosomes (137). Adult height displays an apparent dose

dependency on SHOX gene copy number that is a major factor contributing to explaining both the short
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stature of 45X0 females (Turner’s syndrome), who have a single copy of the SHOX gene, as well as the tall
stature of 47XXY males (Klinefelter’s syndrome), who have three copies (137). However, when SHOX copy
number is the same, men with additional supernumerary Y chromosomes (eg 47 XYY) are the same height as
47 XXY men (138). Hence there is no evidence supporting a dosage-dependent Y chromosomal gene effects
on height independent of SHOX gene copy number, and nor does men’s possession of a Y chromosome
explain the height difference between adult men and women. On the contrary, the tall stature of 47 XXY men
is at least partly due to the concomitant androgen deficiency leading to pubertal delay. Pubertal delay
prolongs long bone growth due to delayed epiphyseal closure, an estrogen-dependent effect that requires
adequate production of testosterone as a substrate for aromatisation to estradiol, resulting in tall stature.
Similar eunuchoidal features and taller stature are evident in 46 XY men with congenital hypogonadotropic
hypogonadism (Kallmann’s syndrome and its variants) with comparable congenital onset of androgen
deficiency, also manifest as pubertal delay and long bone overgrowth. Hence, taller height is better explained
by impaired testicular function with delayed puberty and epiphyseal closure rather than unspecified Y
chromosome dosage effects. In any case, rare aneuploidies in themselves do not explain the sex difference

in height in the general population of individuals with normal sex chromosomes.

5.3 Growth hormone.

The proposal that the sex difference in muscle mass and function might be due to sex differences in
endogenous GH secretion (92) is refuted by the extensive and conclusive clinical evidence that endogenous
GH secretion in young women is consistently higher (typically twice as high) as in young men of similar age
(139-146). Those findings cannot explain the male advantage in muscle mass and strength unless GH retards
muscle growth/function, for which there is no evidence. Furthermore estrogens inhibit GH-dependent,
hepatic IGF-I production, the major pathway of GH action (147, 148). The weak observational association
between low circulating IGF-1 and some, but not other, measures of weak muscle strength and limited
mobility among older women may reflect general age-associated debility rather than any specific hormonal
effects (149). Finally, the evidence that endogenous GH plays no role in sex differences in muscle mass and
function is supported by evidence from the most extensive interventional study of GH treatment to non-GH
deficient adults, daily GH administration for 8 weeks to healthy recreational athletes produced only
marginally significant improvement in exercise performance of men, and none in women (150). These
findings are consistent with the speculation that GH (or IGF-I) may be an amplifier of testosterone effects

and therefore be a consequence of the sex difference in circulating testosterone rather than its cause.

6. The impact of adult male circulating testosterone concentrations on sports performance

Plausible estimates of the magnitude of the ergogenic advantage of adult male circulating testosterone
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concentrations are feasible from the limited available observational and interventional studies.

Population data on the ontogeny of puberty shows that prior to puberty boys and girls have comparable
athletic performance whereas sex differences in athletic performance emerge coinciding with the rise in
circulating testosterone from the onset of male puberty. Male puberty results in circulating testosterone
concentrations rising from the prepubertal and female post-pubertal range (<2 nmol/L) to adult male
circulating testosterone concentrations (18). This is associated with a 10-12% better performance in running

and swimming events and 20% enhancement in jumping events (8).

A minimal estimate of the impact of adult male testosterone concentrations on muscle size and strength on
females is provided by the Huang study in postmenopausal women (88). In this study the highest
testosterone dose (weekly injections of 25 mg testosterone enanthate) increased mean circulating
testosterone from 0.9 nmol/L to 7.3 nmol/L, which is equivalent to the circulating testosterone of boys in
early to mid-puberty. After 24 weeks of testosterone treatment, the increase in circulating testosterone
concentrations led to significant increases in muscle size of 4.4% and in muscle strength of 12 to 26%.
Given the limited testosterone dose (and concentration) as well as study duration, it is likely these findings
underestimate the magnitude of the impact that sex difference in circulating testosterone has on muscle

mass and strength, and therefore on athletic performance.

