
Hardware acceleration for lock-free data structures and
software-transactional memory

Stephan Diestelhorst
∗

Technische Universität Dresden
Systems Engineering Group

Dresden, Germany
stephan.diestelhorst@inf.tu-dresden.de

Michael Hohmuth
Advanced Micro Devices

Operating System Research Center
Dresden, Germany

michael.hohmuth@amd.com

ABSTRACT
In this paper, we report on a new CPU-architecture extension pro-
posal, named Advanced Synchronization Facility (ASF), which is
geared toward accelerating and easing lock-free programming and
software transactional memory (STM). We present an initial per-
formance simulation and usability study of ASF’s application to a
lock-free data structure (a singly linked list) and to accelerating a
state-of-the-art STM system, TinySTM. Our results indicate that
ASF can significantly increase the throughput and scaling behavior
of these workloads: Single-thread performance increased by up to
15 %, and the factor of scaling to eight CPUs increased by up to
20 %.

1. INTRODUCTION
Future CPU generations will no longer be able to increase their
single-thread performance exponentially. Instead, CPUs will scale
the number of processing cores. In consequence, software will no
longer get faster execution speeds automatically with each hard-
ware upgrade, but will have to be adapted to the higher level of par-
allelism exposed by the CPU. Existing parallelization techniques
get more and more complex with an increasing number of execu-
tion threads, which is why the software industry is looking for new,
less complex parallel programming paradigms.

Transactional memory is a promising programming model that pro-
vides transactions (known from database technology) that take the
burden for synchronizing concurrent data access off programmers’
backs. However, today’s software implementations of transactional
memory, known as Software Transactional Memory (STM), still
inflict too much overhead for synchronization and bookkeeping,
making STMs impractical for the CPU count to be expected in the
near future. One way to reduce this overhead is to accelerate STMs
with new hardware mechanisms.

Another promising programming paradigm is that of lock-free data
structures. Many authors have shown that lock-free algorithms
perform and scale well and are robust against deadlocks, but to
date these algorithms have been limited by incomplete hardware
support: Lock-free programming relies on atomically modifying
a set of memory locations using instructions like test-and-set and
compare-and-swap (CAS). However, these instructions typically

∗Stephan Diestelhorst contributed to this work while interning at
Advanced Micro Devices.

Revision 1.1 (Aug 14, 2008)
c© 2008 Advanced Micro Devices, Inc. All rights reserved.

operate on only one or two words of memory and have a high la-
tency, making lock-free programming impractical for more com-
plex data structures or when low latency is required.

In this paper, we introduce a new hardware acceleration mecha-
nism, Advanced Synchronization Facility (ASF). ASF is an exper-
imental AMD64 architecture extension originally intended for the
acceleration of lock-free algorithms. We evaluate ASF in the con-
texts of lock-free data structures and STMs.

Our evaluation results indicate that ASF has excellent potential
for lock-free data structure acceleration. For an integer set imple-
mented as a singly linked list, the ASF-based implementation has
both better single-thread performance and better scalability than
a lock-based implementation and a conventional lock-free version
based on CAS.

We also applied ASF to the implementation of an STM system,
TinySTM [4]. In two STM workloads we examined, a red-black-
tree-based integer set and a singly-linked-list-based one, we ob-
served a significant increase in multiprocessor throughput. Single-
thread performance was comparable to or better than the baseline
STM system in each case.

This paper is organized as follows. Section 2 presents related work.
In Section 3, we introduce ASF and demonstrate how it simplifies
lock-free programming. Section 4 applies ASF to the example ap-
plications used in our performance study: a lock-free linked-list
implementation and TinySTM. In Section 5, we describe our simu-
lation and performance measurement environment and compare the
ASF-accelerated applications developed in Section 4 to their con-
ventional counterparts. We conclude the paper in Section 6 with an
outlook on future research directions.

2. BACKGROUND AND RELATED WORK
2.1 Lock-free data structures
Lock-free data structures do not use locks to coordinate concur-
rent accesses, avoiding most drawbacks of traditional locks, such
as deadlock and priority inversion. Herlihy [7] showed that, given
an atomic CAS primitive, all concurrent data structures can be im-
plemented in a lock-free manner. Despite this general proof, only
few lock-free implementations exist, such as the singly linked list,
introduced by Valois [16]. Harris’ later attempt [5] fixes bugs and is
conceptually simpler, suggesting that correct and well-performing
lock-free implementations are not trivial to find.

