Steffen Baab

Steffen Baab
Universität Stuttgart · Institute of Aerospace Thermodynamics

Dipl.-Ing.

About

13
Publications
2,995
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
169
Citations
Additional affiliations
July 2012 - present
Universität Stuttgart
Position
  • Research Assistant

Publications

Publications (13)
Conference Paper
Full-text available
Near-critical jet disintegration studies are performed in a specialised shock tube. Both the injection and test conditions can be varied systematically from subcritical to super- critical values (with respect to the injectant). Three different injection regimes have been identified. Their inception is basically determined by the initial fuel temper...
Conference Paper
Full-text available
The injection of fuel into an environment, whose thermodynamic state is close to or even exceeds the fuels critical values occurs in several applications. Besides modern diesel engines and gas turbines, liquid propellant rockets feature such extreme conditions in particular. It is mandatory to fully understand the characteristic behavior of preheat...
Article
The present work provides an overview on the possible phase transitions associated with supercritical fluid injection and a detailed evaluation of the mixing process between injectant fluid and quiescent ambience. The experiments cover superheated liquid disintegration, pseudo-boiling transition and single-phase jets under different nozzle pressure...
Article
Full-text available
Experiments and simulations were carried out to contribute to a better understanding and prediction of high-pressure injection into a gaseous environment. Specifically, the focus was put on the phase separation of an initially supercritical fluid due to the interaction with its surrounding. N-hexane was injected into a chamber filled with pure nitr...
Article
In this study, n-hexane was compressed beyond six times its critical pressure and discharged into argon at subcritical pressure (with respect to the injectant). The injection temperature systematically varied from sub- to supercritical values to investigate near-critical disintegration phenomena of retrograde jets. Here, the ratio of the pressure i...
Article
Full-text available
We report a comprehensive speed of sound database for multi-component mixing of underexpanded fuel jets with real gas expansion. The paper presents several reference test cases with well-defined experimental conditions providing quantitative data for validation of computational simulations. Two injectant fluids, fundamentally different with respect...
Article
This study is the first to provide a comprehensive speed of sound database for multi-component jet mixing at high pressure. It serves as a unique reference for numerical simulations of mixture preparation processes in future liquid rocket engines and internal combustion engines. We performed quantitative speed of sound measurements in jet mixing zo...
Conference Paper
Full-text available
Experiments and numerical simulations were carried out in order to contribute to a better understanding and predic-tion of high-pressure injection into a gaseous environment. Specifically, the focus was put on the phase separation processes of an initially supercritical fluid due to the interaction with its surrounding. N-hexane was injected into a...
Article
Full-text available
Experiments and numerical simulations were carried out in order to contribute to a better understanding and prediction of high-pressure injection into a gaseous environment. Specifically, the focus was put on the phase separation processes of an initially supercritical fluid due to the interaction with its surrounding. N-hexane was injected into a...
Article
Full-text available
The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The techn...
Article
Full-text available
Non-resonant laser-induced thermal acoustics (LITA), a four-wave mixing technique, was applied to post-shock flows within a shock tube. Simultaneous single-shot determination of temperature, speed of sound and flow velocity behind incident and reflected shock waves at different pressure and temperature levels are presented. Measurements were perfor...

Network

Cited By