Converse effects of reduced athletic performance in athletes who undergo suppression of circulating
testosterone concentrations from those in the male into the female range have been reported. Among
recreational (non-elite) athletes, an observational study show a consistent deterioration in athletic
performance of transwomen (M2F transgender) athletes corresponding closely to the suppression of
circulating testosterone concentrations (151). Similarly, among elite athletes with circulating testosterone in
the male range due to DSDs, comparable findings of athletic performance reduced by an average of 5.7%
when circulating testosterone was suppressed from the male range to below 10 nmol/L (152). Subsequently
when the IAAF hyperandrogenism rule was suspended in 2015, and so these elite athletes could train and
compete with unsuppressed serum testosterone levels, their athletic performances increased by a similar
amount. Additionally, circulating hemoglobin levels in these untreated DSD athletes were comparable with
male athletes or else female athletes doping with erythropoietin (figure 7). However, when circulating
testosterone was suppressed to below 10 nmol/L their hemoglobin were 12% lower and again comparable
with non-doped, non-DSD females, corresponding to the 12% magnitude of the sex difference in hemoglobin

between men and women (101).

Congruent findings are also known for an elite female athlete whose serial athletic performance based on

publicly available best annual times between 2008 and 2016 for the 800m running event are depicted in
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relation to the original 2011 IAAF hypernadrogenism regulation (figure 8).

Based on the established dose-response relationships, suppression of circulating testosterone to <10 nmol/L
would not eliminate all ergogenic benefits of testosterone for athletes competing in female events. For
example, according to the Huang study (88), reducing circulating testosterone to a mean of 7.3 nmol/L would
still deliver a 4.4% increase in muscle size and a 12-26% increase in muscle strength compared with circulating
testosterone at the normal female mean value of 0.9 nmol/L. Similarly, according to the Karunasena study
(68), reducing circulating testosterone concentration to 7 nmol/L would still deliver 7.8% more circulating
hemoglobin than the normal female mean value. Hence the magnitude of the athletic performance
advantage in DSD athletes, which depends on the magnitude of elevated circulating testosterone
concentrations, is considerably greater than the 5-9% difference observed in reducing levels below 10

nmol/L.

The physiological mechanism underlying these observations is further strengthened by prospective
controlled studies of initiation of cross-sex hormone treatment in transgender individuals (90, 153). These
show that, over the first 12 months muscle mass (area) was decreased by 9.4% and hemoglobin by 14% in
twenty transwomen (M2F transgender) treated with an estrogen-based regimen that reduced circulating
testosterone concentrations from the male range to female levels. Conversely, in seventeen transmen (F2M
transgender) treated for the first time with testosterone for 12 months (which increased circulating
testosterone levels to a mean of 31 nmol/L), muscle mass increased by 19.2% and hemoglobin by 15% (90).
The muscle mass findings remained stable between 1 and 3 years of initiation of treatment although fat mass
continued to change between 1 and 3 years of testosterone treatment (153). These studies did not report
muscle strength but other studies of testosterone dose-response relationships for muscle mass and strength
show consistently positively correlation (41, 69, 93, 95) although with disproportionately greater effect on
muscle strength than on muscle mass. Hence the muscle mass estimates in these prospective treatment
initiation studies in transgender individuals likely underestimate the muscle strength gains from elevated
testosterone levels where the circulating testosterone markedly exceeds female range to be within the male
range as occurs in severe hyperandrogenism of DSD females or transwomen (M2F transgender). These

effects are also the biological basis of the ergogenic efficacy of androgen doping in women.

Finally, to put these competitive advantages into context, the winning margin (the difference in performance
by which a competitor misses a gold medal, any medal or making the final) in elite athletic or swimming

events over the last 3 Olympics is <1% equally for both male and female events (table 5).

7. Gaps in knowledge and research limitations

The major limitations on scientific knowledge of the impact of adult male circulating testosterone
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concentrations on the sex differences in athletic performance is the lack of well-designed studies. Ideally,
these would need to replicate adult male circulating testosterone concentrations for sufficient time in
women to investigate the effects on muscle, hemoglobin, bone and other androgen-sensitive measures that
display consistent sex dichotomy in the population. However, the ethical and safety concerns preventing
such studies hitherto are likely to remain formidable obstacles due to the risk of unacceptable and potentially

irreversible virilization as well as of promoting hormone-dependent cancers in women.