ASF aims at making lock-free programming significantly easier by

providing a mechanism that is both more powerful and more flexi-
ble than traditional primitives such as CAS.

2.2 Transactional memory
Herlihy and Moss proposed transactional memory in [9], imple-
mented in hardware. Recently, a large number of software imple-
mentations (STM) have been developed [8, 3, 6, 4], but despite
steady improvements, they are still about an order of magnitude
worse than native hardware in single-threaded performance. Hard-
ware support to reduce this penalty has been proposed earlier. To
keep architectural extensions modest, proposals primarily either (1)
restrain the size of supported hardware transactions (e. g., HyTm
[2, 10], PhTM [11]), or (2) limit the offered expressiveness (e. g.,
LogTM-SE [17], SigTM [14]), or both (HASTM [15]).

Each of these hardware approaches is accompanied by software
that works around the limitations and provides the interface and
features of STM: flexibility, expressiveness, and large transaction
sizes.

ASF in contrast has a broader scope than only the acceleration of
transactional memory and can be implemented with moderate hard-
ware extensions. The result is a mechanism that has relatively small
capacity (compared to those listed under (1)) and richer expressive-
ness (than those listed under (2)), but requires a more static setup
than hardware proposals under both (1) and (2) and STMs.

2.3 Simulation
Evaluation of new hardware-extension proposals requires simula-
tors that can provide accurate timing information. Besides the in-
ternal tools employed by CPU vendors, various tools model the mi-
croarchitecture of a modern out-of-order processor [1, 12, 13]. This
paper uses PTLsim [18], because unlike other solutions it is freely
available and largely supports the AMD64 instruction set. In addi-
tion, it supports co-simulation, transparent switching between sim-
ulation and native hardware to quickly execute uninteresting parts
of the application under test. PTLsim also supports full-system
simulation and features a rich CPU model, which provides detailed
architectural statistics.

3. ADVANCED SYNCHRONIZATION FA-
CILITY (ASF)

3.1 Overview
ASF is an experimental AMD64 extension that allows user- and
system-level code to modify a set of memory objects atomically
without requiring expensive synchronization mechanisms.

The ASF extension provides an inexpensive primitive from which
higher-level synchronization mechanisms can be synthesized:
for example, multi-word compare-and-exchange, load-locked-
store-conditional, lock-free data structures, and primitives for
software-transactional memory.

ASF is both more flexible and faster than existing lock-free atomic
memory-modification approaches. Instead of offering new instruc-
tions with hardwired semantics (such as compare-and-exchange for
two independent memory locations), ASF only exposes a mecha-
nism for atomically updating multiple independent memory loca-
tions and allows software to implement the intended synchroniza-
tion semantics.

ASF works by allowing software to declare critical sections that

modify a specified set of protected memory locations. Protected
memory that critical sections modify will become visible to other
CPUs1 either all at once (when the critical section finishes success-
fully) or never (if the critical section is aborted). CPUs can protect
and speculatively modify up to 8 memory objects that can each be
at most cache-line sized and need to be size-aligned. When ASF
detects conflicting accesses to one of these objects, it aborts the
critical section.

Unlike traditional critical sections, ASF critical sections do not re-
quire mutual exclusion. Multiple ASF critical sections on different
CPUs can be active at the same time, allowing greater parallelism.

3.2 Critical section structure
ASF critical sections consist of two phases. In the first phase,
the specification phase, software declares which memory objects
should be protected. The second phase, the atomic phase, can
modify these memory objects speculatively. If the atomic phase
completes successfully, all such modifications become visible to
all CPUs simultaneously and atomically. Otherwise, modifications
to protected memory objects are discarded.

ASF introduces a set of new instructions that denote the beginning
and end of ASF phases. An ASF critical section has the following
structure:

• The specification phase is entered when the first declarator
instruction, or declarator, (LOCK MOV, LOCK PRE-
FETCH, and LOCK PREFETCHW instructions) occurs.
Declarators are used to declare memory that ASF should
protect.

