Steffen Kjær Jacobsen

Steffen Kjær Jacobsen
University of Copenhagen · Niels Bohr Institute

About

9
Publications
378
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
579
Citations
Citations since 2016
8 Research Items
579 Citations
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100
2016201720182019202020212022020406080100
Introduction

Publications

Publications (9)
Article
Context. The majority of stars form in binary or higher order systems. The evolution of each protostar in a multiple system may start at different times and may progress differently. The Class 0 protostellar system IRAS 16293–2422 contains two protostars, “A” and “B”, separated by ~600 au and embedded in a single, 10 ⁴ au scale envelope. Their rela...
Preprint
[Abridged] The majority of stars form in binary or higher order systems. The Class 0 protostellar system IRAS16293-2422 contains two protostars, 'A' and 'B', separated by ~600 au and embedded in a single, 10^4 au scale envelope. Their relative evolutionary stages have been debated. We aim to study the relation and interplay between the two protosta...
Article
Full-text available
Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resoluti...
Article
One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS16293-2422 from an unbiased spectral survey with ALMA (PILS). Here we focus on the ne...
Article
How protostars accrete mass is one of the fundamental problems of star formation. High column densities and complex kinematical structures make direct observations challenging and they only provide a snapshot. Chemical tracers provide an interesting alternative to characterise the infall histories of protostars. Previous observations of H13CO+ towa...
Article
The inner regions of the envelopes surrounding young protostars are characterised by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. This paper introduces a systematic survey, "Protostellar Interferometric Line Survey (PILS)" of the Class 0 protostellar binary IRAS 16293-2422 using...
Article
Full-text available
Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The P...
Article
Full-text available
We analyze a sample of multiple-exoplanet systems which contain at least 3 transiting planets detected by the Kepler mission ("Kepler multiples"). We use a generalized Titius-Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius-Bode-based predictions suggest that there are, on average, ~2 pla...

Network

Cited By