With the exception of one interventional study using a relatively low testosterone dose (ie low for males), all
available data comprises observational studies that can only examine the effects of serum testosterone
within physiological female limits or sparse and mostly uncontrolled data from intersex/DSD athletes. While
the available observational findings in healthy females are informative, the key question is the magnitude
and dose-response of effects at still higher circulating testosterone concentrations on the performances of
women. While a testosterone dose-response relationship has been established in women at relatively low
(for men) testosterone dose and circulating concentrations, it remains unproven even if clearly plausible that
the testosterone dose-response relationships established in men for muscle, hemoglobin and bone can be
extrapolated to women when they are exposed to higher (ie comparable with males) circulating testosterone
concentrations. It is theoretically possible there could be differences between men and women in muscle
responses to testosterone, as muscle cell populations might express genetic differences in androgen
sensitivity (for which there are no data), or alternatively the long-term prior pattern of testosterone exposure
from conception to adulthood might lead to differences in testosterone dose-responsiveness after maturity.
Although the dose-response relationship may be similar in women as in men, there is also anecdotal evidence
that the dose-response curves may be left-shifted so that testosterone has greater potency in women than
in men at comparable doses and circulating levels. The prediction is supported by the anecdotal evidence
from the surreptitious East German national doping program in which the supervising doctors asserted from
their experience of illicit cheating that androgens had more potent ergogenic effects in women than in men

(96), a speculative opinion shared by many experienced sports medicine physicians.

There is no known means of increasing endogenous testosterone in women to anything like the requisite
degree to attempt to answer these questions. In healthy men, circulating testosterone originates almost
exclusively from a single source (testicular Leydig cell) and is subject to tight hypothalamic negative feedback
control, so that either direct stimulation (by hCG) or indirect reflex effects (eg from estrogen blockers
operating via negative feedback) to enhance Leydig cells testosterone secretion are feasible. However,
similar mechanisms do not operate in women in whom circulating testosterone originates from three
different sources (adrenal, ovary, extra-glandular conversion of androgen precursors), none of which is
subject to tight testosterone negative feedback control. As a result, it is not feasible to produce a sufficient
increase in circulating testosterone in women either by direct ovarian stimulation or indirect reflex effects to

test this hypothesis even if were deemed ethical and safe. On the other hand, carefully controlled, graded-

Page 28 of 51



944

945
946
947
948
949
950
951
952
953

954

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972

973
974
975
976

977

dose studies in F2M transgender individuals might be informative but are largely lacking at this time.

Hence the only feasible design of such studies would be testosterone (or another androgen) administration
to healthy young women. The only well-designed, placebo-controlled study of testosterone in otherwise
healthy postmenopausal women was restricted to relatively low testosterone doses which, while clearly
supra-physiological for women, were only 20-25% of male testosterone replacement doses (88). We are
currently performing a double-blind, randomized, placebo-controlled study on the effects of moderately
increased testosterone concentration on physical performance and behaviour in young healthy women
(ClinicalTrials.gov ID: NCT03210558). However, obtaining ethical approval (and practical difficulties in
recruitment) to administer supra-physiological testosterone doses that maintain circulating testosterone in
the male range for sufficiently prolonged periods are likely to remain an obstacle to definitive resolution of

this question.

In men, analogous ethical concerns over short and long-term adverse effects delayed the definitive studies
of supra-physiological testosterone doses to healthy young and older men but were eventually overcome.
This was despite the fact that, uniquely among hormones, there is no known disease state in men due to
pathologically excessive testosterone secretion. By contrast, in women, supra-physiological testosterone
effects are known to produce virilization side-effects which may be only slowly and partially, if at all,
reversible. Yet maintaining clearly supra-physiological testosterone concentrations would require treatment
for months (muscle) or years (bone) and would replicate not only a known hyperandrogenic disease state
(PCOS) but also potentially increasing risk of hormone-dependent cancers. In these circumstances, it could
only be justifiable to replicate in women the salient testosterone dose-response studies available from men
if the available evidence of dose-response relationship in men was not sufficiently convincing or and/or there
was reason to believe that these dose-response characteristics would be substantially different in women.
Overall, the unequivocal dose-response evidence in men together with the available overlap evidence in
women appears sufficiently persuasive, so that it is doubtful that women would respond differently from
men if their circulating testosterone were raised to levels in the male range. More broadly, there is no more
reason to require separate studies in women vs men any more than there is for every different ethnic
subgroup of people. An aesthetic preference for splitting categories is not a sound reason to require the
virtually impossible standard of establishing fresh and comprehensive empirical evidence in women of

testosterone dose-response effects ranging into male circulating testosterone concentrations.