• A VALIDATE instruction can be used in the specification
phase to check whether any of the previously declared mem-
ory locations has been invalidated by a concurrent write op-
eration.

• The ACQUIRE instruction denotes the end of the specifica-
tion phase and the beginning of the atomic phase. ACQUIRE
has a return code that signals whether the atomic phase has
been entered successfully, and also sets the rFLAGS register
accordingly. A return code of 0 signals success.

• ACQUIRE is followed by instructions that check the return
code and jump to an error handler if it is not zero (typically
just a JNZ).

• The atomic-phase instructions (standard x86 instructions, in-
cluding standard load and store instructions) are executed.

• The COMMIT instruction denotes the end of the atomic
phase.

Figure 1 shows example code that uses ASF to implement compare-
and-exchange for two independent memory locations, dubbed
DCAS for “double compare-and-swap.” (This code uses immedi-
ate retry as the recovery strategy. A real implementation might
have a more elaborate recovery strategy, for example exponential
backoff.)
1In this paper, the term “CPU” refers to one logical CPU (one hard-
ware thread executing x86 instructions), irrespective of how these
logical CPUs are packaged. (Its use is synonymous to terms like
“CPU core” and “x86 thread,” which are not used in this paper.)

; DCAS Operation:
; IF ((mem1 = RAX) && (mem2 = RBX)) {
; swap (mem1, RDI)
; swap (mem2, RSI)
; RCX = 1
; } ELSE {
; RCX = 0
; }

DCAS:
retry:

LOCK MOV R8, [mem1] ; Specification phase begins
LOCK MOV R9, [mem2]
ACQUIRE RCX, 2 ; Try to enter atomic phase
JNZ retry ; Retry if unsuccessful
CMP R8, RAX ; Atomic-phase code
JNZ out
CMP R9, RBX
JNZ out
MOV [mem1], RDI
MOV RDI, RAX
MOV [mem2], RSI
MOV RSI, RBX
MOV RCX, 1

out:
COMMIT ; End of atomic phase

Figure 1: DCAS implemented using ASF

3.3 Critical section aborts
Critical sections can be aborted at any point because of contention,
far control transfers (including those caused by interrupts and
faults), or software aborts.

Specification phase aborts are signaled by an ACQUIRE return
code. ACQUIRE has a count argument that must match the number
of declarators, allowing it to detect whether an interrupt occurred
in the specification phase.

ASF is an unusual x86 architecture feature in that ACQUIRE has
setjmp-like semantics: Atomic-phase aborts not only discard all
modifications to all modified protected memory objects, but also
reset the instruction and stack pointers to the values they had when
ACQUIRE was executed. This results in a reexecution of AC-
QUIRE, which now returns an error code and directs the control
flow (via the following conditional jump) to the error handler.

When an interrupt occurs during a critical section, that critical sec-
tion will be aborted. Note that before an interrupt or exception han-
dler returns, operating-system code or other processes may have ex-
ecuted in the interim. This is of no consequence as no ASF-related
state is maintained across context switches. Other processes may
even have executed ASF critical sections that inspected or modified
any of the locations targeted by the interrupted critical section. The
interrupted software will simply reinspect the state of the shared
data structure and attempt its critical section again.

3.4 Implementation and performance
There are several conceivable ways in which processors can imple-
ment ASF. Our architecture simulator currently implements ASF as
follows:

• We implemented ASF on top of the cache-coherency proto-
col. Any contention for a protected cache line will abort the
critical section in question.

• The back-up copies of protected memory locations (to be
written back in case of an abort) are held in a separate per-
CPU buffer, called the locked-line buffer (LLB).

• Our pipeline allows only one ASF critical section in flight,
thereby serializing all of a CPU’s critical sections. Declara-
tor instructions starting a new critical section are prevented
from issuing until the previous critical section’s COMMIT
instruction has been retired. In consequence, the processor
does not have to track independent lock sets.

The LLB allows CPUs to evict protected, speculatively modified
memory out of the caches if necessary. Despite not being part of
the memory hierarchy—the LLB only holds backup data—it partic-
ipates in the cache-coherency protocol and monitors for contention
for protected memory regions. If the LLB detects a contending
probe, it holds off the probe response until the backup copies have
been written back to the memory hierarchy.

