Stefania Fresca

Stefania Fresca
  • Doctor of Philosophy
  • Assistant Professor at Politecnico di Milano

About

41
Publications
11,544
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,160
Citations
Current institution
Politecnico di Milano
Current position
  • Assistant Professor

Publications

Publications (41)
Article
Full-text available
Conventional reduced order modeling techniques such as the reduced basis (RB) method (relying, e.g., on proper orthogonal decomposition (POD)) may incur in severe limitations when dealing with nonlinear time-dependent parametrized PDEs, as these are strongly anchored to the assumption of modal linear superimposition they are based on. For problems...
Article
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional reduced order models (ROMs) – built, e.g., through proper orthogonal decomposition (POD) – when applied to nonlinear time-dependent parametrized partial differential equations (PDEs). These might be related to (i) the...
Preprint
Full-text available
We propose a non-intrusive Deep Learning-based Reduced Order Model (DL-ROM) capable of capturing the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase, a limited number of high fidelity snapshots are used to generate a POD-Galerkin ROM which is subsequently exploited to generate the data, coveri...
Preprint
Full-text available
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional ROMs - built, e.g., exclusively through proper orthogonal decomposition (POD) - when applied to nonlinear time-dependent parametrized PDEs. In particular, POD-DL-ROMs can achieve extreme efficiency in the training sta...
Article
We apply the Proper Orthogonal Decomposition (POD) method for the efficient simulation of several scenarios undergone by Micro-Electro-Mechanical-Systems, involving nonlinearites of geometric and electrostatic nature. The former type of nonlinearity, associated to the large displacements of the devices, leads to polynomial terms up to cubic order t...
Preprint
Full-text available
Nuclear reactor buildings must be designed to withstand the dynamic load induced by strong ground motion earthquakes. For this reason, their structural behavior must be assessed in multiple realistic ground shaking scenarios (e.g., the Maximum Credible Earthquake). However, earthquake catalogs and recorded seismograms may not always be available in...
Preprint
Full-text available
Despite incredible progress, many neural architectures fail to properly generalize beyond their training distribution. As such, learning to reason in a correct and generalizable way is one of the current fundamental challenges in machine learning. In this respect, logic puzzles provide a great testbed, as we can fully understand and control the lea...
Preprint
Full-text available
In this work, we devise a new, general-purpose reinforcement learning strategy for the optimal control of parametric partial differential equations (PDEs). Such problems frequently arise in applied sciences and engineering and entail a significant complexity when control and/or state variables are distributed in high-dimensional space or depend on...
Preprint
Full-text available
Deep Learning-based Reduced Order Models (DL-ROMs) provide nowadays a well-established class of accurate surrogate models for complex physical systems described by parametrized PDEs, by nonlinearly compressing the solution manifold into a handful of latent coordinates. Until now, design and application of DL-ROMs mainly focused on physically parame...
Preprint
Full-text available
In this work, we present the novel mathematical framework of latent dynamics models (LDMs) for reduced order modeling of parameterized nonlinear time-dependent PDEs. Our framework casts this latter task as a nonlinear dimensionality reduction problem, while constraining the latent state to evolve accordingly to an (unknown) dynamical system. A time...
Article
Full-text available
POD-DL-ROMs have been recently proposed as an extremely versatile strategy to build accurate and reliable reduced order models (ROMs) for nonlinear parametrized partial differential equations, combining (i) a preliminary dimensionality reduction obtained through proper orthogonal decomposition (POD) for the sake of efficiency, (ii) an autoencoder a...
Article
Mesh-based simulations play a key role when modeling complex physical systems that, in many disciplines across science and engineering, require the solution to parametrized time-dependent nonlinear partial differential equations (PDEs). In this context, full order models (FOMs), such as those relying on the finite element method, can reach high lev...
Article
Reducing the computational time required by high‐fidelity, full‐order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient‐specific simulations into clinical practice. Indeed, while FOMs, such as those based on the finite element method, provide valuable information on the cardiac mechanical...
Article
Uncertainty quantification (UQ) tasks, such as sensitivity analysis and parameter estimation, entail a huge computational complexity when dealing with input-output maps involving the solution of nonlinear differential problems, because of the need to query expensive numerical solvers repeatedly. Projection-based reduced order models (ROMs), such as...
Preprint
Full-text available
Mesh-based simulations play a key role when modeling complex physical systems that, in many disciplines across science and engineering, require the solution of parametrized time-dependent nonlinear partial differential equations (PDEs). In this context, full order models (FOMs), such as those relying on the finite element method, can reach high lev...
Article
Full-text available
We propose a deep learning-based reduced order modelling approach for micro- electromechanical systems. The method allows treating parametrised, fully coupled electromechanical problems in a non-intrusive way and provides solutions across the whole device domain almost in real time, making it suitable for design optimisation and control purposes. T...
Article
Full-text available
Highly accurate simulations of complex phenomena governed by partial differential equations (PDEs) typically require intrusive methods and entail expensive computational costs, which might become prohibitive when approximating steady-state solutions of PDEs for multiple combinations of control parameters and initial conditions. Therefore, construct...
Preprint
Full-text available
POD-DL-ROMs have been recently proposed as an extremely versatile strategy to build accurate and reliable reduced order models (ROMs) for nonlinear parametrized partial differential equations, combining (i) a preliminary dimensionality reduction obtained through proper orthogonal decomposition (POD) for the sake of efficiency, (ii) an autoencoder a...