An analogy can be drawn to WADA's practice of accepting salient surrogate evidence for banning drugs where
it is not feasible or ethical to require direct proof of the ergogenic effects of the plethora of existing and new
drugs with potential but individually unproven ergogenic effects. In that context, firmly established
ergogenic efficacy of androgens (on muscle mass and strength) and increased hemoglobin (on endurance)

(evidence reviewed in (1)) mean that chemical substances or methods which increase endogenous
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testosterone, erythropoietin or hemoglobin are also considered ergogenic (154). By parity of reasoning, if a
condition causes a female athlete’s circulating testosterone levels to be in the male range, well exceeding
female ranges, with consequential increases in muscle, hemoglobin and bone effects (at least), an ergogenic

effect may be reasonably be assumed.

8. Conclusions

The available albeit incomplete evidence makes it highly likely that the sex difference in circulating
testosterone of adults explains most if not all the sex differences in sporting performance. This is based on
the dose-response effects of circulating testosterone to increase muscle mass and strength, bone size and
strength (density), and circulating hemoglobin, each of which alone increases athletic capacity, as well as
other possible sex dichotomous, androgen-sensitive contributors such as mental effects (mood, motivation,
aggression) and muscle myoglobin content. These facts explain the clear sex difference in athletic
performance in most sports, on which basis it is commonly accepted that at least in those sports

competition has to be divided into male and female categories.

The first IAAF hyperandrogenism regulation specified a hormonal eligibility criterion of a serum testosterone
of less than 10 nmol/L for participation in the protected category of female athletic events in an athlete with
normal androgen sensitivity. This threshold was based on serum testosterone measurements by
immunoassays. However no reliable method-independent consensus threshold could be established using
commercial testosterone immunoassays, as these assays differ systematically due to method-specific bias
arising unavoidably from the specificity of the different proprietary antibodies employed (25). Therefore, if
the objective is to require female athletes with congenital conditions that cause them to have serum
testosterone concentrations in the normal male range to bring those levels down to the same range as other
female athletes, then (allowing for PCOS athletes) the threshold used should be no more than 5.0 nmol/L.
This represents a conservative criterion that includes all healthy young (<40 yr) women, including those with
PCOS. Conversely, this criterion is generous to hyperandrogenic females and transwomen in allowing them
to maintain a higher serum testosterone than most non-PCOS competitors in female events even though
increases in muscle mass and strength and hemoglobin would be expected in this range. This is so even
though the range remains below the circulating testosterone levels of mid-male puberty when the major
biological effects of men’s higher circulating testosterone begin to be fully expressed. Ongoing compliance
with the eligibility criterion is also an important variable since the estrogen-based suppression of circulating
testosterone, typically using daily administered estrogen products, has a rapid onset and offset. Adequate
monitoring to prevent gaming of eligibility criteria would require regular random rather than announced

blood sampling.
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A related matter is how long such a threshold of circulating testosterone should be maintained. In both
intersex/DSD and transgender individuals, the developmental effects of adult male circulating testosterone
concentrations will have established the sex difference in muscle, hemoglobin and bone, some of which is
fixed and irreversible (bone size) and some of which is maintained by the male circulating testosterone
concentrations (muscle, hemoglobin). The limited available prospective evidence from initiation of
transgender cross-sex hormone treatment suggests that the advantageous increases in muscle and
hemoglobin due to male circulating testosterone concentrations are induced or reversed over the first 12
months and the androgenic effects may plateau after time. This time course is much faster than the somatic
effects of male puberty, which evolve over years and for some variables (eg peak bone mass) are not
complete for up to a decade after the start of puberty. However, the abrupt hormonal changes induced by
medical treatment in intersex/DSD or transgender individuals may be telescoped compared with male
puberty where circulating testosterone concentrations increase irregularly and incompletely for some years.
Additional data is available from the unique investigative model of men undergoing castration for prostate
cancer. Just as androgen sensitivity to testosterone may differ between tissues (41), the time-course of offset
of androgen effects following withdrawal of male testosterone concentrations may also differ between the
major androgen-responsive tissues. For example, circulating hemoglobin shows a progressive fall for 6
months reaching a nadir and plateau at 12-16 months in 6 studies involving 534 men undergoing medical
castration for prostate cancer (155-160). Although these studies of older men with prostate cancer must be
extrapolated with caution, age, stage of disease, race and baseline circulating testosterone concentration did
not affect the rate or extent of decline in hemoglobin (155, 157). Comparable longitudinal studies of muscle
loss, strength and performance following castration for prostate cancer are well summarised (161) showing
progressive loss for 24 months (see figure 4). Further clinical studies to define the time-course of changes,
mainly offset, in testosterone-dependent effects, notably on muscle and hemoglobin, are badly needed to

determine the optimal duration for cross-sex hormone effects in sport.
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1039 Table 1: Serum testosterone measurements by LC-MS methods in studies of healthy men and women