Our design is easy to implement in an existing architecture, but
limits the instruction-level parallelism (ILP) that can be exploited
because the CPU cannot speculate across multiple critical sections.
Other than that, all ASF instructions can be fully pipelined and have
little latency (about one clock cycle).

The performance can be enhanced further in several ways:

• An implementation can track multiple ASF critical-section
instances in parallel to come close to the ILP exposed by an
unprotected version of the code.

• An implementation can prevent instructions in a critical sec-
tion from committing before COMMIT, keeping all modi-
fications in the internal store buffer. While such a design
would limit the number of instructions in a critical section
to the size of the reorder buffer, it works without an LLB
(thereby removing the LLB as a potential bottleneck) be-
cause all outstanding writes remain in the store buffer until
COMMIT.

4. APPLYING ASF
4.1 An ASF-based linked list
In this section, we introduce an implementation of a singly linked
list based on ASF. It serves as an example of how to integrate ASF
into a programming language and will also be the target of our eval-
uation in Section 5.

Before we present the ASF-based implementation, we show a lock-
based version for comparison (Figure 2). We will use this version
in our performance comparison in Section 5, along with the CAS-
based lock-free list implementation proposed by Harris [5].

Figure 3 shows part of the ASF-based implementation. It is essen-
tially similar to Harris’ CAS-based one, but can remove elements
directly from the list instead of marking them first. The code sam-
ple highlights this difference. It also illustrates a programming-
language interface to ASF, which we implemented using C macros.

void acquire(lock_t* lock) {
do {

while (lock->locked);
} while (CAS(&lock->locked,0,1));

}
void release(lock_t* lock) {

lock->locked = 0;
}

int set_remove(set_t *set, int val) {
...
acquire(&set->lock);
find(set, val, &prev, &next);

if (next->val != val) {
release(&set->lock);
return 0;

}
prev->next = next->next;
release(&set->lock);
...
return 1;

}

Figure 2: Removal from a singly linked list protected by a single
lock

int set_remove(set_t *set, int val) {
...

retry:
/* Traverse the list to the element,

without any locks / ASF protection. */
find(set, val, &prev, &next);
...
contained = 0;
prev_next = asf_lock_load(&prev->next);
next_next = asf_lock_load(&next->next);
next_val = asf_lock_load(&next->val);

if (!asf_acquire(3)) { /* atomic start */
/* Could not acquire locations -> Retry */
goto retry;

}
/* check for chaining errors */
if (prev_next != next) {

commit();
goto retry;

}
if (next_val == val) {

contained = 1;
prev->next = next_next;
next->next = (node_t*)NULL;

}
asf_commit(); /* atomic end */
...
return contained;

}

Figure 3: Lock-free removal from a singly linked list using ASF

Like Harris’ CAS-based implementation, our ASF-based one does
not support concurrent memory reclamation and requires that ele-
ments removed from the list do not change in type.2

4.2 STM acceleration
We now describe how we applied ASF to accelerate an STM sys-
tem. We started from the idea that ASF could relieve the STM’s
metadata-bookkeeping tasks by monitoring memory locations for
conflicting modifications in hardware instead of in software.

We used TinySTM as the baseline for our experiments [4]. Tiny-
STM is a state-of-the-art lock-based STM system. It has compara-
tively low overhead and scales well to the number of CPUs found
in today’s shared-memory systems. TinySTM avoids some of the
overheads of lock-free STMs, such as additional indirections.

TinySTM works by tracking the time interval in which the currently
running transaction is valid. As long as no value newer than the end
of the current interval is read, the overhead of revalidating the set
of previously read memory locations can be skipped and deferred
to one validation at commit time.

Read-set validation ensures that all previously read values are con-
sistent for a given time interval. To this end, TinySTM keeps track
of the read set (and the version of the previously read values) in an
internal data structure that it updates on every read operation, im-
plemented by TinySTM’s stm_load routine. We applied ASF by
monitoring and validating a part of the read set in hardware, saving
some of the bookkeeping and validation overhead.

The stm_load routine is already quite small and well optimized,
which is one of the reasons why TinySTM performs so well. The
original version (Figure 4) executes the following steps:

1. Locate the metadata for the memory location.

2. Read the version number of the memory location.

3. Check whether the write lock is set. If so, abort the transac-
tion.

4. Read the desired memory location.

5. Check again whether the write lock is set or whether the ob-
ject’s version number has changed. If so, abort the transac-
tion.