Article
Recently, deep Convolutional Neural Networks (CNNs) have proven to be successful when employed in areas such as reduced order modeling of parametrized PDEs. Despite their accuracy and efficiency, the approaches available in the literature still lack a rigorous justification on their mathematical foundations. Motivated by this fact, in this paper we...
Article
Full-text available
Micro-electro-mechanical-systems are complex structures, often involving nonlinearites of geometric and multiphysics nature, that are used as sensors and actuators in countless applications. Starting from full-order representations, we apply deep learning techniques to generate accurate, efficient, and real-time reduced order models to be used for...
Preprint
Full-text available
Uncertainty quantification (UQ) tasks, such as sensitivity analysis and parameter estimation, entail a huge computational complexity when dealing with input-output maps involving the solution of nonlinear differential problems, because of the need to query expensive numerical solvers repeatedly. Projection-based reduced order models (ROMs), such as...
Article
Full-text available
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional ROMs–built, e.g., through proper orthogonal decomposition (POD)–when applied to nonlinear time-dependent parametrized PDEs. In particular, POD-DL-ROMs can achieve an extremely good efficiency in the training stage and...
Preprint
Full-text available
Highly accurate simulations of complex phenomena governed by partial differential equations (PDEs) typically require intrusive methods and entail expensive computational costs, which might become prohibitive when approximating steady-state solutions of PDEs for multiple combinations of control parameters and initial conditions. Therefore, construct...
Article
Full-text available
To speed-up the solution of parametrized differential problems, reduced order models (ROMs) have been developed over the years, including projection-based ROMs such as the reduced-basis (RB) method, deep learning-based ROMs, as well as surrogate models obtained through machine learning techniques. Thanks to its physics-based structure, ensured by t...
Preprint
Full-text available
Recently, deep Convolutional Neural Networks (CNNs) have proven to be successful when employed in areas such as reduced order modeling of parametrized PDEs. Despite their accuracy and efficiency, the approaches available in the literature still lack a rigorous justification on their mathematical foundations. Motivated by this fact, in this paper we...
Article
We propose a non‐intrusive Deep Learning‐based Reduced Order Model (DL‐ROM) capable of capturing the complex dynamics of mechanical systems showing inertia and geometric nonlinearities. In the first phase, a limited number of high fidelity snapshots are used to generate a POD‐Galerkin ROM which is subsequently exploited to generate the data, coveri...
Preprint
Full-text available
Micro-Electro-Mechanical-Systems are complex structures, often involving nonlinearites of geometric and multiphysics nature, that are used as sensors and actuators in countless applications. Starting from full-order representations, we apply deep learning techniques to generate accurate, efficient and real-time reduced order models to be used as vi...
Article
Full-text available
The numerical simulation of several virtual scenarios arising in cardiac mechanics poses a computational challenge that can be alleviated if traditional full-order models (FOMs) are replaced by reduced order models (ROMs). For example, in the case of problems involving a vector of input parameters related, e.g., to material coefficients, projection...
Preprint
Full-text available
Reducing the computational time required by high-fidelity, full order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient-specific simulations into clinical practice. While FOMs, such as those based on the finite element method, provide valuable information of the cardiac mechanical functio...
Preprint
Full-text available
To speed-up the solution to parametrized differential problems, reduced order models (ROMs) have been developed over the years, including projection-based ROMs such as the reduced-basis (RB) method, deep learning-based ROMs, as well as surrogate models obtained via a machine learning approach. Thanks to its physics-based structure, ensured by the u...
Preprint
Full-text available
We apply the Proper Orthogonal Decomposition (POD) method for the efficient simulation of several scenarios undergone by Micro-Electro-Mechanical-Systems, involving nonlinearites of geometric and electrostatic nature. The former type of nonlinearity, associated to the large displacements of the devices, leads to polynomial terms up to cubic order t...
Article
Full-text available
The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) for parametrized PDEs to speed up the solution of the aforementioned problems can be problemat...
Article
Full-text available
Simulating fluid flows in different virtual scenarios is of key importance in engineering applications. However, high-fidelity, full-order models relying, e.g., on the finite element method, are unaffordable whenever fluid flows must be simulated in almost real-time. Reduced order models (ROMs) relying, e.g., on proper orthogonal decomposition (POD...
Preprint
Full-text available
Simulating fluid flows in different virtual scenarios is of key importance in engineering applications. However, high-fidelity, full-order models relying, e.g., on the finite element method, are unaffordable whenever fluid flows must be simulated in almost real-time. Reduced order models (ROMs) relying, e.g., on proper orthogonal decomposition (POD...
Preprint
Full-text available
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional reduced order models (ROMs) - built, e.g., through proper orthogonal decomposition (POD) - when applied to nonlinear time-dependent parametrized partial differential equations (PDEs). These might be related to (i) the...
Article
Full-text available
Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat that models the time evolution of the electrical...
Preprint
Full-text available
Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the formulation and numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat that models the time evolution of...
Preprint
Full-text available
Traditional reduced order modeling techniques such as the reduced basis (RB) method (relying, e.g., on proper orthogonal decomposition (POD)) suffer from severe limitations when dealing with nonlinear time-dependent parametrized PDEs, because of the fundamental assumption of linear superimposition of modes they are based on. For this reason, in the...

Network

Cited By