Author (year) Sample (age 18-40 yr) N Lower 95% CL Upper 95% CL

Men nmol/L nmol/L
Sikaris (2005) Elite, eugonadal 124 104 30.1
Turpeinen (2008) Convenience 30 10.1 31.2
Kushnir (2010) Convenience 132 7.2 24.2
Salameh (2010) Convenience 264 7.1 39.0
Neale (2013) Convenience 67 10.6 31.9
Kelsey (2014) Secondary pooled analysis 1058 7.2 25.3
Hart (2015) Birth cohort 423 7.4 28.0
Travison (2017) Pooled two cohorts 1656 7.9 311
Number-weighted mean 7.7 29.4

Women
Turpeinen (2008) Convenience 32 0.8 2.8
Kushnir (2010) Convenience 104 0.3 2.0
Salameh (2010) Convenience 235 0.03 1.5
Haring (2012) Population-based 263 0.04 2.0
Neale (2013) Convenience 90 0 1.7
Bui (2013) Convenience 25 0.30 1.69
Rothman (2013) Convenience 31 0.4 0.92
Bermon (2017) Elite athletes 1652 0 1.62
Eklund (2017) Elite athletes and controls 223 0.26 1.73
Number-weighted mean 0.06 1.68

1040 Sikaris et al. 2005 Reproductive hormone reference intervals for healthy fertile young men: evaluation of automated
1041 platform assays. J Clin Endocrinol Metab. 2005 Nov;90(11):5928-36; Turpeinen et al 2008 Determination of testosterone
1042 in serum by liquid chromatography-tandem mass spectrometry. Scand. J. Clin. Lab. Invest. 68:50-57; Kushnir et al. 2010
1043 Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and

1044 testosterone with pediatric and adult reference intervals. Clin Chem. 2010 Jul;56(7):1138-47; Salameh et al 2010

1045 Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry: total
1046 and free testosterone reference ranges. Steroids 75:169-175; Haring et al 2012 Age-specific reference ranges for serum
1047 testosterone and androstenedione concentrations in women measured by liquid chromatography-tandem mass

1048 spectrometry. J. Clin. Endocrinol. Metab. 97:408-415; Neale et al. 2013 Adult testosterone and calculated free

1049 testosterone reference ranges by tandem mass spectrometry. Ann Clin Biochem. 2013 Mar;50(Pt 2):159-61; Bui et al.
1050 2013 Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-
1051 MS/MS method and a 2nd generation automated immunoassay. Steroids. 2013 Jan;78(1):96-101; Rothman et al. 2013
1052 Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in
1053 postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids. 2011 Jan;76(1-
1054 2):177-82; Hart et al. Testicular function in a birth cohort of young men. Hum Reprod. 2015 Dec;30(12):2713-24;

1055 Travison et al 2017 Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in
1056 the United States and Europe. J. Clin. Endocrinol. Metab. 102:1161-1173; Bermon et al 2014 Serum androgen levels in
1057 elite female athletes. J. Clin. Endocrinol. Metab. 99:4328-4335; Bermon S, Garnier PY. 2017 Serum androgen levels and
1058 their relation to performance in track and field: mass spectrometry results from 2127 observations in male and female
1059 elite athletes. Br J Sports Med 51:1309-1314; Eklund et al. 2017 Serum androgen profile and physical performance in
1060 women Olympic athletes. Br J Sports Med 51:1301-1308
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Table 2: Summary of serum testosterone (nmol/L) by LC-MS in women with PCOS from 16 studies