6. Check whether the version of the memory location is still
within or lower than the transaction’s validity interval. If not,
try to extend this interval—this requires revalidating the read
set. If this fails, abort.

7. Append the memory location to the list of addresses to verify
at the end of the transaction.

With ASF, it is possible to read the memory location with a
LOCK MOV instruction to let the hardware monitor for concurrent
alterations. This allows us to omit the second lock check and the
2This restriction can be lifted by using a doubly linked list and
checking the back references during list traversal. With ASF, the
changes to the presented singly linked list algorithm are small. In
our experiments, this safer list was still slightly faster than Harris’
singly linked list.

stm_word_t stm_load(stm_tx_t *tx,
volatile stm_word_t *addr)

{
...
lock = GET_LOCK(addr);
/* Read lock, value, lock */
l = ATOMIC_LOAD_MB(lock);

restart:
if (LOCK_GET_OWNED(l)) {

/* Locked: Check if by us, if not abort. */
...

}
value = ATOMIC_LOAD_MB(addr);
l2 = ATOMIC_LOAD_MB(lock);
if (l != l2) { l = l2; goto restart;}
/* Check timestamp */
version = LOCK_GET_TIMESTAMP(l);
/* Valid version? */
if (version > tx->end) {

/* No: Revalidate read-set
if that fails abort. */

...
/* Recheck lock, perhaps

locked during validation. */
l = ATOMIC_LOAD_MB(lock);
if (l != l2) goto restart;

}
/* Good version: Add to read set */
if (tx->r_set.nb_entries == tx->r_set.size) {

/* Enlarge read set */
}
r = &tx->r_set.entries[tx->r_set.nb_entries++];
r->version = version;
r->lock = lock;
return value;

}

Figure 4: Simplified version of the original stm_load operation
(TinySTM, write-through version)

version comparisons (Steps 5, 6), as well as recording the location
in the read log (final step).

The resulting new stm_load_asf routine (Fig. 5) uses ASF to
monitor memory until ASF’s capacity limit is reached (tracked with
a thread-local counter variable), after which it transparently falls
back to the original stm_load implementation when further ex-
tending the read set. Additionally, stm_load_asf prevents allo-
cation of another protected memory location if the most recently
allocated location and the current one share one cache line. This
microoptimization is possible because ASF works on the granular-
ity of the size of one cache line.

The stm_load_asf routine first protects the read value using ASF,
then checks the lock. The subsequent VALIDATE ensures that the
value has not been updated before reading the lock, thus allowing
us to read the lock only once.

The ASF-based optimization works because it is easy and fast to
check the validity of the ASF-protected memory locations along
with those recorded in the read log: A simple VALIDATE instruc-

stm_word_t stm_load_asf(stm_tx_t *tx,
volatile stm_word_t *addr)

{
stm_word_t res;
ulong cache_addr = (ulong)addr & ASF_LINE_MASK;
if (tx->asf_last & ASF_HINT_SOFTWARE)

return stm_load(tx, addr);

/* Aliasing on the last ASF line */
if (tx->asf_last == cache_addr) {
res = ATOMIC_LOAD_MB(addr);
goto load_validate;

}
/* ASF capacity exceeded */
if (tx->asf_entries >= ASF_ENTRIES) {
tx->asf_last = ASF_HINT_SOFTWARE;
return stm_load(tx, addr);

}
/* Check that the location is unlocked */
res = asf_lock_load(addr);
tx->asf_last = cache_addr;
tx->asf_entries++;
stm_word_t l = ATOMIC_LOAD_MB(GET_LOCK(addr));
if (LOCK_GET_OWNED(l))

return stm_load(tx, addr);
/* Validate recent ASF read-set */

load_validate:
long asf_inv;
asf_validate(asf_inv, tx->asf_entries);
if (asf_inv) {

stm_abort_self(tx);
return 0;

}
return res;

}

Figure 5: Transactional load using ASF

tion suffices. A final VALIDATE and COMMIT in the transaction-
commit code completes the modification.

5. EVALUATION
5.1 Evaluation setup
Given the high cost for developing a new processor core, instruc-
tion-set extensions are initially evaluated with processor simula-
tors. We have chosen PTLsim [18] and have implemented ASF as
described in Section 3. Additional modifications have been made to
the simulator, partially bug fixing and architectural enhancements
to bring its architecture more in line with our native hardware. We
build on the work Yourst introduced in [18] making PTLsim behave
similar to an AMD K8 core.

To show the significance of our simulation results, we will compare
results from multi-threaded benchmarks on native hardware to our
tuned simulator, thereby laying the foundation for the fidelity of the
evaluation of the ASF extensions.

For the native measurements we have used a dual-socket sys-
tem, equipped with two AMD OpteronTM processors (family 10h,
Barcelona) running at 2.2 GHz. Each processor consists of four
CPUs, each with private caches (L1D & L1I: 64 KByte, 2-way

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

lis
t (

W
T

)

lis
t (

W
B

)

rb
tr

ee
 (

W
T

)

rb
tr

ee
 (

W
B

)

C
A

S

lo
ck

no
 s

yn
c

tr
an

sa
ct

io
ns

 /
m

s
native
simulated

Figure 6: Single-thread performance for native and simulated
execution

set-associative; unified L2: 512 KByte, 16-way set-associative) in
an exclusive hierarchy, and a shared (between the four CPUs) L3
cache (2 MB, 32-way) with a mostly exclusive (sharing-aware)
configuration. Both sockets are connected with HyperTransportTM

links, making main memory at each socket available in a ccNUMA
fashion.

Benchmarking is done using the well-known “intset” workload, a
data structure that provides methods for insertion, removal, and
query of a set of integers. We use the test harness included in Fel-
ber’s TinySTM distribution3 [4] and add the different implementa-
tions of the set interface. TinySTM itself is also extended to use
ASF primitives, as sketched in Section 4.2.

Because simulation is rather slow (depending on the number of
simulated CPUs about 100,000 times slower), we have limited the
number of operations on the intset to 5000 per thread. Variance
is reduced by pinning worker threads statically to CPUs (avoiding
the OS’s balancer) and maintaining a fixed seed for reproducibility.
Other parameters of the benchmark from TinySTM remain at their
default values (set with 256 entries, entries range from 0 to 65535,
20 % rate of updates).

In addition to the implementations mentioned previously (sorted
singly and doubly linked lists using ASF) and those contained in
TinySTM (sorted singly linked list and red–black tree using STM),
we have added Harris’ implementation of a lock-free singly linked
list, as described in [5]. Another singly linked list simply protected
with a single spin-lock and a single-threaded implementation with-
out any locks mark the limits of (poor) scalability and excellent
single-thread performance.

5.2 Simulator precision
Figure 6 compares throughput for different implementations of the
intset interface on native hardware as well as inside the simulator.
Simulator precision varies, dependent on the actual implementa-
tion, but is within about 20 % of native performance, except for
the implementation using just a single big lock and the one without
any synchronization. The larger gap for the latter originates from
the tight loop that traverses the list. We have tuned the simula-
tor to schedule instructions in the simulated CPU as efficiently as
3Available from http://www.tinystm.org

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8

tr
an

sa
ct

io
ns

 /
m

s

#CPUs

tree (native)
tree (simulated)
CAS (native)
CAS (simulated)
lock (native)
lock (simulated)
list (native)
list (simulated)

Figure 7: Multi-thread performance for native and simulated
execution

possible, a behavior that the native hardware has as well if we in-
crease the total number of intset operations per test. The difference
is likely an artifact of the testing environment, which is not as con-
trolled as within PTLsim, or an effect of the incomplete knowledge
of the AMD Opteron processor’s Barcelona core in PTLsim. With
the present tight traversal loop (about 3 cycles per iteration), every
additional stall has a large effect on total performance.

Multi-thread results are shown in Figure 7, and although PTLsim
captures the general trend, simulation results scale better, espe-
cially at working-thread numbers larger than four. This deviation
is caused by our simulation’s interconnect model, which does not
differentiate between local (between CPUs in the same socket) and
cross-socket communication. On native hardware, these links differ
in both latency and available bandwidth. Therefore, our simulation
can be viewed as modeling a single-socket eight-core processor in-
stead of two four-core processors.