Study N Mean SD
Moran 2017 92 0.24 0.08
Munzker 2017 274 0.93 0.19
O'Reilly 2017 114 0.55 0.19
Handelsman 2017 152 0.38 0.25
Paquali 2016 156 1.17 0.47
Yang 2016 1159 2.2 1.44
Tosi 2016 116 1.33 0.55
Daan 2015 170 1.64 0.53
Bui 2015 44 0.85 0.3
Keefe 2014 52 1.7 0.97
Yasmin 2013 165 1.99 1.02
Janse 2011 200 1.12 0.47
Jedel 2011 72 0.23 0.08
Legro 2010 (Mayo) 596 2.12 0.89
Legro 2010 (Quest) 596 1.98 0.97
Stener-Victorin 2010 74 1.53 0.62
Sum 4032 1072
Number-weighted mean 1.69 0.87

Data taken directly from paper or interpolated from other data (eg median, quartiles, ranges, sample size) supplied as
described by Wan et al 2014 (Estimating the sample mean and standard deviation from the sample size, median, range
and/or interquartile range. BMC Med Res Methodol 14:135) shown in red italics.

Stener-Victorin et al 2010 Are there any sensitive and specific sex steroid markers for polycystic ovary syndrome? J. Clin.
Endocrinol. Metab. 95:810-819; Legro et al 2010 Total testosterone assays in women with polycystic ovary syndrome:
precision and correlation with hirsutism. J. Clin. Endocrinol. Metab. 95:5305-5313; Jedel et al 2011 Sex steroids, insulin
sensitivity and sympathetic nerve activity in relation to affective symptoms in women with polycystic ovary syndrome.
Psychoneuroendocrinology 36:1470-1479; Janse et al 2011 Assessment of androgen concentration in women: liquid
chromatography-tandem mass spectrometry and extraction RIA show comparable results. Eur. J. Endocrinol. 165:925-
933; Yasmin et al 2013 The association of body mass index and biochemical hyperandrogenaemia in women with and
without polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 166:173-177; Bui et al 2015 Testosterone, free
testosterone, and free androgen index in women: Reference intervals, biological variation, and diagnostic value in
polycystic ovary syndrome. Clin. Chim. Acta 450:227-232; Daan et al 2015 Androgen levels in women with various forms
of ovarian dysfunction: associations with cardiometabolic features. Hum. Reprod. 30:2376-2386; Tosi et al 2016
Implications of Androgen Assay Accuracy in the Phenotyping of Women With Polycystic Ovary Syndrome. J. Clin.
Endocrinol. Metab. 101:610-618; Yang et al 2016 Assessing new terminal body and facial hair growth during pregnancy:
toward developing a simplified visual scoring system for hirsutism. Fertil. Steril. 105:494-500; Pasquali et al 2016
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Table 3: Upper confidence limits on serum testosterone in women with PCOS

Confidence interval Likelihood* SDs# One-sidedq Two-sidedq|
95% 1:20 1.96 3.13 3.39
99% 1:100 2.35 3.47 3.73
99.9% 1:1000 3.10 4.21 4.39
99.99% 1:10,000 3.72 4.77 4.95

* indicates the likelihood that a woman with PCOS would exceed that limit by chance

# indicates the number of standard deviations for each confidence limit

9l Two-sided confidence intervals are conventional for a result that could exceed or fall below
confidence limits, but here as we focus only on values exceeding the upper limit, so that one-
sided confidence limits are appropriate.

Table 4 (from Huang et al, 2014 (88)): Effects of testosterone on muscle mass and strength in women

Androgen sensitive variable Baseline Increase % increase
Lean muscle mass (kg) 4316 1.9+0.5 4.4
Chest press (Watts) 100 + 26 26+7 26
Leg press (Newtons) 744 £ 172 9030 12
Loaded stair climb power (Watts) 406 + 77 56 +13 14

Data shown as mean and standard error of the mean derived from table 1 and digitized from figure 4 from Huang
et al showing the effects of testosterone (mean circulating concentration 7.3 nmol/L) on muscle mass and strength
in women treated with the highest testosterone dose (n=11; 25 mg testosterone enanthate per week).
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Table 5 The winning margin in elite athletic or swimming events over the last three Olympics

Median margin (%)! n Win gold Win medal Make final
Athletics?
Running 81 0.62 0.31 0.22
Jumping 24 0.92 0.42 0.92
Throwing 24 1.93 0.70 0.75
Swimming?
Backstroke 12 0.56 0.28 0.16
Breaststroke 12 0.84 0.14 0.17
Butterfly 12 0.52 0.48 0.12
Freestyle 30 0.49 0.23 0.14
Relay 18 0.37 0.35 0.12

1. Winning margin is defined as the difference (expressed as a percentage of the faster time) between 1%
and 2™ place (Win gold), between 3™ and 4™ place (Win medal) and between the last into the final and the
first that missed out (Make final). Years (2008, 2012, 2016) and sexes were combined as there was no
significant differences in winning margin between them.