Additionally, PTLsim and native hardware differ in the way they
treat atomic read-modify-write (RMW) instructions: PTLsim sim-
ply grabs a simulator-internal lock for the affected memory lo-
cation (without any delays), whereas native hardware drains exe-
cution until the instruction is not speculative, waits for buffered
stores to complete, and then executes the instruction. This leads
to highly different behavior for atomic RMW instructions on con-
tended memory locations, such as spin locks (as used in the “big-
lock” implementation).

5.3 Lock-free data structures
Well designed lock-free data structures usually offer performance
superior to those implemented with coarse-grained locks and STM,
because of increased parallelism and reduced overhead. Figure 8
shows the results for the various implementations of the intset in-
terface: singly linked lock-free list using ASF (labeled ASF), Har-
ris’ CAS-based lock-free implementation (CAS), and the version
that uses a single lock (lock).

It can clearly be seen that the ASF implementation outperforms
both the CAS-based and the lock-based implementation.

The performance advantage over the CAS-based implementation
comes from three facts: First, the ASF lists do not keep deleted el-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8

tr
an

sa
ct

io
ns

 /
m

s

#CPUs

ASF (simulated)
CAS (simulated)
CAS (native)
lock (simulated)
lock (native)

Figure 8: Lock-free data structures and single lock implemen-
tation

ements in the list for later clean-up. This keeps the list short and
saves the overhead of marking and cleaning up later. Second, ASF
does not guarantee progress and thus does not need any synchro-
nization when contention on the same memory location occurs.
Finally, ASF does not serialize the other memory accesses in the
CPU, leaving more potential for parallel and out-of-order execu-
tion.

5.4 Acceleration of STM
In Figures 9, 10, and 11 we compare a standard TinySTM against
the ASF-accelerated version from Section 4.2. The large tree and
the linked list both benefit from the reduced revalidation overhead.
The number of revalidations grows with the level of concurrency
(frequent validity-interval extensions) and thus the accelerated ver-
sion benefits more at higher CPU counts.

Surprisingly, the small tree (in Figure 9) does not profit from the
acceleration although its entire read set should fit into ASF. We be-
lieve we observe this behavior because of the small read set, which
makes the validation in the standard STM still reasonably fast. This
reduces the advantage of ASF’s fast VALIDATE and brings out
some unknown overhead. We will investigate further into where
this overhead of the accelerated STM comes from and how it can
be avoided.

Figures 9, 10, and 11 also contain the performance of the native
execution using the unmodified STM for reference. As we pointed
out previously, the simulator does not yet model the limitations of
the interconnect between the two sockets in the system, which obvi-
ously limits performance for the red–black tree on native hardware
for CPU counts greater than four when cross-socket communica-
tion is necessary.

6. CONCLUSION AND FUTURE DIREC-
TIONS

In the lock-free programming and STM scenarios we have ana-
lyzed, ASF has provided substantial performance improvements—
up to 15 %. Additionally, ASF significantly simplifies lock-free
programming.

In the remainder of this section, we outline a few directions for
future research.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8

tr
an

sa
ct

io
ns

 /
m

s

#CPUs

small (ASF, simulated)
small (simulated)
small (native)

Figure 9: Comparison of ASF-accelerated and standard Tiny-
STM with red–black tree containing 128 initial elements

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8

tr
an

sa
ct

io
ns

 /
m

s

#CPUs

large (ASF, simulated)
large (simulated)
large (native)

Figure 10: Comparison of ASF-accelerated and standard Tiny-
STM with red–black tree containing 256 initial elements

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8

tr
an

sa
ct

io
ns

 /
m

s

#CPUs

list (ASF, simulated)
list (simulated)
list (native)

Figure 11: Comparison of ASF-accelerated and standard Tiny-
STM with linked list

Accelerating lock-free STMs. The work presented in this pa-
per attempted to accelerate TinySTM, one of the best performing
STM systems available. TinySTM belongs to the class of STM
systems that are based on locks. Lock-based STMs have largely re-
placed lock-free STM systems because they have less single-thread
overhead while still scaling well to the number of CPUs found in
today’s shared-memory multiprocessor systems. However, lock-
based STMs have two drawbacks to lock-free ones: susceptibility
to lock-holder preemption, causing locks to be held longer than
necessary; and lower scalability as the number of CPUs grows be-
yond what is found in today’s systems. Therefore, one direction of
future research is to use ASF-like hardware acceleration to reduce
the overhead of lock-free STMs to the level of lock-based ones.

Compiler integration. In Section 4.1, we have sketched a C-
preprocessor-macro-based interface to ASF. We acknowledge that
a more robust and usable interface is needed to make use of ASF
in programming languages. This requirement is reinforced by ASF
being targeted not only to STM runtimes but also to lock-free ap-
plication code.

The latter use case additionally raises the question of backward
compatibility. The compiler interface should support application
code that needs to work regardless of whether ASF is present or
not.

Hardware changes. ASF can be used to protect both reads and
writes against conflicting memory accesses, but the latter is bound
to ASF’s roll-back facility: It is currently not possible to discard
memory modifications without ACQUIRE, which resets stack and
instruction pointer to the values they had at the beginning of the
atomic phase in case of contention. Accelerating STM-write oper-
ations would benefit from a more flexible mechanism.

Simulator precision. We outlined in Section 5.2 that our sim-
ulator lacks precision for tight loops and when modeling cross-
socket communication. We plan to tackle especially the latter short-
coming to enable better prediction of highly parallel workloads.

Acknowledgments
ASF has been developed by an AMD team lead by Dave Christie
and Mitch Alsup. We would like to thank Dave Christie (AMD),
Andi Kleen (Novell), and Torvald Riegel (Technische Universität
Dresden) for helpful discussions. We thank Matt Yourst for help
with setting up PTLsim.

7. REFERENCES
[1] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu,

Kevin T. Lim, Ali G. Saidi, and Steven K. Reinhardt. The M5
simulator: Modeling networked systems. IEEE Micro,
26(4):52–60, 2006.

[2] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchangco, Mark Moir, and Daniel Nussbaum. Hybrid
transactional memory. In Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems (ASPLOS-XII), pages
336–346, New York, NY, USA, 2006. ACM.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In
Proc. of the 20th International Symposium on Distributed
Computing (DISC 2006), pages 194–208, 2006.

[4] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic
performance tuning of word-based software transactional
memory. In Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel
Programming (PPOPP), 2008.

[5] Tim Harris. A pragmatic implementation of non-blocking
linked-lists. Lecture Notes in Computer Science, 2180:300,
2001.

[6] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In Object-Oriented Programming, Systems,
Languages, and Applications, pages 388–402. October 2003.

[7] M. Herlihy. A methodology for implementing highly
concurrent data structures. In Proceedings of the 2nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 197–206, New York, NY,
USA, 1990. ACM.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software
transactional memory for dynamic-sized data structures. In
Proceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing, pages 92–101, July
2003.

[9] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the Twentieth Annual International Symposium
on Computer Architecture, 1993.

[10] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha
Kundu, and Anthony Nguyen. Hybrid transactional memory.
In Proceedings of Symposium on Principles and Practice of
Parallel Programming, March 2006.

[11] Yosef Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased
transactional memory. In Second ACM SIGPLAN Workshop on
Transactional Computing, 2007.

[12] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.
Moore, Mark D. Hill, and David A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[13] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system
timing-first simulation. In Proceedings of the ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems (SIGMETRICS), pages
108–116, New York, NY, USA, 2002. ACM.

[14] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos
Kozyrakis, and Kunle Olukotun. An effective hybrid
transactional memory system with strong isolation guarantees.
SIGARCH Comput. Archit. News, 35(2):69–80, 2007.

[15] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson.
Architectural support for software transactional memory. In
MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
185–196, Washington, DC, USA, 2006. IEEE Computer
Society.

[16] John D. Valois. Lock-free linked lists using
compare-and-swap. In Symposium on Principles of
Distributed Computing, pages 214–222, 1995.

[17] Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E.
Moore, Haris Volos, Mark D. Hill, Michael M. Swift, and
David A. Wood. LLogTM-SE: Decoupling hardware
transactional memory from caches. In Proceedings of the 13th
International Symposium on High-Performance Computer
Architecture(HPCA). February 2007.

[18] M.T. Yourst. PTLsim: A cycle accurate full system x86-64
microarchitectural simulator. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems
& Software (ISPASS), pages 23–34, April 2007.