2. Running includes 100m, 200m, 400m, 800m, 1500m, 5000m, 10,000m, marathon and 3,000m
steeplechase, 110m(male)/100m(female) and 400m hurdles, 4 x 100m and 4 x 400m relays, 20km and
50km walk events, Jumping includes high jump, long jump, triple jump and pole vault events and Throwing
includes javelin, shot put, discus and hammer events. Heptathlon and decathlon were not included as their
final results are in points, not times.

3. Events comprise 100m and 200m for the form strokes and 50m, 100m, 200m, 400m,
800m(female)/1500 m (male) and marathon 10km with the relays being the 4x100m medley, 4x100m and
4 x200m freestyle relays.
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Figure Legends

Figure 1: Sex differences in performance (in percentage) according to age (in years) in running events including
50 m to 2 miles (upper left panel) and in jumping events including high jump, pole vault, triple jump, long jump
and standing long jump (upper right panel), for details see (8). The lower panel is a fitted sigmoidal curve plot
of sex differences in performance (in percentage) according to age (in years) in running, jumping and swimming
events, as well as the rising serum testosterone concentrations from a large dataset of serum testosterone of
males. Note that in the same dataset female serum testosterone concentrations did not change over those
ages, remaining the same as in pre-pubertal boys and girls. Data shown as mean and standard error of the
mean of the pooled sex differences by age.

Figure 2 Strong dose-response relationship between testosterone dose and circulating concentration with
muscle mass and strength in men:

Upper panel (from Bhasin et al (87)) shows the strong dose-response relationships of muscle mass shown as
“lean” or “fat-free” mass (A) or volume of thigh (D) and quadriceps (E) muscle and of leg muscle strength (C)
with increasing testosterone dose (upper row) or circulating concentration (lower row). Serum testosterone
concentrations are in US units (ng/dl), divide by 28.8 to get nmol/L.

Lower panel (from Finkelstein et al (41)) shows the strong dose-response relationships of whole body muscle
mass (B), thigh muscle mass (E) and leg press strength (F) with increasing testosterone dose. Cohorts 1 and 2
were treated with the same increasing doses of testosterone but either without (blue fill, cohort 1) or with (red
fill, cohort 2) an aromatase inhibitor (anastrozole), which prevents conversion of testosterone to estradiol. The
differences between cohorts (ie use of anastrozole) was not significant for muscle mass and strength so can be
ignored with results of the two cohorts pooled.

Figure 3 (from Huang et al (88)): Dose-response effects on lean (muscle) mass and three measures of muscle
strength as a result of increasing doses of weekly testosterone enanthate injections in women. Note significant
effects on all four parameters of the highest testosterone dose, the only one that produced circulating
testosterone concentrations exceeding normal female range.

Figure 4: Redrawn results from Ekblom et al 1972 (100). Results from the transfusion of additional blood are
shown in dark red circles and those after blood withdrawal in light red circles.

Figure 5: Plot of circulating hemoglobin against the natural logarithm of serum testosterone in women with
congenital adrenal hyperplasia (from Karunasena et al (68)). The filled circles represent a cohort where serum
testosterone was measured by immunoassay. The open triangles denote a second cohort, where serum
testosterone was measured by LC-MS. Note the systematic overestimation of testosterone by the immunoassay
used in cohort 1 vs LC-MS measurement in cohort 2. Despite that over-estimation, however, the correlations
were similar in both cohorts.

Figure 6 (from Coviello et al, 2000 (107)): Depicts the strong dose-response relationship between increasing
testosterone dose with resulting change in blood hemoglobin in young and older men
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Figure 7: Mean hemoglobin concentrations (g/dl) of 12 elite athletes in four groups of three XY or XX middle
distance runners. The hemoglobin concentrations were collected as a part of the Athlete Biological Passport
and analysed according to the WADA standard methods. Each bar (athlete) is the mean of a minimum of three
blood samples. In the 46 XY DSD group, blood was collected in a period when the athlete was not undergoing
hormonal suppressive treatment

Figure 8: Best annual 800m times of an elite female athlete between 2008 and 2016
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